R332\ RP-33)

Playground Essays
by Alan Kay
Preface

The Apple Vivarium is a long-range research program which uses children's
interest in the forms and behavior of living things to inspire a wide variety of
exploratory designs in curiculum, user interface, computer inputs and outputs, and
modeling of behavior.

We expect that having children "learn about learning” and "think about thinking"
will set up waves that lap the farthest shores of their minds—that trying to visualize
the world through the senses of other creatures will give them a remarkable
collection of perspectives from which to view their own world.

For us, the Vivarium is a Romance that demands new ideas and fresh approaches.

This document is a collection of essays written at different times about different
parts of the Vivarium Program. They are still in draft form and were originally
intended as design notes for internal use by the project members. The ATG Open
House in June '88 is the target for them to be turned into a more coherent
representation of our work and plans. The current set is not consistent but quite
suggestive of the directions the program has taken.

Not all of the projects of the Vivarium are included here. Currently, the separate
projects include:

The Open School
Playground

Physical & Mental Modeling
Computer Coach

Learning Seminars

This set of documents mainly discusses the first two. The remaining three areas
are still in preparation.

This document contains Playground essays.

Playground As Medium -- Fish Example

Playground In A Nutshell

Playground User Interface

Players and Views -- Example

A Simulation Kit -- Example

Salmon Spawning Behavior -- Example
Dawkins' Biomorphs -- Example
Adventure Games -- Example
Traditional Animations Of Images & Sound -- Examples
Electronic Mail -- Example
A Paragraph Editor -- Example
A Corner Mover _ -- Example
A Scroll Bar -- Example
Angular Momentum -- Example
Playground History

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

Playground as Medium

Though computer systems are sometimes portrayed metaphorically as "tools" or
"vehicles”, so many more dimensions and extensions are available that it makes
more sense to think of "medium" as in "pencil and paper", "literary", and "artistic".
What is the computer as a medium and how might it be shaped? Well, for one thing,
its content is descriptions that can simulate all existing media and many more that
can't directly exist in the physical world. Another level has been added to the idea of
literacy. We are familiar with the first, that of fluency within a medium such as
drawing and reading the printed word. The second level is fluency in the shaping of
a useful medium from the metamaterial of the computer. Since children learn much
about media by being embedded in it from birth—those who aren't are sorely
hampered—it is very important to provide a user interface that is both eminently
accessable and which gradually reveals the real nature of the powers available.

In fact, the presence uf the children starts to "tell"” us much about how. the design
should go. However, in order not to be led astray by simply providing an easy to use
interface, what little is known about how the different mentalities respond to
information must also be taken into account—in particular, the great differences
between the kinds of thought that television and printing engender.

Bruner concentrated on three major mental processes that seemed to have rather
different ways to deal with the world. Recently, models involving considerably
more separate mentalities have been advanced. The important thing is that there is
more than one, and almost certainly more than two. Just as central to the point is
that none of the mentalities alone seems to be a good candidate to be amplified at the
expense of the others.

As an example, visual logic is tremendously useful in getting creative activities
started. The constant flitting around of attention allows many things to be
considered without getting blocked—imagine how strange it would be if the first
thing we saw in the day was all that we could look at for hours, but that is the way
the symbolic "logical" mentality likes to work. So far so good. But visual logic also
implies by spatial association. If someone were to assert in words that "eating a
MacDonald's hamburger will turn you into a very attractive human being", a
proposition has been formed that can be reflected on and easily rejected. But, as
advertisers well know, we have no such negative reaction to images of handsome
people eating brandname foods—the implication is "softer" but works all too well.

The visual mentality loves the new, and because of that prefers small scenes that

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

4

don't take long to solve, and is very interested when a scene changes. In theatre, this
is sometimes called spectacle. The symbolic mentality on the other hand likes to
mine the old for ever deeper insights and connections, but can get trapped and
pedantic. Theatrically, this is called substance. Though we might prefer one to the
other, 1t 1s fairly obvious that both working together can build much more
interesting and deeper ideas than either in isolation.

Bruner's other mentality, the first to appear in a child's intellectual
development, is one we scarcely consider. It is the mentality that deals with body
logic—Bruner called it "enactive"—that not only orients us in the world, but puts
us into the world as an actor. Thinking by acting, as young children do, is obviously
very important, but can be very dangerous much of the time. Bruner believes that
the other mentalities evolved to defer actions in the real and dangerous world to,
first, an image based world in which choices can be considered and single stage next
actions visualized, and second, to a logical world in which the vividness of the visual
can be ignored in favor of long chained plans based on facts which may even
contradict "common sense".

A happy synergy of Bruner's three mentalities would combine spontanaety,
creativity, and thoughtful focus. Of course there is much more going on. The
"three mentalities” might not even actually exist. We certainly know about more
ways to appreciate the world than just these—music, for example, can with a
struggle be mapped across the three mentalities, but it could just as well be a
separate mental center itself. Just as there are a large number of ways that color
vision could work—and nature happened to pick one of them—human psychology
has not yet found which particular architecture generates our behavior. Be that as it
may, design can get by without cold facts, but it can't survive without
inspiration—and these multiple mentality ideas are enough on the right track to lead
to fruitful ideas.

Thus our task in the design of a new computing system is first, to synergize as
many mentalities as we can identify. Second, without cramping a particular
mentality's style, to make sure that overshoot in a particular direction can be
balanced from another. And finally to provide bridges from one to the other in
accordance with the normal progression of development. By the latter, I mean that
the very young child mostly thinks by doing, thus a bridge to the next stage—the
visual-—might be helpful. The elementary school child is predominantly visual, thus
a bridge to the symbolic that can aid planning, and longer chains of inference, may
be very helpful. It is important to reemphasize that there is nothing "wrong" about

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

5

the earlier stages—our goal is not to hurry the child to the next stage—but to start
to supply the synergy amplification earlier. In fact, it is very likely that the most
important aspect of the entire user interface design will be to recall the earlier
mentalities after the strong dominence by the symbolic that starts to happen around
age twelve.

These were some of the ideas behind the Xerox PARC "multiple window and
pointing" interface that, refined by many talents, led to the Macintosh. The mouse is
not there just because pointing is useful, but because gesture input connects to the
enactive mentality which tells you where you are, that puts you into the world, and
thus brings its world more strongly out to you. The icons and multiple windows are
there to take advantage both of the efficiency of the iconic mentality and to provide
a way to consider the creative possibilities without getting blocked. An underlying
programming structure like HyperTalk or Smalltalk is provided to make a idea
gotton by manipulation of hand and eye much more powerful through abstraction.

These ideas are still not well understood even by many who have worked on this
style of interface, nor have any of us been able to carry all of the implications
forward with equal balance. The two biggest shortfalls of these principles on the
Mac have been, first, the lack of multiple windows in many applications, and in
those that have them, to fail to provide multiple views of an underlying model.
Thus, we have the strange case of one-windowed HyperCard, which when you want
to use Help, forces you to abandon the very scene that you were puzzled about—nor
can you compare two or more cards, even though comparison and contrasting of
information is more important for school and elsewhere than retrieving an isolated
fact. This shortfall is due to lack of understanding by implementers; techniques
exist to do it correctly.

The second, and most important, shortfall is the hookup to the symbolic
mentality via a kind of programming that extends outwards from the more concrete
enactive and iconic activities. Hypercard currently does it best, at least along one
dimension, and much can be learned from its enthusiastic acceptance—but it falls
woefully short in too many places. Playground is another essay in this direction; it
will not be a big surprise if it too falls woefully short. The history of programming
language design is littered with brave failures—unfortunately, most of them are
still being programmed in today. This shortfall is due to real lack of knowledge and
ideas; techniques to accomplish it have been hard to come by, partly because
implementing a programming system to do anything useful is such a large and slow
task.

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

Playground is being designed for elementary aged children but is expected to
extend far into the world of adults. At the most ambitious end of the scale, we want
children to be able to build biologically sensible animal mentalities and spatial
models. At the most mundane end of the scale, the children need
dynamedia—sketching, drawing, animation, music, word processing, desktop
publishing, information storage and retrieval, electronic mail, collaborative work
and more. The teachers have to be able to understand the system in order to guide
and answer questions. It must be very simple for both sets of users or it will never
make its way into the classroom. It must be very comprehensive in its scope or
getting it into the classroom will be an empty or even debilitative gesture.
Our approach has been to take the hardest thing we want children to
do—programming an animal mentality and its spatial extension—try to make it
simple enough to be possible, and then to see if the metaphors that arose could be
used for more conventional programming and manipulation. Our first problem, of
course, is that no adult had ever programmed an animal mentality above the level of
a protozoan. Parts of higher animal mentalities had been simulated by early neural
nets, but no higher level architectures emerged. Thus one of our subtasks has been
to find an architecture that seems fruitful, build lots of models, then look for
elegant simplifications. (Graduate students are great at this). Our current
architecture is a combination of some beyond-Smalltalk object-oriented ideas and
Marvin Minsky's Society of Mind.
Here is an example by Mike Travers, a Vivarium graduate student at MIT's
Media Lab. The main creature being modeled is a three-spined stickleback, perhaps
the most studied fish, first described in detail by Tinbergen in his classic: The Study
Of Instinct. Much of what follows is motivated by Travers' paper Animal
Construction Kits.
To implement a real creature we must implement a realistic world for it to live
in. The stickleback has to be able to sense the onset of mating season, sense the
presence of other animals, including their social signals such as the red belly of
the male, sense the presence of eggs in the nest and the actions of its offspring.
If it is to dig its nest, the physics of digging must be simulated to some degree
of detail.

And there is much much more in the stickleback's world.

Travers has built everything from a new kind of object called an agent.
Everything is an agent, an agent is made from agents, and agents are spontaneously

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

active: they can notice their environment, many can run at the same time, and the
intensity of their activity is controlled by an activation level. Agents can activate or
suppress others including sensory and motor agents, remember the current
activation state of other agents, and create a new agent or alter an existing one.

An example of a lower level agent for a stickleback would be one that can
recognize sticklebacks. As with all agents it is composed of agents. This one seems
quite complex but Tinbergen showed that there are many forms that will incite the
same response particularly around mating time. Almost anything about the right
size with a red belly will do. Where do the agents stop? This depends on the level of
"physics" that is built into the environmental simulation. At one level much can be
learmed by having already made up agents for lower senses and motor activities. At
another level it will be useful for the children to build a stickleback recognition
agent from simpler ones. If our environmental simulation were on the equivalent of
the E&S CT6 flight simulator, then the primitive agents might be size, shape, and
color estimators. We ean at least image that in the environment are certain
"physics" agents such as niove, that implements momentum, so that an object put in
motion will tend to continue in motion; and drag, that implements frictional drag at
a constant rate for each simulation cycle. Another physics agent would implement
gravity, or more useful for the fish world, buoyancy.

Another lower level agent might be one that turns on male reproductive
behavior. It could be as primitive as a simple test for its host being male and that the
season of the year is "springtime"—the latter information supplied by the god of the
machine or by an accumulation of still lower order sense information having to do
with the passage of time, temperature of the water, condition of the light, etc. The
general rule in the classroom would be that any area of interest would be simulated
to the finest degree affordable by the computer, other areas can be grossly
approximated until they go to center stage.

Another way to think of agents is that each one implements a goal or a drive.
There are activation conditions that start and stop the goal and a level that controls
the intensity of the achievement of the goal. There are subgoals made from
activations of agents that may also be controlled by sensing conditions. This allows
for more complex reactions than simple Skinneristic stimulus-and-response. A
simple mentality when presented with food that it wishes to go towards and a
predator that it wishes to avoid will go into fugue. A more advanced mentality will,
in the most important cases anyway, have another agent that tries to resolve
conflicts. Most animals when fleeing from a predator will not salivate if food is

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

8

placed under their nose. One way to intrepret this in the S-R world is as a kind of
anesthesia. In a model that has drives it means that the drive that is in control only
uses the sense agents it needs; everything else is simply not invoked.

Travers has supplied two useful "continuity™ agents: shutoff-after, which ticks
away and then shuts off the agent, and immediate, which tests to see what goal we
were last trying to accomplish. In combination they can be used to produce
oscillatory sequences. His example is, if zigzag-dance is a behavior caused by
courting a female, then zig and zag can be defined as follows:

o Ry
When Frigzag-dance and not immediate zag
shutoff-after 10

Motor [zig away from female”

and

Zag

When pigzag-dance and not immediate zig
| shutoff-after 10

Motor [zag towards female with mouth open”

Travers comments:
It should be noted that the hierarchical behavior structures of classical ethology
are implicitely encoded here by the interagent references in when clauses, which
provide a more general linking mechanism.

What follows in his paper is an very interesting discussion of how Minsky's
"K-line" type learning and Schank "scripting” might be implemented using agents.
But we have already seen enough to motivate the next discussion that concerns how
this "ethological simulator” might be turned into a useful general purpose
programming language.

We know from experience with the first completely object-oriented language,
Smalltalk, that objects are a universal building block; everything can be made from
them. Since agents are objects, we need only worry about the ease of programming
and the understandability of the result. We have several main tasks. First, to make
user interface actions a part of the language, and vice versa: so there is a direct

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

correspondence between the concrete and abstract. Second, to set up the
evnvironment so that 80-90% of the actual programming is done by direct
construction. Third, to have simple programs be obvious and simple. Fourth, to
have the more complex already supplied agents—such as a MacParagraph—be
themselves programmed in agents. And still be understandable—so that we can pop
the hood" from most applications and not be dismayed or repulsed at what we find.
Fifth, we have to build in all the facilities demanded by modern day computing
power and network access—such as real-time animation and collaborative work.
Finally, we must remember that our initial and most important clientele are
children, and nothing of the design can be considered a success unless they can
really use and grow with it—so nothing can be invisible and there must be no "work
arounds".

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

10
Playground In A Nutshell

The initial conception of Playground was that of a "very large and extended
drawing system (nowadays we would say MacDrawlike)"— a kind of Disneyland
seen from above—in which everything lived, and every player-object had been
constructed in a way that was also open to the end user. Part of the Playground
would be common to all—events happening in the common would show in all the
machines on the network instantly.

Everything in Playground is a player and made from players. We see a player on
the screen as one of possibly many views of the player. The construction of a player
is accomplished by making a view—every player that is moved into the view (ala
MacDraw) becomes a component of the resulting prototype. There is a default
automatic view that simply shows all of the components. Most views of a player will
not show all of the components and those components that are visible will be in a
graphic layout. Menus are simply another view that group some of the components
that are sensitive to pointing actions. All of this implies that views are not as they are
in Smalltalk (quite separate entities that are applied to models)—instead, Playground
views are owned by the prototype and they are the only ways in which we can see
and deal with a particular player. Editing the components of any view implies a
possible change to the prototype.

A given instance is not restricted to just the components of its prototype—it can
have individual players of its own for which the prototype doesn't have direct
knowledge. At some point the abuse of this ability will cause kludgery, but
Smalltalk's way is too restrictive.

The direct components of a player have names and they can refer to each other
using those names. Some of the components will be public—outside players can
refer to them by mentioning their owner and then their name. Private components
can only be referred to by their own siblings.

Since each component is also a player what we see when we look at a component
is one of its views.

A component that shows just one thing in its view can act very much like a
spreadsheet cell if its internal goal is to find a suitable value to display.

The value-views of all the components are represented by the Playground system
in such a way that any player can be found by searching on any of its internal values.
Thus a player also acts very much like an active datarecord in a sophisticated
database.

<Playground Essays> DRAFT -- Confidential -- Don't Copy or Distribute

11

One of the simplest player-components is a button—the view is simply the name
of the button—and the internals of the button are a goal to be carried out. Thus a
button is much like a Smalltalk message-method, except that it can be actively
looking for more than a simple message "push”, as we see next.

In Smalltalk, we have to explicitly tell an object to notice an event (as though the
object were poked with a finger to arouse it from a light slumber, or composed of
buttons that need to be explicitly pushed)—and general broadcasting of messages 1s
awkward. In Playground, individual players can notice much of what is going on
around them (as though they have senses beyond direct touch such as smell, hearing
and vision).

Playground is "event-guided” not "event-driven" in the following sense. A button
in an event driven system (such as HyperCard) will have a module of code that (for
example) responds to a "mouse-still-down" event. There is an ambiguity since there
are several actions that might want to drive themselves from this event: such as (1)
the button action itself is going to carry out some operation continuously as long as
the mouse is still down—Ilike scrolling something etc., or (2) we might be trying to
do something to the button itself regardless of its intended action—Ilike moving it to
a different place, in which case we don't want to go off. HyperCard addresses this by
walling off all button moving actions et. al. in a cursor mode so that the user can't
deal with them at all—this is diametrically opposed to the philosophy of Playground.
A more sophisticated event driven system might employ "flags" to indicate which
goal is being pursued (none of the code examples in this note have necessarily
anything directly to do with what Playground code will look like):

mouseStllDown
if trying to moveSelf then ...
if rying to doButtonAction then ...
if" ... ete.

This is better. But if biology is consulted, we get more guidance. It is a very weak
"behaviorism" way of looking at things to think of a stimulus causing a response.
Nowadays it is realized that there are goals (or drives, or what have you) already set
up that use sense information to try to complete themselves. These goal modules
compete with each other in such a way that a given stimulus does not always invoke

<Playground Essays> DRAFT -- Confidential -- Don't Copy or Distribute

12

the same response—in fact, a goal may be so blocked that none of its usual response
activity may happen at all. Thus we are led to the other way to organize which is
"event-guided":

moveSelf Drive
when moveGesture then ...

when mouseStillDown then self location = mouse location

doButtonAction Drive
when mouseDown then ...

when mouseStillDown then ...

In other words, we group by goals and trigger by events. One way to
disambiguate which goal is actually going to be served is to have a "guard" or "cue"
section in the beginning of the goal—here anything above the "------ " will trigger
the whole goal. Once this happens, only the goal that has been triggered will be able
to notice the sustained event "mouseStillDown". (If several goals are triggered, they
will each be able to notice "mouseStillDown.) This has the same effect as mode flags
but is conceptually and biologically more clear.

This ordering by subgoals that are attentive to events also resembles good

documentation—we can imagine a manual saying:
To move a button, first make a "move gesture" (by stroking to the left with the
mouse) and then, while still holding the mouse down, move to its new location.

One of the biggest goals of Playground is that the code should be in one-for-one
correspondance to user actions. To apply this to the Macintosh style of interaction,
this—in part—means that many goals will be of the form

(1) have motivation for doing something,

(2) search-find-select a(some) player(s),

(3a) change the player's attributes or

(3b) replace the selection with other players. _
Smalltalk conforms to (2 and 3) fairly well. The Smalltalk expression can be

thought of as a retriever of objects, the cascades (using ";") allow many attribute

<Playground Essays> DRAFT -- Confidential -- Don't Copy or Distribute

13
changes to be made on the result. The "3b" part only works for variable bindings and
"from:to:"s in collections. In Playground we want the correspondance to be
complete—there must be a motivation, a selection, and a change.

Goals will often be a sequence of subgoals.
when moveGesture | then (notice) mouseStillDown then self location = mouse location then
can be thought of as a sequence (ala Prolog and Parlog) where then is half sequencer
and half and.

Goals serve the same purpose as Smalltalk methods and must not ever be more
complex. Indeed, they should almost always be simpler to state.

An important use of goals beyond direct activities such as building things, seeking
food, avoiding predators, etc., will be to notice conflicts between goals and help to
resolve them. For example, most of the time goals can be quite independant—in most
animals they are remarkably so. 30 a food-seeker can go after food. A sleeper can get
the animal to sleep. A predator-avoider can get the animal to flee. When a steak is
right in front of a predator we have conflict. Some animals can get trapped in an
infinite approach avoidance loop. Most will have a conflict resolver that will gain
control after some time to get the animal to do something else to resolve the problem.
Monkeys have one for the steak and predator, but not for the nut in the jar—once
they grab the nut and make their fist too big to get back out they are trapped by the
strength of their food-seeker and the lack of a resolver.

Even though Prolog has a few wonderful ideas, its basic view of an unchanging
universe with no time flow is not intuitive—indeed, it then has to introduce many
ugly features to in fact change the universe, to control speculation, etc., so that the
result is quite unesthetic. In Playground, we want the players to have state and to
change their state as time progresses. But we have also introduced a nonprocedural
way to find goals as contributors to a larger goal—and enough unsychronized
parallism to make state changes dangerous and race conditions almost inevitable. In
other words we have to deal with the concepts of "safe-unsafe”, "undo”,
"backtracking" vs. "trial evaluation” etc.

We can make Playground a lot safer without the user ever being aware by
dividing time flow for a player into two phases: (1) get to next state, I'm unstable so
nobody can look (2) now I'm stable, allow others to see my state. This has to be done
for general display, animation, and the network, and works well for general

<Playground Essays> DRAFT -- Confidential -- Don't Copy or Distribute

14

computation. Each player now has a previous state that can be used to get to the new
one with no race conditions on any values. This mechanism also allows for "slippage”
viewing by other players, especially the displayer—it can work on a stable collection
of player states while the players compute ahead without being lockstepped by the
slower display process.

Pedagogically and biologically, the concept of “trial evaluation” is more pleasing
than "backtracking". Dropping an egg on the floor requires considerable effort to
erase and (from the egg's viewpoint anyway) can't be undone. Two year olds think by
doing and have others to clean up and usually prevent their unpremeditated actions
from killing them. Bruner points out that a great invention of nature—expecially for
species that have few offspring—was the internalization of actions to symbolic
renderings in which many possible activities can be tested without penalty. This is
trial evaluation—we move a copy of the universe forward and let state changes
happen to it while the real universe remains untouched until we actually do some
thing in it—similar to backtracking internally but quite a different way to think about
thinking. In addition it leads to "possible worlds" ways of using different contexts for
mapping out problems which I think is also biologically relevant. We don't need the
whole solution to this now, but eventually we will actually be building mentalities that
create an internal model that is manipulated in order to get thinking to progress.

<Playground Essays> DRAFT -- Confidential -- Don't Copy or Distribute

15
The User Interface

Since one of Playground's major goals is that 80-90% of anything a user wants to
make can be accomplished by construction, just how the user interface is set up, and
how new players fit into the user interface, is critical. In particular, the interaction
differences that are walled off in different applications on the Mac must be
reconciled—how to select & move, what double click means, and so forth. For the
child and the teacher, uniformity is worth quite a lot—especially when the system is
trying to be comprehensive, universal, and expansive. What follows are the
initial—still untested—interaction suggestions.

How players are selected illustrates many of Playground's user interface
principles. The most natural way to select something is simply to touch it with the
mouse button down. If the player is a button, this won't work unless there is a
non-button rim that can be touched without firing off the button. If the entire
surface of a player is sensitive, then placing the cursor over a player for a second
without a mousedown will select it and bring up its menu of options.

All well and good so far, but it is important that we now ask: just what are we to
think is going on while we do this? We see an arrow that is controlled by the mouse,
but what is it and what else can we control? The Gallery is a collection of buttons.
each of which can be controlled by the mouse and make a player somewhere on the
screen. The "first among equals" button has the selection arrow in it. If we select
some other button, such as the rectangle maker, we will get a tiny rectangle
controlled by the mouse that will make a new rectangle on the playground when a
drawthough is done. After one of these, we could either automatically go back to
the selection arrow, or we could have the rectangle maker stick to the mouse, ready
for another drawthrough. This is actually a critical issue with points on both sides;
each has several cases that can be very annoying. As of now, we choose to have the
player-maker stick to the mouse, but a back and forth movement with mouseup will
"shake off" whatever player-maker is stuck in favor of the selection arrow. Much
of both drawing and painting is greatly aided by having this "semi-mode".

And it gives us a way to think about the selection arrow itself—as a
selection-player-maker. In other words, when we have the arrow on the mouse, a
mousedown or drawthrough makes a selection-player that, in a fairly flexible
fashion, starts to enclose the players undemeath. thus everything that is put into the
gallery can be thought of in the same way: as a button that makes a player whose

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

16

location (and, often, extent) is controlled by a mousedown or drawthrough.

Now we have to consider the matter of embedded levels. A paragraph is a player
whose contents are players acting as lines whose contents are players acting as text
characters. When we touch the middle of the paragraph, do we mean to select the
whole paragraph, a line, or a character?. What does a drawthrough mean? Well,
most of the time we want it to mean select the characters for some actions, and
incidently remember which line, and paragraph, and column, and page, and
document you are in also. If this were adopted as the general rule, then we have
several ways to get at the enclosing levels if that is what we really wanted. For
example, anywhere we point in a paragraph that does not have a line or a character
can unambiguously select the whole paragraph. Likewise, anywhere we point in a
line that does not have a character can mean select the entire line. This can also be
adopted as a general rule for any players which have views that show other players.
More complicated situations can be handled by actions (such as going to a menu
button) that progressively select more enclusive levels, or even by showing a
"sideways" map that adds a third dimension to the embedment so that the correct
enclosure can be selected—this will be an extremely rare occurence for most users.

A natural way to select several things is to draw through them. This raises
questions about extension and movement.We want to do user interactions with just
one-button mouse actions and no additional control keys. Since a selection is itself a
player, it can have an extension birdie whose activation means that the next mouse
actions are logically part of the selection. If the selection is larger than the window,
then the pause method will invoke its menu which will have an entry for extension.
Players need to respond to "undrawthrough" as well; any reversals of the selection
gesture while the mouse is still down should unselect.

Movement is another action that needs to be done naturally without many levels
of command. There is a major conflict between selection and movement of Finder
and MacDraw kinds of players and the players acting as text characters in a text
paragraph. To accomplish just a selection, the former requires empty space to start
the selection drawthrough outside any of the players to be selected. This is not
possible with jammed together text. A uniform way—whose annoyance factor must
be tested—would be to put a move birdie on the selection and to place the cursor
there automatically after the section has been accomplished. A move would then be
a slow double click. If the cursor is shown just outside the selection while the move
is going on, then the exact place where the movees should be dropped can easily be
indicated with a mouseup. '

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

17

One of the most useful views of a player will be an icon that shows the player in a
closed up form. There are two major kinds of "openings" that need to be
commanded. The first is the familiar "MacOpen" that shows the role the player has
assumed—as a document, a card, an image, and so forth. The second is to see the
player as the "entity under the costume” showing the scripts and the costumes that
create the role.

Thus we see that the conception of Playground is much like a "very large and
extended MacDrawlike drawing system—a kind of Disneyland seen from
above—in which everything lived, and every player-object had been constructed in
a way that was also open to the end user. Part of the Playground is common to
all—events happening in the common shows in all the machines on the network
instantly. |

Everything in Playground is a player and made from players. We see a player on
the screen as one of possibly many views of the player. The construction of a player
is accomplished by making a view—every player that is moved into the view (ala
MacDraw) becomes a component of the resulting prototype. There is a default
automatic view that simply shows all of the components. Most views of a player will
not show all of the components and those components that are visible will be in a
graphic layout. Menus are simply another view that group some of the components
that are sensitive to pointing actions. All of this implies that views are not as they
are in Smalltalk (quite separate entities that are applied to models)—instead,
Playground views are owned by the prototype and they are the only ways in which
we can see and deal with a particular player. Editing the components of any view
implies a possible change to the prototype.

A given instance is not restricted to just the components of its prototype—it can
have individual players of its own for which the prototype doesn't have direct
knowledge.

The direct components of a player have names and they can refer to each other
using those names. Some of the components will be public—outside players can
refer to them by mentioning their owner and then their name. Private components
can only be referred to by their own siblings.

Since each component is also a player what we see when we look at a component
is one of its views.

A component that shows just one thing in its view can act very much like a
spreadsheet cell if its internal goal is to find a suitable value to display.

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

18

The value-views of all the components are represented by the Playground system
in such a way that any player can be found by searching on any of its internal values.
Thus a player also acts very much like an active datarecord in a sophisticated
database.

One of the simplest player-components is a button—the view is simply the name
of the button—and the internals of the button are a goal to be carried out. Thus a
button is much like a Smalltalk message-method, except that it can be actively
locking for more than a simple message "push".

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

18

Players and Views

The simplest way to think about Playground is that it is object-oriented, the
objects are made from objects, and each object is a generalization of a spread-sheet
cell.l We call the objects players (or agents) because they are both active and there
are enough differences between them and classical objects to warrent a new term.2
Interaction is WYSIWYG to a close a degree as possible—in particular, this means
that an appearance of "partness" almost always means there is a part, and that a
multiple viewing of the same player, the parts in each view indicate underlying
players.

Value Rule
Value

Viewing Hule}

model part

View view part

A Classical Spreadsheet Cell

Before discussing Playground in detail, let me make some generalizations of the
spreadsheet metaphor to motivate the later ideas. Suppose we allow the cells to be
moved about individually within a larger container. In order to refer to cells from
within a cell, we have to extend the ways of naming and refering. We can give each
cell a name local to its container:, "income", "car-payment”, etc. We can have a
default name that lets us find all the cells in a container: "cell-1", "cell-53", etc. We
can give a grouping of cells a name: "monthly-payments", etc. A cell can be in more
than one group. A group can have structure of its own; one of these might be the
familiar spreadsheet 2D grid.

Now let us manipulate the placement of the cells using MacDraw techniques. One
useful layout would be to have a vertical column of house maintainence costs with a
total at the bottom. Another would be a horizontal layout with the bar view turned
on and the cell rotated.

1Early descriptions of Playground's biological "Tissue of cells" architecture appeared in
"Computer Software" (Scientific American, Sept., 1984) and in "Opening The Hood Of A Word
Processor" (Apple, Oct., 1984).

2The term "player" was first used to describe objects in "Programming Your Own Computer”
(Science Year, World Book Encyclopedia, 1979).

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

20

House Costs
Jan| $153.34
Feb|[$201.96
Mar| $296.59
Apr $105.62
May | $352.11
Jun $59.78

Jul $92.59
Aug| $103.24
Sep $29.86
QOct $11.67
Nov $192.73
Dec| $225.82
Tot | $1,825.31

House Costs = 1,825.31

$400.00 -
$350.00 =
$300.00 -
$250.00 -
$200.00 -
$150.00 - pm
$100.00 -
$50.00 -

$0.00 -+

i o e et g

A

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
\ _/

Each view is easy to build given our layout generalizations, but how easy is the
programming as compared to an ordinary spreadsheet? What if the system allows
us to do the following. We get a cell from the tool box, ala MacDraw and place it in
the view. We type in the first number as though it were an ordinary spreadsheet cell
or a MacParagraph. The convention in paragraphs is that a <return> means make a
new paragraph, only show a label field if the current pargraph has one, position it
below the current one, and put the cursor in it. This convention works very well for
our spreadsheet cells. We can easily type in all the numbers; the labels are even
easier to do than on an SS. The total field is done the same way as on an SS: we say
"sum of" followed by a selection of the relevant cells; the simplest retrieval
expression that collects all the cells is "cell-1 to cell-12" (a more complex one that

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

21

would be employed if the cell names weren't contiguous would be "{Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}'""). If we collected the 12 months and the total into a
group, then the individual cell's generic names would be relative to the group, and
references by outside cells would be changed automatically to make them relative to
the group's name.

One of the ways to make a second view is to "copy" the existing view and make
changes to it (we will see what the quote marks about "copy” mean in a moment).
First we rotate the list of cells.

L |© ||| |||l o oy —
@ MO W0 O [P LD [eo | ©Of I~ aof
QLm0 un|a|o|ai|m|o|~{ i wv| v
OQuio|lo|loc|v|d|o|S| |~ o aif &y
mPNC\IFC”)&?EBv"G%GﬂPNCD
el el Ced CedCedCad =3 e o
=

£

C 0 5= = e = O n > Qe
So2F&Z33308020°
Sw=2<=5"gnlCza

Next, we move the title to the top and change the view rule in the cells to be "bar".
House Costs

We decide to move the total up to the title, spread the bars, turn off the cell
outlines and rotate the labels.

House Costs = 1,825.31

L

, -
Jan Feb Mar Apr May Jun Jul Aug Sep Cct Nov Dec

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

22

Now we have a choice as to how the legend that allows us to estimate the amounts
will be entered. The easy way is just to draw it in by hand and have no dynamic
connection between the legend magnitudes and the heights of the bars. A nicer way
would be to calculate the legend magnitudes from the bars using a few more cells.

We make a cell called max that calculates the largest amount in the months:
max=maximum of cell-1 to cell-12. Something that will occur to us later is that this
caleulation would be nice and general if we had grouped the cells into "amounts” so
we could say: max=maximum of cell-first to cell-last of amounts. We want the maximum height
of the bars to be about 75% of the view height: scale=(.75"view-heightymax. Now we go
to the bar image rule and have it get its scaling from scale. All the bars scale
correctly. To calculate the legend, we have to find the next higher "50" from max
and then calculate the tic marks. Now we realize that the legend is actually going to
be a bit higher than the bars, but we won't worry about that now. fifties=max//50 and
toplegend=(1+fifties)*50.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
max scale[83_] fiies[7] toplegena[_aco]

The next part is a little tricky because, to make it perfectly general, we have to
create just the right number of cells that there are divisions of fifty. This is our
second example of players that are created just for this view and are not part of the
underlying model. To do it we write down what we would do if it had to be done by
hand:

legend=repeat, with counter starting at 0, count to fifties+1,

do Make new cell
=toplegend-(50"counter)
place at base widths of amounts - 50, base height of amounts + toplegend-(50*counter)

House Costs = 1,825.31

end repeat
This makes nine new cells with the proper values, located in the proper place.
Are these cells "real"? Can they be edited? Yes on both accounts. The cells are the
values of legend and constitute a named group like amounts. Though they can be

<Playground Essay Pt 1> -- DRAFT -- Confidential - Don't Copy or Distrib.

23

edited, the entire group will be recreated whenever fiies changes.

House Costs = 1,825.31

’ !I
.I N

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
max[$352.11] scale[B3] fities[7] toplegend 4o0]
A few more phrases in the legend script will get rid of the outlines and draw the
tick marks in the proper place. All that remains is to make the label "legend” and the

four auxillary cells invisible and the view is complete.
What we have created is simply a larger version of the simplest kind of cell.

Model
Values

T TR T

View 1
Rules

The model part is shared by its views. The value-rules and values of the cells are kept

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

24

in the model—to have them be different would be to disconnect objective reality. Each
subview is obtained from the repetoire of the cell that had the value. This keeps the
viewing model tractable and understandable. It is very important that most views created
by users can be derived directly from a layout of the views of each part. However, a new
door has been opened by the way the bar view was created. All its view rules expect is to
see a model called House Cost that has a total cell and an amounts group. A little more work
could make the view rules be able to lay out any number of months. If the model were
changed slightly, so that House Cost was itself in a cell, then we would have created a
general histogram viewer that could be applied to any model that had the correctly named
cells. This is very useful because views take a long time to do. On the other hand, because
of their generality, views can be very hard to understand. If most views can be easily
made by hand then user overhead need only be expended when a very complex viewer
that already exists is needed.

Our general rule for beginners and novices is that most things need to be buildable or
copyable from scratch with very few components and fewer principles. When something
really complex is needed, then there will be motivation to see if someone has already
done it.

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

25

A Simulation Kit

Simulations are used to study systems that are difficult or impossible to deal with
in the real world and have no easy analytic solution. Even the seemingly simple
situation of a car wash for cars and trucks with a number of service bays and
personnel requires simulation in order to understand how to staff the different
areas for most efficient flow.

AN e

Another example of this type that children understand very well is an amusement
park with rides, food concessions, and lines on which one must wait.This kind of
simulation 1s called "A Job Shop" and consists of four main kinds of players:

® Jobs that need to be serviced in some way. A car needs to be washed
and then dried. A child needs to go on several rides, then get
some food, then go on more rides. Jobs usually have a schedule
that gives them a plan for traveling.

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

26

e Servers that can give service to a job. A car washer is a person or
machine that can wash a car. A gondola in a ride will take the
child through the ride. Awairer in a restaurant will bring food.
A bed in a hospital will provide convolescence. Servers usually
have an average service time for providing service ad may have

, a schedule as well.

e Stations that provide a place in which the jobs and servers get assigned to
each other. A wash-bay 1s a station where cars and trucks can get
washed. Ohter stations arerides, restaurants, hospital-depts, etc.
Stations have an entry and exit, a line that can be waited on,
servers, and a place where the servers and jobs meet.

® Simulations that hold all the jobs, servers, and stations for a given
simulation. Examples are: The Car Wash, The Amusement
Park, The Restaurant, The Hospital.

A report is just a kind of view. The intuitive view is one that is composed of icons
and gives the user an immediate qualitative feel for what is going on—a waiting line
is too long, some servers are too idle.

For example, the standard view of a server shows an iconic representation of a
person, or gondola or bed. Another view that might be useful would be to compute
a running average of a server's activity. A composite view would be the average
activity of the group of servers.

I
[Server-1] [Server-3 |

! —
Average activity of
% % % the three servers is
' 83.5%

The same principle applies to the waiting line. In one view we want to see the
objects that are waiting; in another we might like to know the average waiting time
spent in the line. The entry and exit areas also can have multiple views: a useful
alternate would be to count the entries per minute so they can be compared with the
exits per minute.

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

27

An alternate view of a station would simply combine the alternate views of its
parts to yield a Station Report View.

- Washing o 4

Washmc

Average activity of #
the three servers is Bt
83.5% 1.2/Min

A N S 2

Average waiting time on
the line is 32.6 =10
minutes

Entry
2/Min

The initial version of the simulation kit concentrates on the meaning of the
simulation and ignores for the moment some of the niceties, such as how a job
calculates a route from station to station without bumping into things.

A Job is a standard player that contains a schedule consisting of a list of stations to
visit. Jobs are created by the simulation player according to its entry rule. Once put
into the simulation, a job follows its schedule and then exits. A very simple travel
method would be to look at the current item on the schedule, head toward it, and

move forward a few steps.

travel=
when I'm not in line and not at my schedule's 1st item's Entry's location
set my heading to my schedule's 1st item's Entry's location
move me forward 3 steps

Once the job gets to an entry, it can put itself on the waiting line for service. It
won't be clear to the user yet as to when the schedule item should be discarded; but
this is the first reasonable place. In the simplest form of the simulation kit, the job
can just go to sleep until it is serviced and awakened at the exit for further travel. A
more elaborate scheme would have the job awake—and perhaps worrying about
other things it has to accomplish—thus the job might decide to get off the waiting
line and try another station before coming back to the current crowded one. In this
case it would be well for the job to remember all of its schedule until it actually gets
service. The amount of pondering that a job ITltht engage in extends all the way
into the domam of expert systems.

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

28

The waiting line can be practically passive. Since a job has all the iconic
characteristics of a text character, a line need only be able to hold text characters
and put them on one end and take them off the other. One of these will already be in
the tool box.

When a server is idle it can look at the waiting line to see if anything is in it—if
so, then it can move the job near itself and then hold it for the server's average

service time. Then it can move the job to the exit and wake it up.
service=
when I'midle and line is not empty
get first of line
move it to my service area
pause for my service time
move it to exit
give it to exit
set my state to idle

We see a good example here of having the behavior modules be players that
notice as opposed to event-driven. There are other players that are also triggered by

the idle and not idle events—such as the players that compute average activity.
average activity =
set value to active+(active+notActive)

active =
when not idle
set value to value + 1

notActive
when idle
set value to value + 1

The active and notActive players are simply counters that count elementary ticks
according to the state of their noticer. The noticing paradigm allows this activity to
be separated from the generic server activity.

When the children simulate an amusement park, it will be important to provide
more things to do when the servers encounter a job. Children, after all, are not
primarily interested in the waiting line aspects of the amusement park.
Playground's ability to move an object along a path can be used to layout abitrarily
complex routes for the server gondolas to take.

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

Ferris Wheel

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

29

Salmon Spawning Behavior

We start with a large scale drawing of the ocean and an salmon river such as the
Columbia.

The children have already made some of Mike Travers' sticklebacks in a previous
project. These can be placed in the ocean with their new salmon skins on where they
happily swim around after food as did the sticklebacks. The physics players that set
up momentum and drag are also active here. The banks are drawn with a particular
paint that can be sensed by the salmon-players. We set up a new physics player
whose job it is to "feel” the shoreline and prevent the fish from going through onto
land—this player also sends a message to the "bump” player-sensor in the fish when
contact happens.

When the salmon's season-sensor-player says "it is time to go back to the birth
place to spawn", and very sensitive smell sensor starts to pick up gradients in the
perfume given off by the specific place up river where the salmon was bomn. The
salmon starts to follow those gradients with amazingly resolute purpose.

The players in the salmon that do the navigation can be quite simple:

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

31

CurrentSmell =
PreviousSmell =
Turn A Little =
when CurrentSmell roughly equal to PreviousSmell
right 5
Turn A Lot =
when CurrentSmell noticably less than PreviousSmell

right 180
The perfume can be a bit misleading at times, as when some of it diffuses up a

slough. I wonder how many salmon get trapped in sloughs, or do they have some
other mechanism to resolve this problem?

S 6 7 8 g 10 11 12

I.rf4

!I .,/- re

|I it IJ -

£ o f fod

ll | |' |"

I /

|| ll . Spawning

Ocean I| T etc Grounds

Now, how to implement the perfume? One of the ways to do it is to think of it as a
(usually) invisible paint whose color is the particular perfume and the brightness is
inversly proportional to the distance from the source. Another way is to have a
"smell line", a line-shaped player that is drawn from the spawning grounds down

through the river to the ocean. The salmon's lower level sensors can notice the
smell line and ask "how far?" and get an answer in terms of a perfume level.

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

32

Multiple views make the simulation much more interesting to watch. We want to
be able to stick a view on any part of the river to see how things are going.

o g
ot o

R DA s e PR s TR E R NNN PN NP L LN P Cnreer i A e s roe 7N

At the model level the salmon will be performing the a
three dimensions, but because Playground is only "2-1/2 D"right now (and will be
for the next several years) we have to set up separate animations for the side views
of going up the falls and laying the eggs.

<Playground Essay Pt 1> -- DRAFT -- Confidential -- Don't Copy or Distrib.

33
Dawkins' Biomorphs

While experimenting with a simple recursive tree drawing program, the
evolutionary biologist Richard Dawkins discovered that, simply by changing the
parameters more than is usually done, that a striking variety of shapes was
generated. Soon, the now famous Biomorph Program was born.

Here is how a fifth or sixth grader might program a biomorph generator. First,
they have to see that a tree is composed of trees. One way to describe a tree:

1s that it consists of a branch possibly followed by a smaller tree to the right and a
smaller tree to the left. However, it is not at all obvious that the description is this
compact. One good way to do it with children is to get "tree drawers", organize

them and get them to draw sample trees.

The program resembles the description:

tree branches length angle =
if branches = 0 then quit

forward length - make a branch
right angle - turn to the right
tree branches-1 length*.8 angle — make a smaller tree
left 2*angle - turn to the left
tree branches-1 length*.8 angle — make a smaller tree
right angle — turtle to original angle
back length -- turtle to original position
end tree
tree 11045 tree 21045 tree 3 10 45 tree 4 10 45

The parameters branches, length and angle can be thought of as genes. To get more
variation, we can have genes that modify genes. We add a multiplier of the length
and the angle, and a multiplier for the multipliers.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

4 10 1 1 45 1 1
branches length hngLngth ChngChnglLngth —angle ChngAngle ChngChngAngle

The script is changed to use the additional genes:
makeTree =
tree branches length ChngLngth ChngChngLngth angle ChngAngle ChngChngAngle

tree branches length Clngth CClngth angle Cang CCang =
if branches = 0 then quit
forward length - make a branch
right angle — turn to the right
tree branches-1 — make a smaller tree
length*Clngth
Clngth*CClngth
CClngth
angle*Cang
Cang*CCang
CCang
left 2*angle -~ turn to the left
tree branches-1 — make a smaller tree
length*Clingth
Cingth*CClngth
CCingth
angle*Cang
Cang*CCang
CCang
right angle - turtle to original angle
back length - turtle to original position
end tree

"MakeTree" fires off when any of the field-players are changed.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

35

To get Dawkins' variation field is a simple matter of making 14 more tree makers
and arranging their views. Notice that we show all of the tree views but only the
genes of the selected tree.

4

10

1

.1

branches

length

ChngLngth ChngChngLngth

45

1

1

angle

ChngAngle ChngChngAngle

4 0a

AT AR DT

20

The simplest way to do this in Playground is to position all the genes in the same
place and then the selected player brings itself to the top:

Reveal =

when I'm selected
bring myself to top

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

36

An Adventure Game

Adventure games have a quest, to accomplish a goal, places in which things
happen, routes that take you from place to place, and tools that can get you by
monsters and obstacles. One of the simplest adventure games is Wumpus, set
underground in connected caverns in which the Wumpus slowly roams looking for
human flesh. We have waming of the Wumpus's approximate location by a faint
smell if he is two caverns away, and a strong smell if he is one cavern away. The
most pared down version—in which the Wumpus doesn't move, and the smell is
detectable only one cavern away—is a good programming project for a child.

The game is played from the point of view of the intrepid explorer and can be
developed and enjoyed from a single view, but it will be very convenient to have a
second view that shows all the caverns and makes it easy to come up with new
configurations.

First we draw a typical cavern to use as a background.

Next, we make a lot of caverns and connect them together with lines to get a
sample configuration. The lines don't have any meaning yet—they are just there to

help plan. Later we will get the view to generate them automatically from the
connections.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

37

Now we need a way to hook up one cavern with another that lets us make easy
changes. We decide to use player-fields that hold the number of the cavern they
connect with. We put them into the background.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

38

All the caves now show the fields.

Now all we have to do is to connect them. It would be convenient if they were
larger. But when we make them larger we can't see the planned connections.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

39

This is a good place for another view. We copy the existing view.

Now we add a script that will make anything selected in view-1 be brought to the
front and magnified in view-2.
cave's view-2 magnify =
when view-1 selection is a cave
get id of view-1 selection
set its layer to "front”
set its extent to my extent

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

40

Now it is easy to fill in the connections—and we have motivated how the game
will be played.

cave-2

Having connected the caves together, we now have to think about how we move
around the caverns. The easiest way is just to get another bunch of players to act as
travel buttons and place them below their corresponding passageways. We can do
this in the background since we want each button to do the same thing.

The script is written spreadsheet style.

cave's travel =

when mouseUp
get id of <here we point to the corresponding field to get ...> player-1

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

41

In view-1 select cave number of it's first word
put it into messa

E.

Bakgroﬁnd

We replicate the buttons spreadsheet style so that the relative correspondance is
maintained. Each button causes a selection in view-1 which in turn causes a blown
up version to appeadr in view-2. Now we are traveling around the caverns. |

Now for the Wumpus. We make another player to be the beast—all it needs for
now is the label "Wumpus". We make a player-button called "start" whose job it is
to place the Wumpus in a randomly selected cave.

cave's start =

when mouseUp or receipt
get random (number of caves)
move Wumpus to cave-it

in view-1 select cave-1

Now it remains to furnish the game-player with the smell clue. We go back to the
background and put in a new player-field called "air” that continuously monitors
the neigboring caverns for the Wumpus and transmits the odor back.

cave's air =

when player1 or player 2 or player 3 or player 4 contains a player called "Wumpus"
then view = "A Disgusting Smell”
else view = "No Smell”

This particular piece of code probably shouldn't and couldn't be written this way.

(To see the way I did this in HyperCard with a single view, see Appendix). A better

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

42

(more object-oriented) way to do it might be to have the field-players be standins
for the cards whose indices they hold. Then the above code would work, and some
of the previous code would be simpler.

In the model part we will have a collection of players, each one will be a cavern,
and we only want to see one at a time. The model is like a hypercard stack and we
need to get the view to show us just one "card" at a time. An easy solution is to have
each player's view-script react to a selection by bringing the selectee to the front
and blowing it up so its view is the same size as the viewing window. This amounts
to defining "go to" but without the pernicious side effects of changing the context of
code that hypercard has. A more useful way to accomplish the same thing would be
to start with all the caverns to the side of the view, then to move just the selected one
to the center blown up. That way, the repetoire of caverns is always visible as small
images and provides a motivation for the two view version. We also have to
program "next" and "previous" so we can cycle through the caverns. All these are
so useful that they are probably already built in, but it is instructive how easy they
are to do from scratch.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

43

Traditional Examples

Regardless of the theoretical niceties to come, the following have to work as simply
and straightforwardly as possible. Here we grapple with the "complexity” need to
have goals be modular players vs. the "user interface" need to have extended scripts.

Bouncing Ball

This is the most venerable of traditional animations. Grab the brush or the circle tool
and make a ball. Choose recordStory from the ball's menu. Move the ball with the
mouse in a bouncing path.

Choose playStory from the ball's menu to watch it bounce.

s
o,

Look at the story to see what has been recorded.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

\3‘
@‘

44

It is a sequence of movements (and hence positions) of the ball to be attained. Each
story in Playground is always a sequence of goals. At this level the players look like a
storyboard. When expanded, more detail can be seen.

Choose stepStory to step to the lowest point. Choose new View to make a flattened
ball. Note that the old view stays behind to help register the new view.

Delete the old view from this frame when done. Choose rewindStory and then
playStory to play animation which now nicely deforms when it hits.

AR

To put in the shadow, choose track2 and step to position along both tracks as you
adjust the shadow. Choose playStory to test it.

.-'-,:"-,:'Jc:_»-.\

o,

Now choose renameStory as Bounce to save the bouncing behavior as a goal that
can be accomplished by the ball.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

45

—S o <@t

—-P

® 4@

It is critical that user interface actions get turned into individual player-goals
(containing sequential goals) all of which are embedded in the actual "actor".

Row, Row, Row Your Boat

Works exactly the same as visual animation except animates sound. Use the keyboard
or hummer tool to make a player. Choose recordStory from the player's menu.
Touch the notes with the mouse to play the tune. Choose playStory from the player's
menu to hear it play. Change the length of any note by giabbing its handle. Change the
pitch by moving the note vertically. To put in the other voices, choose track2 and
step until you hear where the next voice should come in. Copy the whole tune in
trackl and paste it into track2 at the new starting point. Choose track3 and repeat
for new voice entry, and then do the same with track4. Finally choose renameStory
as RowRow to save the round as a goal that can be accomplished by the player.

It is worthwhile to examine the stories in more detail.

— 2 @b 44| 4

-

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

46

RowRow T ——————
e o e et e oot
l. e _t— " T | S
. g e
- o —_—
o PSR L o T

Etc... they are completely alike except for the last instant in which one gets turned
only into an animated image and the other into sound. The latter implies that we
should be able to render the ball's animation as sound also. Get a new instrument
from the ToyBox. Open its story. Copy the ball's animation script—just as you
would text in a document—and paste it into the new instrument's story. Now
playStory and hear what it sounds like! Again, as with the single frame deformation
of the ball, we have an opportunity to insert a special effect noise in the frame when
the ball hits the ground. Notice that the view of the animation story changed to look
like notes. This means that "paths of relative movement" have many different views
and can be used in many different contexts. Can you think of some more? How about:

&

. 2 '
g
abowd

Each of the animations got moved from event to event by noticing the local clock
built into the story controller. Their attention can also be directed to take cues from
outside. For example, let's have the ball pay attention to RowRow. First, let's have
the ball move a frame on each note of RowRow—this will be jerky but surprisingly
effective. Now, let's have the ball notice RowRow's basic beat. Conversely, we can
try to get the ball to hit the ground on each note event of RowRow. The easiest way to

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

47

do this is to get RowRow to pay attention to the ball and to play a note every time the
ball hits. This works but destroys the rhythm of the tune. The more complicated way
that works is to have the ball ask what RowRow is planning to do next and then plan
its own Bounce tempo accordingly.

An interesting experiment is to take the four tracks of RowRow and move them
over each other to see if we can understand how a round works. Notice that each
vertical time segment made up a chord—now it is easy to see. Play each one
separately to test. So one way to compose a round is to take a nice chord sequence and
then pick out a melody from each of the voices of the chords untils all have been used.
Let's try it.

<<etc.>>

A canon is a round in which we change key for each voice entrance:

<<etc.>>

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

48

To finish the analogy between animation and music, we turn the ball into a frog
(ala videoworks) and animate multiple tracks to bring on "the plague of biblical
proportions".

For indeed, the "plague” is nothing more than a simple canon in which changes of
"pitch"” of the basic theme are represented as changes in the y axis of the starting
position (just as they are in standard musical notation).

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

49
Electronic Mail Server

Playground's commons area—in which anything that happens there happens in
every commons on the network simultaneously—provides an opportunity for an

end-user to build a very nice electronic mail server.

MailBox =
addto value the fetch of find "alan” in field "To:" of mailBag in Commons
MailBox

4 s

)

(I

e

M

L]

)

LU

R, A

Later we can think of more intelligent ways to ferret out useful information in
the commons—perhaps even adapt one of our fish models to think that stuff we are
interested in is food or nesting material and should be constantly searched for and
brought back. For now, this will do. Everytime a player that has my name in the
player-field "To:" is put in the the commons' mailBag, it will be moved to my
personal mail box on my machine.

To make a mail server, we need to make some new views. First, a couple of views
at the document level. We open the icon of a mailgram to get its main view and copy
it twice to get two new views for a mailgram. The first of these is organized into a
summary line that shows the sender, the subject, and the date. The second copy is
organized to show the reply heading.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

View-1

To: Alan

From: Bobbie

Subject: New Projects In School
Date: May 17, 1990

J Alan, I'm really glad to hear about the

| electronic mail project for the fifth and

sixth graders. This will be very good

View-2 %%

for them to do, and the rest of the
school will really benefit from it.

To:
From: Bobbie

Subject: New Projects In School
Date: May 17, 1990

Alan, I'm really glad to hear about the
electronic mail project for the fifth and
sixth graders. This will be very good
for them to do, and the rest of the
school will really benefit from it.

Copy
View-3 ;

To; Alan

From: Bobbie

Subject: New Projects In School
Date: May 17, 1990

Alan, I'm really glad to hear about the
electronic mail project for the fifth and
sixth graders. This will be very good
for them to do, and the rest of the
school will really benefit from it.

Now we can build the actual views for the mail server. It is modeled after the

RS

View-2

Reorganize

. 2 o
Reorganize

50

View-3

To: Bobbie

From: Alan

Subject: Reply to "New Projects In School-5/17"
Date: May 20, 1990

legendary "Laurel" server at Xerox PARC. First we build the summary view that

lets the user know what mail is in the mail box and what has been done with it. We

copy the mailbox view and modify it.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

a1

MailBox View-1

i)
y,

i
[
LW

)

I
il o

i

View-2

OO |Bobbie New Projects In School 5/17/90
7 7

JJ Bobbie New Projects In School 5/17/90

- /

........ :A:"';""1'-:—..,:.:”‘:';. B, {

Reorganize %,

= = MailBox View -2

=== 6 & Sender Subject Date
= = E CILJ Bobbie New Projects In School 5/17/90
= == OO Am Vivarium Plans 5/17/90
?';T =0 O] Dave Playground Tutorial 5/17/90
= = BRI Lamy More Money For Vivar 5/17/90
: B X Bobbie School Party 5/16/90
__?‘.__-_—=" X[BJ Ocean Simulation 5/15/90
= BIB] Sybil ACOT Results 5/14/90
X [J] Rhoda GATE Program 5/12/90
_) |80 Erc Need More Equipment 4/03/90

A line-view in the mail box summary view is constructed by taking the mailgram
summary view we just built and combining it with two button-players, one to read
the mailgram (and then to show that it has been read), and the other to show that a

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

a2

reply was actually sent.

To get the read view we copy the mailbox view again and give it a script that will
react to a selection in the summary view.
MailBox View-2 Magnify=
When Summary-View selection
Get Model of Summary-View selection
Set its layer to "front”
Set its View to View-1
Set its extent to my extent

This will find the underlying mailgram whose view-2 is selected in the summary
line, move it to the front, select its main ("Open") view, and size it to the read

view's rectangle.
Read Button =

When Summary-View selection is my owner
set value to "X"

Once read, the button is always marked. We now have constructed two thirds of
the mail server. It remains to cause the reply mailgram to be generated whenever a

read 1s done.
MailBox Server

ég £ Sender Subject Date

O Bobbie New Projects In School 5/17/90
OO Ann Vivarium Plans 5/17/90
[Dave Playground Tutorial 5/17/90
X [0 Larry More Money For Vivar 5/17/90
B X Bobbie School Party 5/16/90
X[BJ Ocean Simulation 5/15/90
B Sybil ACOT Results 5/14/90
B [0 Rhoda GATE Program 5/12/90
OO Erc Need More Equipment 4/03/90
To: Alan

From: Bobbie
Subject: New Projects In School
Date: May 17, 1990

Alan, I'm really glad to hear about the electronic mail
project for the fifth and sixth graders. This will be
very good for them to do, and the rest of the school

will really benefit from it.
=
To: Bobbie
From: Alan
Subject: Reply to "New Projects In School-5/17"
Date: May 20, 1990

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

53

We make a "send-mail" player-button whose action is to put the reply back in the
commeons' mail bag. The "have sent" button in the summary view is noticing what
this button does and changes its state when the mail is sent.

All the views should be really be scrollable views, etc. There are other details that
have been omitted in order to treat this with a broad brush.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

54

A Simple Word Processor

We want to construct a MacWrite-style paragraph editor. First we gather the
novice user's guesses about the components of a paragraph: that there are individual
characters strung together, any subrange of which can be selected—in addition, there
are words and lines that can be selected. There is a selection. A single click selects a
zero-width gap. A draw-through selects a range of characters. A double click selects
a word. A shift-click extends either the character selection or word selection. Any
typing of non-control characters replaces the selection. The delete character replaces
the character before the zero-width gap with nothing. If the selection is not zero
width, it replaces the characters in the selection with nothing. There are control
characters for changes of font, highlighting, and emphasis.

We start with a limited Playground toolbox. The generic object is a rectangle that
can own objects (with properties similar to OrderedCollection in Smalltalk).
B 4d @ . B B _H

First we make a font (say "FakeTimes") by drawing each character, then place
them in a generic object to hold them in order. We hook the keyboard up to the font
with the rules:

currentFont = FakeTimes.
currentKey = if keyboardAction then currentFont at: key.

We have two main tasks in the editor itself. First, the display of the characters in
lines using proper breaks on word boundaries when a line margin is exceeded. And
second, the selection of characters using the mouse and replacement of the selection
with new typing.

The characters will be held in order in a generic object called Chars. We set up

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

55

another generic object, Words, to hold the words formed by the characters. Now,
how to find the words? If the chars were children lined up and connected with rubber
bands, they would solve the problem as follows by coming up with four simple rules.

Chars need to find what word they are in. They do it by seeing if they are the same
kind of character (space or nonspace) as their predecessor.

CHARACTER
my word = if I'm first then word 1
if I'm a space then the word after my before's word
if my before is a space then the word after my before's word
if my before is not a space and I'm not a space
then my before's word.

Words need to find what line they are in and where they are placed. They do it by
seeing if their total width will allow them to fit into the line so far.

WORD
my chars = Chars whose word = me.
my width = my chars' width summed.

my rtMargin= my basePoint's h + my width.

my line = if I'm first then line 1
if my width + my before's rtMargin < my before's line's rtMargin
then my before's line
if otherwise then the line after my before's line.

my basePoint = if my line = my before's line
then my before's basePoint + (my before's width @ 0)

if otherwise then my line's basePoint.

A simple rule for the postion and extent of lines is to calculate it from their
owner's rectangle and position in the line list.

LINE
my basePoint = my owner's h @ lines loc: me * fontHeight + leading.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

56

my riMargin = my owner's extent h.

In order to display and for selections to be noticed, the individual characters have
to know where they are. So we go back and add to each character the rules that enable
them to figure out where they are from the word they have chosen.

CHARACTER
my basePoint = if I'm first in my word then my word's basePoint
if otherwise
then my before's basePoint + (my before's width @ 0).

We have finished the first task. All the chars will display themselves in the proper
position. They are also ready to notice the cursor as we move on to the second task:
selecting and editing.

A selection is a temporary collection. For this example we will only use (as does
MacWrite) a contiguous subcollection of characters. Our purpose is to find Chars
from: i to: j, not just collect the individual characters, because the main editing
operation (replacement) affects Chars itself. The other operations of font and size
changing can be distributed to the individual characters in either case.

SELECTION

my startPos = if mouseDown then Chars whoSeesMe - 1.
my curPos = if mouseDrag then Chars whoSeesMe - 1.
highLight = Chars from: 0 to: startPos noHighlight.

Chars from: startPos to: curPos highlight.
Chars from: curPos to: end noHighlight.
edit = if key # CTRL
then Chars from: startPos to:curPos = currentKey

We could also have split it up differently:

SELECTION
my startPos = if mouseDown then Chars whoSeesMe - 1.
my curPos = if mouseDrag then Chars whoSeesMe - 1.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

&7

CHARS
highlight = if selection is trying curPos
then me from: O to: selection's startPos noHighlight.
me from: selection's startPos to: selection's curPos highlight.
me from: selection’s curPos to: my end noHighlight.
edit = if key # CTRL
then me from: selection's startPos to: selection's curPos = currentKey.

Or even have given it all to Chars and not have a separate Selection. In this simple
case it really doesn't matter, though perhaps the second example is more elegant
because we have cooperative noticing and tracking between the Chars and Selection
objects. For the general case in Playground, we will want to have a general Selection
collection that can gather up a set of collection references (via shift-click for
example)—which will in turn listen to the keyboard or the PASTE command and then
properly distribute the replacement objects. A generalized UNDO is much easier this
way also.

<Playground Essay> DRAFT -- Confidential -- Don't Copy or Distribute

