
*** fc\ ^« £ cv\ «r..

PERSONAL DYNAMIC MEDIA
BY THE LEARNING RESEARCH GROUP

PALO ALTO RESEARCH CENTER

$Zp*hk fW- pMr^ ,

PERSONAL DYNAMIC MEDIA
BY THE LEARNING RESEARCH GROUP

XEROX
PALO ALTO RESEARCH CENTER

Table of Contents

I. Introduction Page 3

II. Background 4
Humans and Media 4
A Dynamic Medium for Creative Thought: The Dynabook 4
Design Background 8
Our Approach 10

III. An Interim Dynabook 12
Remembering, Seeing and Hearing 12
Different Fonts for Different Effects 12
Editing 15
Filing 17
Drawing/Painting 22
Turtles 23
Animation and Music 27
Simulation 27

IV. Smalltalk: A Communications Medium
for Children of All Ages 42

V. Smalltalk, Dynabooks, and Kids 49
Example Smalltalk Programs 49
Outline of Planned Projects 52
1. Teaching Smalltalk 54

Tutorial Dialogues with Smalltalk
Composing Pictures from Geometric Shapes

2. Plans for a Readiness Program 60
Thinking Games for Primary-aged Children
Button Boxes and Turtles

3. Experiments with Schools 68
English Classes for Junior High and High Schools
High Schools
Spaceship Simulation Project

VI. Summary 71

VII. Acknowledgements 72

VIII. References 73

Introduction Page 3

PERSONAL DYNAMIC MEDIA

Learning Research
Xerox Palo Alto Research Center

I. Introduction

The Xerox Learning Research group (LRG)
is concerned with all aspects of the
communication and manipulation of knowledge.
We design, build, and use dynamic media which
can be made accessible to human beings of all
ages. Several years ago, we crystallized our
dreams into a design idea for a personal
dynamic medium the size of a notebook (the
Dynabook) which can be owned by everyone and
has the power to handle virtually all of its
owner’s information-related needs. Towards this
goal we have designed and built a
communications system: the Smalltalk language,
implemented on small computers we refer to as
interim Dynabooks. We are exploring the use
of this system for programming and problem
solving; as an interactive memory for the
storage and manipulation of data; as a text
editor; and as a medium for expression through
drawing, painting, animating pictures, and
composing and generating music.

We have used our experimental experiences
with our interim Dynabooks to guide the design
of learning activities and examples for children
in different age groups: preschool, primary,
intermediate, and high school. Since children
differ as to interest and intellectual
development, each activity explores the potential
of this new medium for these various groups.
Our work with adults includes those in fields
other than the computer sciences, especially
those who are professionally involved with
handling knowledge, such as secretaries and
librarians.

We offer this report as a perspective on
cur goals and activities during the past years.
In it, we explain the Dynabook idea, describe a
variety of systems we have already written in
the Smalltalk language, and outline some of our
plans for a research program to be carried out
in a resource center located near schools and
homes.

Background Page 4

II. Background

Humans and Media

"Devices” which variously store, retrieve, or
manipulate information in the form of messages
embedded in a medium have been in existence
for thousands of years. People use them to
communicate ideas and esthetic feelings both to
others and back to themselves. Although
thinking goes on in one's head, external media
serve to materialize thoughts and, through
feedback, to augment the actual paths the
thinking follows. Methods discovered in one
medium provide metaphors which contribute
new ways to think about notions in other

media.

For most of recorded history the
interactions of humans with their media have
been primarily nonconversational and passive in
the sense that marks on paper, paint on walls,
even "motion" pictures and television, do not
change in response to the viewer’s wishes. .A
mathematical formulation—which may symbolize
the essence of an .entire universe—once put
down on paper, remains static and requires the
reader to expand its possibilities.

Every message is, in one sense or another,
a simulation of some idea. It may be
representational or abstract, isolated or in
context, static or dynamic. The essence of a
medium is very much dependent on the way
messages are embedded, changed, and viewed.
Although digital computers were originally
designed to do arithmetic computation, the
ability to simulate the details of any descriptive
model means that the computer, viewed as a
medium itself, can be all other media if the
embedding and viewing methods are sufficiently
well provided. Moreover, this new
"metamedium" is active—it can respond to
queries and experiments—so that the messages
may involve the learner in a two-way
conversation. This property has never been
available before except through the medium of
an individual teacher. We think the
implications are vast and compelling.

A Dynamic Medium for Creative Thought: The
Dynabook

Imagine having your own self-contained
knowledge manipulator in a portable package

Background Page 5

the size and shape of an ordinary notebook.
Suppose it had enough power to outrace your
senses of sight and hearing, enough capacity to
store for later retrieval thousands of
page-equivalents of reference material, poems,
letters, recipes, records, drawings, animations,
musical scores, waveforms, dynamic simulations,
and anything else you would like to remember
and change.

We envision a device as small and portable
as possible which could both take in and give
out information in quantities approaching that
of human sensory systems. Visual output
should be, at the least, of higher quality than
what can be obtained from newsprint. Audio
output should adhere to similar high fidelity
standards.

cardboard mockup of a Dynabook

'll

There should be no discernible pause
between cause and effect. (One of the
metaphors we used when designing such a
system was that of a musical instrument, such
as a flute, which is owned by its user and
responds instantly and consistently to its
owner’s wishes. Imagine the absurdity of a one
second delay between blowing a note and
hearing it!)

These ’’civilized” desires for flexibility,
resolution, and response lead to the conclusion
that a user of a dynamic personal medium needs
several hundred times as much power as the
average adult now typically enjoys from
timeshared computing. This means that we
should either build a new resource several
hundred times the capacity of current machines
and share it (very difficult and expensive), or
we should investigate the possibility of giving
each person his own powerful machine.

If such a machine is designed in a way
that any owner can mold and channel its power
to his own needs, then a new kind of medium
will have been created: a metamedium, whose
content is a wide range of already-existing and
not-yet-invented media.

An architect may wish to simulate
three-dimensional space in order to peruse and
edit his current designs which can be
conveniently stored and cross-referenced.

A doctor can have all of his patients on
file, his business records, a drug reaction
system, and so on, all of which can travel with
him wherever he goes.

Background Page 6

An animator can have a tool which will
show him, and allow him to edit, his animation
as he is creating it in order to eliminate
guesswork. Instead of laboriously having to
redraw frame after frame and produce
’’in-betweens", he would communicate his desires
for movement by showing and telling the system
what to do.

A composer can hear his composition while
it is in progress, particularly if it is more
complex than he is able to play. He could also
bypass the incredibly tedious chore of redoing
the score and producing the parts by hand.

Learning to play music can be aided by
being able to capture and hear one's own
attempts and compare them against expert
renditions. The ability to express music in
visual terms which can be filed and played
means that the acts of composition and
self-evaluation can be learned without having to
wait for technical skill in playing.

The experience of playing the great musical
instruments of the past, such as baroque organs
and harpsichords actually played by Bach,
pianos played by Beethoven, and so on, has been
only open to a few people. It could be possible
to enjoy this experience in one's home through
the power of high-resolution simulation.

Home records, accounts, budgets, recipes,
reminders, and so forth, can be easily captured
and manipulated.

Those in business can have an active
briefcase which can travel with them and can
contain a working simulation of their company,
the last several weeks of correspondance in a
structured cross-indexed form, a way to
instantly calculate profiles for their futures and
help make decisions.

For educators, the Dynabook can be a new
world limited only by their imagination and
ingenuity. They can use it to show complex
historical inter-relationships in ways not
possible with static linear books. Mathematics
becomes a living language in which children can
cause exciting things to happen. Laboratory
experiments and simulations too expensive or
difficult to prepare can easily be demonstrated.
The production of stylish prose and poetry can
be greatly aided by being able to easily edit,
file and "debug" one's own compositions.
Those who believe in a free, open approach to
creativity and learning will find a wealth of
cross-connection and philosophy of world-view

Background Page 7

which promotes synergystic thinking. Those
who feel that a more structured approach is
appropriate, including those interested in
computer-assisted instruction, can easily
implement their own version of the Socratic
dialogue using dynamic simulation and
half-toned graphic animation.

For children, this dynamic notebook, or
Dynabook, can be an environment in which the
natural activities are creative thinking and
planning; visualization of effects and their
causes; the assumption of varying perspectives
towards humans, knowledge, and culture; and
the enhancement of their personal style. It can
also be a magic gateway to the rich world of
the already-known, offering a compelling way to
dynamically peruse the great discoveries of the
past and present in ways that are just not
possible with static media such as books and
photos.

These are just a few ways in which we
envision using a Dynabook. But, if everyone
can have one, is it possible to make the
Dynabook generally useful, or will it collapse
under the weight of trying to be too many
different tools for too many different people?
The total range of possible users is so great
that any attempt to specifically anticipate their
needs in the design of the Dynabook would end
in a disastrous feature-laden hodgepodge which
would not be really suitable for anyone. We
have taken an entirely different approach to
this problem, one which involves the notion of
providing many degrees of freedom and a way
for any user to communicate his or her own
wishes for a specific ability.

Some mass items, such as cars and
television sets, attempt to anticipate and provide
for a variety of applications in a fairly
inflexible way; those who wish to do something
different will have to put in considerable
effort. Other items, such as paper and clay,
offer many dimensions of possibility and high
resolution; these can be used in an
unanticipated way by many, though tools need
to be made or obtained to stir some of the
medium's possibilities while constraining others.

We would like the Dynabook to have the
flexibility and generality of this second
kind of item, combined with tools which
have the power of the first kind. Thus a
great deal of effort has been put into
providing both endless possibilities and

Background Page 8

easy tool-making through a new medium
for communication called Smalltalk.

When a house is being designed, the last
thing the designer wishes to worry about is the
process by which bricks are constructed—unless
he really needs a new kind of brick. In
general, people who do things like to have
available a standard set of "building blocks"
whose properties they understand, with an
"escape" to new tool building when needed.

Our design strategy, then, divides the
problem. The burden of system design and
specification is transferred to the user (who
will generally not be a computer scientist).
This approach will only work if we do a very
careful and comprehensive job of providing a
general medium of communication which will
allow ordinary users to casually and easily
describe their desires for a specific tool. We
must also provide enough already-written
general tools so that a user need not start from
scratch for most things he or she may wish to
do.

Design Background

The first attempt at designing this
metamedium (then called the FLEX machine)
occurred in 1967-69 [16,17,18]. Much of the
hardware and software was successful from the
standpoint of computer science state-of-the-art
research but lacked sufficient expressive power
to be useful to an ordinary user. At that time
we became aware of Papert and Feurzeig's
pioneering work having to do with teaching
kids how to think by giving them an
environment in which thinking is fun and
rewarding [10,24,25]. They chose a time-shared
computer and invented a simple though
powerful language called Logo. With Logo, the
children (ranging in age from 8-12 years) could
write programs to control a number of exciting
activities: a robot turtle which can draw, a
CRT version of the turtle, and a simple music
generator.

The Logo work radiates a compelling
excitement when viewed from a number of
different perspectives.

First, the children really can program the
turtle and the music box to do serious things.
The programs use symbols to stand for objects,
contain loops and recursions, require a fair

Background Page 9

amount of visualization of alternate strategies
before a tactic is chosen, and involve interactive
discovery and removal of ''bugs*’ in their ideas.
As Papert points out, the children are
performing real mathematical acts of a kind,
scope and a level not achieved by many college
graduates.

Second, the kids love it! The interactive
nature of the dialogue, the fact that they are in
control, the feeling that they are doing real
things rather than playing with toys or working
out "school” problems, the pictorial and
auditory nature of their results, all contribute a
tremendous sense of accomplishment to their
experience. Their attention spans are measured
in hours rather than minutes.

A number of Feurzeig and Papert's results
were particularly interesting to those of us who
had designed the FLEX machine. Aside from
the potential future for education implied by
getting kids to program, we realized that many
of the problems involving the design of a
metamedium for creative thought, particularly
those having to do with expressive
communication, were brought strongly into focus
when children down to the age of six were
seriously considered as users.

Another interesting nugget was that
children really needed as much or more
computing power than adults were willing to
settle for when using a time-sharing system.
The best that time-sharing has to offer is slow
control of crude wire-frame green-tinted
graphics and square-wave musical tones. The
kids, on the other hand are used to
finger-paints, water colors, color television, real
musical instruments, and records. If the
"medium is the message" then the message of
low bandwidth time-sharing is "blah".

We felt then that the next time we tried
to design a personal metamedium it should be
done with children strongly in mind. We
decided to expand our horizons to include
studies into the nature of the learning and
creative processes, visual and auditory
perception, how to teach thinking, and how to
show children the challenges and excitement of
doing art and science.

Background Page 10

Our Approach

First, we decided to admit that the design
of a truly useful dynamic medium was a hard
but extremely worthwhile problem which would
require many years and a number of complete
interim hardware/software systems to be
designed, built and tested. Our basic approach
is:

1. Conceptualize a "Holy Grail" version of what
the eventual Dynabook should be like in the
future. This image will provide a rallying
point and goal which can be referenced while
the sometimes grubby spadework of producing
intermediate systems is going on.

2. Do the research in human factors, psychology
of perception, physics, and language design
which is prerequisite to any serious attempt at
an interim system.

3. Design an interim version of the Dynabook
and build a considerable number of them.

4. Make the medium of communication as
simple and powerful as possible.

a. It should be simpler and more powerful
than (say) Logo.

b. It should be better than the best
state-of-the-art "grown-up" programming
language for serious systems design.

c. It should be as "neutral" as possible to
all conceivable simulations.

5. Explore the usefulness of such a system with
a large number of short range projects involving
more than 100 users, ages 4 to 60, from varying
backgrounds and with different needs and goals.

a. Develop all manner of simulated media
including typography, music, animation,
physical simulations, and file systems.

b. Develop methods and strategies which aid
teaching and learning the system.
. Invent projects and produce curriculum
materials
. Capture all transactions of users with
the system
. Video-tape much of the activity
. Experiment with peer-group teaching
(for example, 13-year olds teaching
12-year olds)

6. Re-extend the system in the light of the
two-year study and start to think about the
next interim system.

Background Page 11

7. Set up a community resource center
containing several interim Dynabook systems for
both open- and closed-shop use near school and
playground traffic patterns.

a. Start a series of longitudinal studies,
primarily with children, in cooperation
with local schools.

b. Study the roles of real-time feedback of
sensory impressions and hands-on editing
and debugging, cross-filing, and
programming in art, music, science, and
writing.
. Investigate the use of this medium as
a focus for creativity and play
. Study its use with and without
teachers for more formal learning
. Continue with project and curriculum
development
. Continue with peer-group tutoring
. Get teachers and parents involved in
this new way to look at things
. Find ways to ascertain the impact of
this new medium on both the quantity
and quality of the child's model of the
universe.

c. Provide an open-shop in the resource
center for a large number of hours per
day, offering free machine time for
casual computing to the community at
large, including children, visiting artists,
musicians, and educators.

8. Develop the next interim version of the
Dynabook, and so on.

We have completed, with considerable help
from others at Xerox PARC, parts 1 through 6.
The interim Dynabooks now being used are
capable of producing high quality real-time
video and music synthesis, with local file
capacities of several thousand page-equivalents
of cross-indexed user-defined simulations. The
extensible communications system, called
Smalltalk, has been used for building systems
by children and adults: professionals, amateurs,
and tyros. In order to give a picture of what
is possible on this first version of a
metamedium, a number of interesting systems
which have been produced are described in the
following sections.

An Interim Dynabook Page 12

III. An Interim Dynabook

Although it is not easy to convey the
flavor of the extreme freedom, ease, and
flexibility of this dynamic medium through a
static two-dimensional paper, we will attempt to
show some of the kinds of things that can be
done with a Dynabook. Then a number of
interesting systems developed by various users
will be briefly illustrated. Henceforth, we will
use the word "Dynabook” to refer to the
interim system already designed and built by
us. All photographs of computer output in this
report are taken from the display screen of this
system.

Remembering, Seeing and Hearing

The Dynabook can be used as an interactive
memory or file cabinet. The owner's context
can be entered through a keyboard and active
editor, retained and modified indefinitely, and
displayed on demand in a font of publishing
quality. Each removable file memory can hold
the equivalent of 1500 pages of text.

Drawing and painting can also be done
using a hand-held pointing device and an iconic
editor which allows easy modification of
pictures. A picture is thus a manipulable
object (just as are characters, words and
sentences) and can be animated dynamically by
the Dynabook’s owner.

Music can be composed, edited, and played
either from a score or via a variety of input
accessories.

A book can be read through the Dynabook:
the memory can be inserted as shown to the
right. It need not be treated as a simulated
paper book since this is a new medium with
new properties. A dynamic search may be made
for a particular context. The non-sequential
nature of the file medium and dynamic
manipulation allow a story to have many
accessible points of view; Durrell’s Alexandria
Quartet, for instance, could be one book in
which the reader may pursue many paths
through the narrative.

Different Fonts for Different Effects

One of the goals of the Dynabook's design
is not to be worse than paper in any important
way. Computer displays of the past have been
superior in matters of dynamic writing and

processor, display screen

and keyboard

inserting the file memory

An Interim Dynabook Page 13

erasure, but have failed in contrast, resolution,
or ease of viewing. There is more to the
problem than just the display of text in a high
quality font. Different fonts create different
moods and cast an aura that influences the
subjective style of both writing and reading.
The Dynabook is supplied with a number of
fonts which are contained on the file storage.

CHAPTER I
wun cjac when poo Baer had nufhiq els to (Rw, hn (tiaut

he wuxl <Jeo> su<«(hi«, see h«f went round Im piglet s hous to

In which set 4ut piglet wus <toip. it wax still sneei^ ax te

We Are Introduced to Winnie*the-Pooh
stumpl oever /he vdiiet fcerest track, and her ekspected

to fiend piglet wcermip hrx toes in frunt uv his fier.

and Some Bees, and the Stories Begin but ton his su-rpries h« sau /hat /he frunt doer wus oepen.

and the tnoer her lu/kt insted /he raoer piglet wasn't jhaer.

Here is Edward Bear, coming downstairs now, dump. Pump, bmp, m

the hack of his head, behind Christopher Robin. It is, as far as ha knows,
the only way of coming downstairs, but sometimes he feels that there really
is another way, if only he could stop bumping for a moment and thin* of
it. And then he feels that perhaps there isn't. Anyhow, here he is at the
bottom, and ready to be introduced to you, Winnie-the-Pooh.

When I first heard his name, I said, just as you are going to say, But
I thought he was a boy?8

"So did 1,8 said Christopher Rodm.
"Then you can't call him Winnie?"

'hee’x out." sed |x<u sadly. "Jhat s .shut it is.

hee x not in. ie jhall hav to gee a fast jhipkig wauk hie

mieself. bo/hef!"

but first hef (haul jfiat h« wuud nock very loudly just

Uo> maek kwiet jkur...and *hiel h« waeted leer piglet not to anser.

hcc jumpt up and doun to keep woerm. and a hum caem

su(|(|enly into his hed. ^hi(h sccmd to him a guxl hum. su(ti as

is hummel hoepftolly to ujherx.

Sans Serif ITA

CHAPTER I

•n«» ^

#RIT

twt-<$ m ^fw wtew nitwit

in Which ifWR?T ^1, K W *%F

Wc A re int itxluctd i• - A mu h - sIk -F- ■> -h
ggt wi% wm rpppt m, jpu.

a mi S; > Mil" Bees. jt sui tin $*»> * ne* B- •= > 5 s «T3^kr 3«^i to, TOfA 3n%i i

Hurt: is JP-dward Jtor, tosirii;1 Ow »$*»<» m-w. fcosup. bump, bump, m
mzhrnk d id* bead Nhnid 1 bmi ph 1 R - ' t «> t kaws

‘ tht onlv »,n > 1 k nnu • l»wuo hi\ hat !, ibst? *“ ., fw*Uy

’ fs motile/ «, ii <i ah hi < «,m f h .< r ' ” * < t* 1
. it And ilk-n be ids toi perJup* item- isn't Am tee* fern- tee is « the

! hottom. and mtdy i<> be iam<due«d * <■ u. a muic-ifet-E.-.-te

When 1 first beard bin iuk > >0 1 a- - r '■ * bill

1 «bought hi- wm a b- \ ^
"So did l* said Christ*-phu R>>but

" i ben vob cart t tail bun ^
“I don't*

"But you said-*
Ws Wtunie-tbef-Fwb. Etas't you know wfeat *tbcr' means’*

m ^Fm^w sr^t ferf ^rr| mn wp qfa.

m*® gfk m sp

r gr ^ m m wzk f^wt p b i ak %

m 1 mfc, to f^rt-g tot^t ^ i

TO TO Mto? TO TOT TO

if mti toit k> t ^ctt ft *f

wff~*Frct qk TOT TORT." WF TOT TOT 1

"TO 3F ‘TOT wr 3TOT to ’ p 1

wm fr ?

Serif
wfT—"

cHapra- -/
Sanskrit

In kLM

ks &am :• 4a &£K<tfM-4At-P*sk
t\|'f m n

And Jams And *As JAaama

m is* ft

%£*£ jU CjLsXfJL £&Zk, i<sitoi MAS*. ixMA, JLiMA. AsMS..

iAs AtuA *4 Asud, 4UA*.nd > A*UAJi£&At*. AsJLk. ‘ * «l. As /&.*. -A. &£ AnS&A.

*Jte SLyU? &£# *4 ASJ<Uf^ Jaj^K&AUk*. AM is fssim kb* khrt. SMJU4

,u, AyIsAAaa ,W£&, Ajf. A'>£* A«t SSjdd £*££ 4^* ■ MAMSti* ^.nd CCrii *4

M. (Jrid dAsn At fjtid-i. 4ksA s&r-A&t* ,*j4sas ami *. v* Asm. Ac ** s* Ms
AjMam, And. as&4 At As ArtMjJLussd is ksn.rjjt-iA&-Ps»A.

fcAetn / (jASd A&XaJ. Au / *Aid, At *WU A%S 4A*.n$ *A Ms* BM

f iiuuifid As &£& A AtyJ

%$** tM |nf| i|ff^****' 1r m$it

f\| titfiWIt m im

%%% f hi -

Alan's Handwriting Fingerspelling

An Interim Dynabook Page 14

The Dynabook as a personal medium is
flexible to the point of allowing an owner to
choose his own ways to view information. Any
character font can be described as a matrix of
black and white dots. Using a pointing device,
the owner can draw in a character font of his
own choosing. He can then immediately view
font changes within the context of text
displayed in a window. With the Dynabook’s
fine grain of display, the rough edges
disappear at normal viewing distance to produce
high quality characters.

0Udit fotitchar!
Sited
(pketcKurl
^kettckirf

w
Tbhbbhhbhhhhbhb IS
tbbbbbhhhhbhbhh'

■((is!

mmmmm
SS S'S: 1 5 s
SS |S

uSSttSI
ss

na

^ -

"Hill" J
'"Hum"1

Edit the
character "b"
by

marking
sequences of
dots

edit fcateharl
ted
fcntcbsrl

k«ttchari

!|||;
Iblbbbbbbbbbbbh J
bhbbbbbhbbhhhb,

deletion .. m ■

and see the mmm mmm
results in
lower
window

the

JS
mm . AM

\

..

mmm

!i si | ss si
■■■

■S*

Sedit (oRtckirl
ted

&kmhxti
Jpotitetvirf

m

m ML

Uedit jk«i<h*rS

Sited
QjoBtdbtfl

m

f
I b b b b I I b I b b b b b b #1
bbbbbbbbbbbbbb'

TTV'i rTTTTTTT FTT"1 —™—

Q‘49 49 49 49 49 49 49 49 49 49.49 49 49 *t
m @ # 49 49 # 49 49 49 49 49 49 49

dbt fcaatdbart
.. jted
gimiharl
|pc«tfcfetrf

m
11,1111 ib i m 111
4 4 4 1 444-4 4 4 b-b 4 4 * i

An Interim Dynabook Page 15

:

|

telling a story with pictures

The malleability of this approach is
illustrated to the right: this owner has decided
to embellish some favorite nouns with their
iconic referent. A teacher of early reading
might like to help children form
correspondences between words and objects by
having the visual representations interchange
when pointed to by the child.

Editing

Every description or object in the
Dynabook—such as the character fonts described
above—can be displayed and edited. Text, both
sequential and structured (as in file records),
can easily be manipulated by combining
pointing and a simple "menu" for commands,
thus allowing deletion, transposition and
structuring. Multiple windows allow a
document (composed of text, pictures, musical
notation, and so on) to be created and viewed
simultaneously at several levels of refinement.
Editing operations on other viewable objects
(pictures, fonts) are handled in analogous ways.

There once was a who got lost

•He did not know whether to go or /F .

fie asked a ^ he saw sitting on a f .

The promptly stung the on the

nose . Ouch. said the . The ^

said *1 ass sorry—I forgot myself. Close

one ** and toot your !?*, said the * .

* The way to go, or is the way you

will see.’ So the ;i! closed one .

An Interim Dynabook Page 16

A SHAH FAIR wtr>)< u at your service

*0

Members of the class window
are located anywhere on the
screen.

A SPMiTM'K wirkw at your
service

A S^Ai i iAf K window at yctiF
service
©

/ SWAM TAIK win lew (it
your service

*

They are different

sizes and shapes...

u
s< rv
&

A iAt K wlnkw at your
srvice

Hh nlc barf

*
gto square size
i #*size*d*
k 4 i§ 8 size* © | 96»11
square

Running the
program square

and contain different
information.

£ &mi FAIR window at your service

drsize
SELF draw)

<>draw»t square
size)

« undraw*
twhite*

SELF draw.
Mack) *UJ

1

* Mi ra* .irk* it y«- k* « y«<r
[service

||1 to box : size ©
pi snow »
jt #»©**turt le.tr size*50. $ELF
(draw) , »
Kdraw * (do 4t© ft size. ©
f 90 >> . ,
[<$ undraw » t wh i te. SF i F draw•
I lack n*

isitw * Q 3 fraw * 0 < Faw *

Editing Smalltalk class box to replace
the action taken when a box
sees the draw message

One window shows the definition
before editing, another the edited
version.

s, SMAII fA! K winkw at y<-ur
service

ftto box : size ©
isrev #
iF*©«-turt le.#'size^. Si i I

sdraw s> oio 4t© ft size, ©
> 96) >
■ undraw * «white. SELF draw
lack))!
ox|l

A SkAL ITAIK window at your’
service

Ufontt har*

Uto sejuare stze
lirsize*-:.
do 4 (©ft size, © (f 90).if
square
Ufontchar!

to hex ; size ©
(i snew*

i#5© *- turtle.
»rsize *- 50.

SEt F draw i
<5 d raw*< s< n ta re s i ze »
<5 undraw*

(white.
SELF draw,
ilack))111

An Interim Dynabook Page 17

Filing

The multiple-window display capability of
Smalltalk has inspired the notion of a dynamic
document. A document is a collection of objects
that have a sensory display and have something
to do with each other; it is a way to store and
retrieve related information. Each subpart of
the document, or frame (text, picture, font,
music), has its own editor which is
automatically invoked when pointed at by the
stylus. These frames may be related
sequentially (as with ordinary paper usage) or
inverted with respect to properties (as in a
cross-indexed file system). Sets which can
automatically map their contents to secondary
storage with the ability to form unions,
negations, and intersections are part of this
system, as is a new "modeless" text editor with
automatic right justification.

The current version of the system is able
to automatically crossfile several thousand
multifield records (with formats chosen by the
user), which include ordinary textual documents
indexed by content, the Smalltalk system,
personal files, books, papers, and so on. The
system shows that a personalized retrieval
system, integrated with a comprehensive editor
and high level language, all running on a
personal computer, is a highly attractive
package.

This experimental document system will
have a number of important uses. First, it will
serve as a test-bed for new ideas in information
storage, retrieval, handling, and viewing—its
design represents an amalgamation of ideas
developed by us and others at PARC. Since it
is written in Smalltalk, it is easy to modify.

Second, its brevity and simplicity will allow
non-computer-professionals to add features. A
new search feature has already been added to
the paragraph text editor program by a
secretary at PARC .

Third, it will be a framework for
experiments with children and adults having to
do with personal uses of computation that are
not primarily related to programming. A
secretary or high school student could set up a
cross-indexed filing system for organizing data.
We expect to learn a lot about the semantics of
questions from such studies.

An illustration of the use of the document
system is provided on the next four pages.

An Interim Dynabook Page 18

class

IfIB
box

A "template" for a large
class of cross-filed
documents is displayed

•i- hi M,

Moving the pointer near a
paragraph causes its label
to reverse. The word box
is typed.

At this point, the other
paragraphs could be filled
in and a new document
archived.

tst
Move Grow Delete Archive

Next Destroy Define

&
^(L ■

We decide to retrieve by
pointing to the command
in the documents menu.
The system will find
every document with the
title "box".

class
M< v% Grc w Ik h t« Arthtvi th h k vt
Next Destroy Define s
title

box
Hither

Goldberg, Adele

<4
date t3 Mar 75

ibs trait
This <lass is the cue which kids learn Iron,
allows many square he xes <1 different sixes
to be created, named, and uv-d in

Wt-

V keys
^ Graphic s, Kids, turn

D
new

I &x*iir'y+2S<i' tfr- a tihe-ch SELF
draw.

I © in nup goto X y pendn turn tilt.de 4 (©
go stxe turn 90U
aw

1 © Mac k.SELF shew,
idraw
| © white. SELF she,w.

grow
I SELF undraw. #’s»xeni/e*:. SELF draw.

El SELF undraw. #tiltHilt + :. Si l l draw.

class

mm
Ccldherg,

Some other ways this
document could have been
found: We type Adele
Goldberg’s name into the
author field.

Here it is. Note that the
paragraphs have been
filled in and there are
additional fields.

GaKWl

An Interim Dynabook Page 19

class
Move Lee w Delete Archive
ffRIT!!3KKL Next Destroy Define
title '

box

author

Goldberg, Adeh

isof

abstrao t

keys

class
Move (ire w Dekte Arc h ivo dTilTRSPB
Next Destro y Define r
title A

box

author

asef

date 6 M ir 75 to date tl Mar 75 [

abstrac t

keys
Gr aphk s 1

class
Mow Grow Delete Archive
Next Destroy Define

title

hex, boxes

author

Key, Aim* GoMherg, A del

iSC*f

before date i Jm 75
tbs tr ee t

keys
K ids

Here, the search will be
for those versions of
"box" having to do with
"graphics" and written
between 6 Mar 75 and 13
Mar 75.

We indicate a choice of
titles and authors, and
the keyword: kids.

IS"

title

box

wither

Goldberg, Adek

isof

dite U M.ir 75

Tills class is the one which kids ketrnllSSP. It
allows many square hexes <1 different si%$
to be created, named, and used in simple
movies,

keys

Graphics, Kids, turn

x
0

y
0

size

D
tilt

0
is new

» #’xnL'y*-2^o\ uksixi(TtiltH*. SELF
draw.

show
! © penup goto x y pendn turn tilt, do 4 I©
go size turn 90i.

draw
1 @i black. SELF shew.

undraw
f © white. SELF show,

grow

! SELF luidraw. #!,size^stze+S, SEIF draw,
turn

» SELF midraw. till Hilt ♦:. SELF draw.

Returning to the retrieved
document: we do not
want to end the sentence
with a preposition, so we
draw...

title
box

author

Goldberg, Adele

isof

date U Mar 75

This class is the one which kids karnjirom, It
allows many square hexes of different sizes
to be created, named, and used in simple
movies.

keys

Graphics, Kids, turn
x

D
y

D
size

D
lilt

D
is new

I #-'xnry*-25o\ #:,size<~5cL uHiltnL SELF
draw,

shew
* © penup g< t<- x y pendn turn tilt. d< 4 *©
go* size turn 901.

draw
! © black, SELF show,

undraw

! © white, SELF shew,
grow

* SELF undraw, #*$i/e*-siz< ♦;. SELF draw,
turn

| SELF undraw, (£tilt«~tilt*:. SELF draw.

...with the pointer...

Tm*

title

box

anther

Gcldberg , Adek

isof

date iS Mar 75

Tins class is the one which kids k arnlfikm. It!
allows many square boxes of differe nt adzes
to be created, named, and used in simple
movies.

keys

Graphics, Kids, turn

x

a
y

D
size

0
tilt

a
is new

J trxnry«-250*. cO’siz< *-5iL # tilt*i?, SELF
draw,

shew
» © penup goto x y pendn turn till, do 4 i©
go size turn 90i.

draw
* © black. SELF show,

undraw
| © white. SELF show,

grow

J SELF undraw, (fesi/e^-si/c*:. SELF draw,
turn

| SELF undraw. qHilt*-tilt+;. SELF draw.

...to grab the word
"from".

An Interim Dynabook Page 20

cfiss .

title

box

author

Goldin rg, Adele

ascl

dite U M tr 75

This < lass is the one which kids k ini,. It
allows many squire boxes <4 dillerent st%-s
to he crested, muted, md us*-d in simple
movies,

keys
Oraphics, Kids, turn

x

D
y

a
si/e

is new
J x*#* y*-2S(* • <#i,$i/e*-5tK d’ tilt^t. SELF
drew,

shew
i © penup g<•!<■ x y pendn turn tilt, do 4 1©
go size turn Mi.

drew
« © bite k. SEI F shew,

undraw

| © white. SELF show,
grow

I SELF nndr iw. (P*$ize**$ize+:. SELF draw,
turn

| SELF undraw. (iHiltHilt*:. SELF draw.

We excise "from"...

ftasT

title

box
author

Goldberg, Adele

isof

date/JMu 7$

$il\¥7W
This class is the oiko whkh kids learn. It
allows many square Luxes <1 dillerent sizes
to he created, flamed, and used in simple
movies,

keys
Graphics, Kids, turn

x

D

size

is new
| i'xnry*’^. UKsize«*5tK #’t.Ilt«"<G SELF
draw,

show
! © a*nun goto x y pendn turn tilt, do 4 t©
go size turn

draw
| © Mk k. SELF shew,

undraw
| @i white. SELF she w,

grow
| SELF undraw. #:?stze<*size*i. SELF draw.

turn
| SELF midraw. t^ttliHilt*:. SELF draw.

...point where we want it
to go...

rim "*

title

hex

anther

Goldberg, Adele

ascl

date U Mar 75

This class is the one lremvwhi< h kids learn, It
die ws many square hoxe^ol dillerent sizes
to he created, named, and used in simple
movies»

keys
Graphics, Kids, turn

x

a
y

a
size

a
tilt

D
isnew

• #’x*eT'y+'25e». aTsizc*-$eG uf tiU*-c?. SELF
draw.

show
I © penup goto x y .pendn turn tilt , do 4 <©
go size turn '90\.(.

draw
* © black. SELF show,

undraw
| © white. SEIF shew,

grow
| SEIF undraw. #:’size*'size+:. SELF’ draw,

turn
i SEIF undraw. tcWiltMilt*:. SELF draw,

...and place it back in the
correct place.

class'

title

hex

author

Goldberg, Adele

ascl

date (J Mar 75

abstract

This class is the one from which kids learn. It
allows many square hexes of dillerent sizes
to he created, named, and used in simple
movies.

X3E
Graphics, Kids, turn,six -

x *

D
y

D
size

0
tilt

D
isnew

i (jfrxuk y<*25i». {p'tiitn*. SEIF
draw.

shew
| © penup gote> x y pe ndn turn tilt, do4 <©
go size turn 90 i.

draw
| ©Mack. SELF shew,

undraw
| © white. SEIF shew,

grew
| SEIF undraw. #’size«-size+:. SEIF draw,

turn
| SELF undraw. (iTtiltHilt*;. SELF draw.

class"

title

box

author

Goldberg, Adele

ascl

date iS Mar 75

This class is the one from whkh kids learn. It
allows many square hexes el dillerent. sizes
to he created, fflFflTBEL and used in simple
movies, *

keys
Graphics, Kids, turn,si w

x

Q
y

D
size

D
tilt

0
isnew

| #'xn#:-y^25P. dr size*-5cL # tilt*iG SEIF
draw,

shew
J © pemrp gate x y pendn turn tilt, dc 4 t©
go size turn 90\.

draw
« © black. SELF she w,

undraw
» © white. SEIF show,

grew
| SEIF undraw. #*size«-size+;. SELF draw,

turn
j SELF undraw. dHiltHilt*:. SELF draw.

class"

title

hex

author
(kldherg, Adele

ascl

date iZ Mar 75

This class is tlx- cue from whkh kids learn. It
allows many square boxes ol dillerent sizes
to he created, given names,, and used in
simple movies. ^

keys

Graphic s, K ids, turn, si >

x

0

size
D

tilt

D
isnew

i t#'xnO y*-25o'. uHize*-5c». (P tilt*xL SELF
draw,

shew
! © pemtp goto x y pendn turn tilt, dc* 4 »©
go size turn ‘A*i.

haw
» © black. SELF show,

undraw
i © white. SEIF' show,

grow

! SELF undraw. #*stze«-size*:. SEIF draw,
turn

| SEIF undraw. (T ttltHilt*;. SEi.I draw.

A new key word is added. We decided to replace
"named",..

•..by "given names

An Interim Dynabook

ts

dm
Mow Crow Delete flPffigSSH Re trie w
Next Destroy IMim '

title

km
ititkc

Goldberg, Adele
tscl

date 11 Mar 75
ibstr i< t

This class is the can from which kids letru. It
allows mmy square boxes cl different sizes
to be created, given names, md used in
simple movies,

keys
Graphic s, Kids, turn,sk w

x
a

y
D

size
D

tilt

a
is new

| t£-x*t£ey*»2f0\ ic sizr*”tt?« 4 liltwh SELF
draw,

shew
! © penup goto x y pendn turn tilt, do 4 (@
go size turn 90)*

draw
* © black. SELF show,

undraw

| © white. SELF show,
grow

| SELF undraw. aHize*-stze+:. SELF draw,
turn

| SELF undraw. # tiltHilt*:. SIM draw.

Page 21

The document is Here we retrieve a
rearchived. You may see document...
what this Smalltalk
program does in the next
section.

frwotd pk ture

pk lure
View Crew Delete Archive Retrie ve

Destroy Define

Title \
polygons

i

intro

h

PostLog

pact
picedit

Q.edit p ara |

name wid*Od f

£k**occard picture f

t< tal number of items is f

...called "polygons"
which...

pact
pic edit

0>edit para*

ft#" name widget f

Oxecord picture!

tetal number cl items is t

pkt
jfcedit

Qxdit pair!

||dr’ naiuewkkO'T *

firecord picture*

ktal number <4 items it i
tc^al number of items is 1

...has some pictures in it
as well as text.

Another picture document

An Interim Dynabook Page 22

Drawing/Painting

The many small dots required to display
high quality characters (about 500,000 for
8-1/2" x 11" sized display) also allows sketching
quality drawing, "halftone painting", and
animation.

■
#/l

The sequence below shows a sketch being
planned, scrubbed out, edited, and then finished
off to the owner's pleasure. The dots on the
display are either black or white, as are the
dots in newpaper photos. The subjective effect
of grey scale is caused by the eye fusing an
area containing a mixture of small black and
white dots. The pictures to the right show a
palette of paint dots (shown as toned patterns)
and some brushes. A brush can be grabbed
with the pointing device, dipped into a paint
pot, and then the half-tone can be swabbed on
as a function of the size, shape and velocity of
the brush. The fourth picture shows a darker
tone applied with a circular brush...and so on,
editing as one goes, until done.

imm i i i

As already seen, brushes can be 0-
dimensional (like a pencil point), 1-dimensional
(like a hoe or rake), or 2-dimensional. The set
of pictures shows a rather large rectangular
brush after swabbing on some tone. Then a
circular brush is grabbed. The last pair of
pictures shows a heart-peace symbol shaped
brush used to give the effect of painting
wallpaper.

Pictures are manipulable objects to the
Dynabook and may be stored in the same way
as character fonts and texts, and printed on
hard copy.

©
O

: o' © 49 k* X>

powwoi.

yQQQQOW
' © © © 49 49 ££*4

An Interim Dynabook Page 23

Turtles

Curves are drawn by a turtle which crawls
about on the screen leaving a track or not
depending on whether its pen is up or down.
(Straight lines are curves with zero curvature.)
In the Dynabook, turtles are members of a class
that can selectively draw with black or white
ink, and change the thickness of the track.
Each turtle lives in its own window, careful not
to traverse its window boundaries, and adjusting
as its window changes size and position. In
color-Smalltalk, turtles can select from 16
different color inks. A number of simple and
elegant "turtle geometry" examples are shown on
this and on the following page.

An Interim Dynabook Page 24

An Interim Dynabook Page 25

We created three windows. A turtle
lives in each window. Their names
are "turtl", Mturt2", and "turt3*\

Or dist.♦- $. # <“

Turtle Mturt3” goes to the center of its
window, clears the window, and draws
a squiral with angle 89.

The squiral was too small. We point
at another window and edit the
program to iterate 1000, rather than
100, times.

$rant

Jg* mw4 «tl a$k «- 0,
- :• m tort

JMNfc* * &t*l turn ugk)j

fltort^hora? tim jqtriril 8i> tarllj

►’twtiNw&lrwe «*|

m
We define a squiral program that
expects two messages: the angle the
turtle will turn each time it draws a
line, and the name of the turtle who
will do the work.

We go back to the first window and
redo the previous commands. Now the
squiral is bigger than the window, but
the design is clipped on the window
boundaries.

An Interim Dynabook Page 26

3MALU AIJC wintik v

semirali

We send a message to turtle Mturt2" to
draw lines that are doubly thick;
nturt2" then draws a squiral with
angle equal to 72.

After moving the third window lower
on the display screen, we set the
width of "turtl" to 4; Mturt4M draws
a squiral with angle equal to 40.

&twrU** turn ht«*e er«w. sqwiral 40 twrU.I

&twtlhi frwix*

I|*»t frame's friux) |

We complement black and white in
turtl’s window.

Now we complement the entire display
screen.

An Interim Dynabook Page 27

Animation and Music

Animation, music, and programming can be
thought of as different sensory views of dynamic
processes. The structural similarities among
them are apparent in Smalltalk, which provides
a common framework for expressing these ideas.

All of the systems are equally controllable
by hand or by program. Thus, drawing and
painting can be done using a pointing device or
in conjunction with programs which draw
straight lines or curves, fill in areas with tone,
show perspectives of 3-dimensional models, and
so on. Any graphic expression can be animated,
either reflecting a simulation (such as bouncing
objects in free space) or by example (giving an
"animator" program a sample trace or a route to
follow).

Music is controlled in a completely
analogous manner. The Dynabook can act as a
"super synthesizer" getting direction either from
a keyboard or from a "score" (a sequence of
actions over time). The keystrokes can be
captured, edited and played back. Children can
both learn to play (coordinating their minds
and bodies) and compose at the same time
because they do not have to spend several years
becoming good enough technically to play their
own compositions.

a "captured1* score

generation of a timbre

Timbres are the "fonts" of musical
expression as they contain the quality and mood
which different instruments bring to an
orchestration. They may be captured, edited
and used dynamically.

accumulation

of harmonics

»

Simulation

In a very real sense, simulation is the
central notion of the Dynabook. Each of the
previous examples has shown a simulation of
visual or auditory media. Descriptions and the
ability to manipulate them are the content of
the Dynabook. The range of possible
simulations extends far beyond media. Here are
a number of examples of interesting simulations
done by a variety of users in the last eighteen

months.

An Animation System Programmed by
Animators. Several professional animators
visited us with a long-held dream for a magic
system which would allow them to create
high-quality animations by simply (and

capturing three frames of

a dripping faucet movie

1

An Interim Dynabook Page 28

literally) "waving their hands”. They wanted to
be able to draw and paint pictures which could
then be animated in real-time by simply
showing the system roughly what was wanted.
Desired changes would be made by iconically
editing the animation sequences. After a fair
amount of design thinking and several tries,
their ideas yielded SHAZAM, a system written
in Smalltalk, which met many of their goals.

Much of the design of SHAZAM is an
automation of the media with which animators
are familiar: movies consisting of sequences of
frames which are a composition of transparent
cels containing foreground and background
drawings. Besides retaining these basic concepts
of conventional animation, SHAZAM
incorporates some creative supplementary
capabilities.

a v -

* Q

a % &
\

*4“ "i
♦ «

a .4 v

\

m SHAZAM at yc«ir service, o
|]pnov1e 21

rvf^ movie: |P‘llri(|

fear1e s s anlmtor @

Animators know that the main action of
animation is due not to an individual frame,
but to the change from one frame to the next.
It is therefore much easier to plan an
animation if it can be seen moving as it is
being created. SHAZAM allows any cel of any
frame in an animation to be edited while the
animation is in progress. A library of already
created cels is maintained. The animation can
be single-stepped; individual cels can be
repositioned, reframed, and redrawn; newframes
can be inserted; and a frame sequence can be
created at any time by attaching the cel to the
pointing device, then "showing” the system what
kind of movement is desired. The cels can be
stacked for background parallax; holes and
windows are made with transparent paint.
Animation objects can be painted by programs
as well as by hand. The control of the
animation can also be easily done from a
Smalltalk simulation. For example, an animation
of objects bouncing in a room is most easily
accomplished by a few lines of Smalltalk which
expresses the class of bouncing objects in
physical terms.

a menu of commands for playing a
movie, altering the movie window, and
selecting new pictures and positions

a menu of commands for painting a
movie frame, lets the user select a
XJaint tone or a paint brush.

Several sequences depicting frames of
animated movies are provided on this and on
the next four pages.

An Interim Dynabook Page 29

blinking pairs—two frame movies

a movie of eyebrows superimposed on a man's face

An Interim Dynabook Page 30

the Great Martino makes the Wabbit disappear

An Interim Dynabook Page 31

the worm Olga Korbutt

An Interim Dynabook Page 32

a movie of a

conveyer belt

a dripping faucet

An Interim Dynabook Page 33

A Hospital Simulation Programmed by a
Decision-Theorist. The second simulation
represents a hospital in which every department
has resources which are used by patients for
some duration of time. Each patient has a
schedule of departments to visit; if there are no
resources (doctors, beds) available, the patient
must wait in line for service. The Smalltalk
description of this situation involves one
description for the class of patients and one for
the class of departments. The generalization to
any hospital configuration with any number of
patients is part of the simulation. Again, the
dynamic state of the simulation in progress is
displayed by "peering” into the hospital "world"
in order to abstract its contents. The
particular example captured in the pictures to
the right shows patients lining up for service
in emergency. It indicates that there is
insufficient staff available in that important
area.

A Drawing and Painting System Programmed
by a Child. We feel successful in providing a
tool building system because one young girl, who
had never programmed before, decided that a
pointing device ought to let her draw on the
screen. She then built a sketching tool without
ever seeing ours--a Smalltalk class definition
for paint brushes. She constantly embellished
it with new features including a menu for
brushes selected by pointing. Then she turned
her attention to animating stick figure drawings
and has demonstrated her first "drawing" system
for multiple figures. This girl is currently
teaching her own Smalltalk class; her students
are seventh-graders from her junior high school.

■Mnissiom Met ivory Ixaninatu*

Staffs i staff: Staffs
XXX x x x XX x X

Queues
i

Queues Queues

Surgery | Conva tcscenc e Morgue

Staff: Staffs Staffs
X X X

m m | X X X X X X X X X.

Queues Queues Queues

fieexwery m laboratory Cashier

Staff:
X X X X X

1
Staff:

X X X X X
Staff:

X X
m it

Queue:
1

Queues Queues

emergency

Staff:

VL.
Queue:

i-biuSF with patients
§ pattents,waiting in the
9jeue' * •'

E nergfcmy ^epart«erst
i patients treated,
i staff available
tf busy .with patients
I patients waiting in the

m Itieue

Recovery laboratory Cashier

Staffs Staffs Staffs
X X X X X
m

X X X X X ^ XX., .

Queues Queues ? Queues

tnergent y m

Staffs
;X X
m m

Queues

0 la Ik :

*y name is Speaker
I an a vi< tin of bowtertfiati
Right now I aw in the? queue i\
Energency
then I go to emergency,
Surgery, ktecowery,
EOnualescenee. Cashier, and
tone.

1+. ■

0 V

L+bf 1! • |

+ * .

■ f

4/() i >
1 H j

Marian’s painting system

|Q, Sill HIGH

An Interim Dynabook Page 34

An Audio Animation System Programmed by
Musicians. Animation can be considered to be
the coordinated parallel control through time of
images conceived by an animator. Likewise, a
system for representing and controlling musical
images can be imagined which has very strong
analogies to the visual world. Music is the
design and control of images (pitch and
duration changes) which can be painted
different colors (timbre choices); it has
synchronization and coordination, and a very
close relationship between audio and spatial
visualization. Music is another rich world
where the benefits of contact go far beyond
learning a skill, art, or trade.

The system called TWANG was designed by
taking many yearnings and dreams which
musicians have had for centuries and turning
them into reality using Smalltalk and the
Dynabook.

One of these dreams was to be able to
capture, edit, and replay musical events.

n# Couperin *
Chorus '

u \

therm A§

The Smalltalk model created by the
musicians has the notion of a chorus which, as
with an animation movie, contains the main
control directions for an overall piece. A
chorus is a kind of rug with a warp of parallel
sequences of "pitch, duration, and articulation”
commands, and a woof of synchronizations and
global directives. As in SHAZAM, the control
and the player are separate; a given animation
sequence can animate many drawings. In
TWANG, a given chorus can tell many different
kinds of intrumentalists what in general should
be played; these voices can be synthetic timbres
or timbres captured from real instruments;
other musical effects such as vibrato,
portamento, and diminuation are also available.

A chorus can be drawn using the pointing
device, or it can be captured by playing it on a
keyboard. It can be played back in real-time
and dynamically edited in a manner very
similar to the animation system. The following
set of pictures traces a user through a sequence
of playing, editing, and replaying a piece.

We would like to create and
manipulate a musical animation. The
name "couperin" is given to a new
instance of class chorus with four
voices.

cooper in ♦* chorus 4 {
#" h< rm *

t r r r r

We now tell "couperin" that we wish
to record each of its four voices. We
could say "s" for silence, and later
"p" for play while others are
recorded.

An Interim Dynabook Page 35

The music is now being played on the
keyboard, captured by "couperin", and
displayed on the screen. The
simplified format (where vertical
placement represents pitch as in

mask is cm

-43.

The piece ends with a long held chord.

normal use, but duration is shown as
a horizontal length rather than a
flag) is much easier to read for a
beginner than standard notation.

bag, note ... enter Qg*
hug note ...

We play it back until a plan we want
to change occurs (and appears on the
screen). We point at the note we
wish to change.

An Interim Dynabook Page 36

hwg licit enter ccmmuid G.g|
hog note ... enter ceiimiiwf y p{

hog **« tr
Kiig note
lutg note

niter <<imuuH

The command "p" allows various We find the note we want and the old
pitches to be tested (by vertical note is changed,
placement of the pointing device).

... enter comnuid jjXgf

... D p I
yp*

The voicing of the final chord could ...look for a pitch which goes well
be vastly improved so we point at the with the immediately preceding note...
top voice (which is the "tonic" note)...

An Interim Dynabook Page 37

bug note ... < ut* r catutiMii .Op*
bug note ... « nur <<mmtnd On*
bug m n ...

...and change it. The new note is the
"third** of the chord.

\

bug ft§|| .. . enter < < nun utd i
bug |§|§f «» . enter <.omunud j
bug net* . 4 ur* r <<irnunid i Ip!

We now have a doubled **third** (a
no-no), so we grab it...

bug note ... enter ccmtnmd Op*
bug note ... enter <<mmmd _yp|
tmg ncte ...

ttg note ... enter ecftannui Op*
ag note ... enter coramand Up!
og note ...

and move it to double the "tonic"
instead (a yes-yes). The spelling of
the chord from bottom to top is now:
tonic, tonic, fifth, third; a nice voice
for an ending which is nicely’ led by
the first note we changed.

The final chord is too long we
slice it, and...

An Interim Dynabook Page 38

bug note ... enter comixiiitd Op*
h«g WM *»* liiir ccmimnd 5s.tr!

contract ~-d-~ expand -"•>

T bug itc4e ... enter cotnntind O p|
bug note ... enter cctnmutd ,y. .?rf
<-- cmfrici expind **■“> hug note ...

...delete the front part... ...to shorten it.

*

hag note ... enter eatuiwtd jQU!rl
<~~ contract **-1-- expand -*> hag note ... enter ccnnnind
<— cxmtrMA —-{—• expand

* —

<i\Ur Astjrf
expend —> hug note ... enter ccnnnnid i&sfr!

—{-- expand ~~> hag note ...

We would like to retard the lead into
the ending, so we slice it and...

stretch it.

An Interim Dynabook Page 39

For children, this facility has a number of

benefits:
a. The semantics of the system are easy to

understand since they intentionally are
anthropomorphisms from the real world.

b. The strong similarities between the
audio and visual worlds, and between the arts
and the sciences, are emphasized because a
single vernacular which actually works in both
worlds is used for description.

c. Children can gain skill and coordination
by learning how to play. The system will show
and play for them what they just tried, then
allow them to compare their efforts to a more
expert model, much in the manner of skiing
instruction.

d. The arts and skills of composing can be
learned at the same time since tunes may be
drawn in by hand and played by the system. A
line of music may be copied, stretched, and
shifted in time and pitch; individual notes may
be edited. Imitative counterpoint (probably the
best single basic for thinking about music) is
thus easily created by the fledgling composer.

A Musical Score Capture System Programmed
by a Musician. OPUS is a musical score capture
system written by a novice programmer who is
an experienced musician. The system produces
a display of a conventional musical score from
data obtained by playing a musical keyboard.
OPUS is designed to allow incremental input of
an arbitrarily complicated score (full orchestra
with chorus, for example), editing pages of the
score, and hard copy of the final result with
separate parts for individual instruments. The
sequence below shows a score being captured

|4*stav«s!

j4fc,c let s«

4 i *r rc s< t. *

rc t

This sequence shows a score being
captured. The screen shows a blank
score ready for some notes.

An Interim Dynabook Page 40

ill

I

4^ erase {
4-stavesI

jfct l€fs|

4 ar reset!

4^-iem I

-„ <*♦ «|| » ! fi

jA a*

^staveM

4»< Msj

r'*r r,M,!

••••••*’ 1 *' r »? ^«\ U ,'! r ,;. , | m

The current measure shows a triplet of 16
notes successfully recognized. The differences
in duration of a 16th note triplet and a 16th
note duplet is less than the normal temp error
of an average instrumentalist.

The rest of the piece rolls in...

An Interim Dynabook Page 41

Programming Using Pictures and Examples as
Programmed by a Computer Scientist. Even a
casual study of human communication and
creativity reveals some interesting guidelines for
future interactive computer systems. Humans
have a strong tendency to form extreme
generalizations from isolated facts; they then
wait until bugs appear before modifying the
model. These generalizations are not easy to
explain in the abstract; thus the communication
of an idea from one hijman to another is
usually done with the most concrete of
examples, frequently aided by pictures. The
automatic generalizing of the receiver, however,
will also create an abstraction from the
examples; this is usually checked by the
participants exchanging further concrete
instances of the new generalization.

Contempory programming consists largely of
constructing generalizations of ideas and actions
which have concrete instances when the
programs are executed. This communication is
highly abstract, consisting of
symbolic-parametric structures which frequently
confuse people as to what they will do when
they are actually executed. Almost the only
programming activities which do not have this
air of mystery to them are those which have a
very direct ’’hands on” contact with the
medium—such as CRT-text-editing, drawing, and
playing music. In these cases, changes of state
caused by the interaction with the medium are
immediately perceived (seen, heard). The
programs can be corrected if the state changes
are different from expectation.

These ideas have led us to experiment with
combining the semantic power for simulation of
Smalltalk with an interface which allows the
human user to communicate in terms of
concrete examples (using pictures), where
important state changes are shown during the
act of programming. This experimental system,
called PYGMALION [28], tries to generalize the
examples in order to allow the human to remain
in the concrete world where he feels most
comfortable.

create
< ha we
kdete

«if resh
•how
name

i value
shape
body

fcodes

<
>
and
or
not

centred
if
repeat
done
evad
return

others
memory
Jisk
next
11 splay
remember
dray
text
trace
constant
Plot
exit

j false j .|,j true |

4
false “i

[' i - r

nonso value
1

remembered

smalItalk
ok copy ok value ©K value

value? Jjfalsef
ok value

value?

a stage in the definition of
factorial showing a conditional,
a recursive call, and arithmetic
operations

scons
treate
i hanie
ielete

■x*
: show
" nape

value
shape
body

opcodes

<

>

and
or :
not

control
if
repeat
done
eval
return

others
memory
it sk
next
display
remember
draw
text
trace
constant
plot
exit

block header

preface

[TO? *H 0 ton jib

data

length
I la is

back ptr

m cur del b-
*< < atable

' | able

mouse value ■ jzn
j

remembered 1
Smalltalk

an iconic data structure

Smalltalk Page 42

IV. Smalltalk: A Communications
Medium for Children of All Ages

Even more important than the hardware
considerations are questions dealing with how
an owner (child or adult) can communicate with
his medium without constantly seeking the
services of an expert. We wanted our system to
be immediately and usefully controlled by its
owner—simple things should be very simple
(while not constraining later expert use) and
complex things should be very possible.

Everything in Smalltalk is based on a few
simple anthropomorphic metaphors having to do
with communication, state, and classification.
There are no "nouns” or "verbs", but rather
objects in process. Every transaction,
description, and control is thought of as sending
messages to and receiving messages from objects
in the system. Every object belongs to a class;
every object has memory; objects comunicate
with each other by sending messages. A class
contains the ability to recognize and reply to
messages. Each class has certain capabilities
such as drawing pictures, making musical (or
other) noises, or adding numbers.

Many of the ideas in Smalltalk are
consolidations and simplifications of ideas from
the past, in particular: the Burroughs B5000
[5], SKETCHPAD [29], SIMULA[7,8], the FLEX
machine [16,17,18], CDL [11], and (to a lesser
extent) LISP [22] and JOSS [27].

Children are introduced to Smalltalk by
first getting them to send messages to members
of already existing classes such as the class
turtle. In order to "make" a turtle (©), a child
types:

(#*© <- turtle.!

Here we are asking Smalltalk to
create a new object, whose
name is the single character
"©", as an example of a
"turtle".

The child now types:

© go 50!

which says to the turtle (©), forward (go) 50
units, do it! (!)

The child adds two numbers:

M iSiii

ummm
. %

Smalltalk Page 43

2 + 2!

and draws a square:

do 4(© go 100 turn 90.)!

© turn 90 says to the turtle ©, turn right 90
units.

wagm

After each response, Smalltalk displays a
representation of the Dynabook (<Q>) to let the
user know it is listening. Thus, the above
dialogue actually looks like:

<Q> © go 50!

S 2+2*
4

<& do 4(© go 100 turn 90.)!

ft®-© •- turtle.J

a© go SO!

02 ♦ 21 \

a*.. 0$) ^ m lift mi

(The line and the square appear elsewhere on
the display screen.)

The recipient of a message is always the first
symbol in the message. Looking at it this way,
«Gt© go 50! is a message to Smalltalk consisting
of © go 50*. Smalltalk's sole job, however, is to
act as postman for messages. It finds the turtle
© and informs © that a message is waiting. ©
looks at the message (go 50), understands it, and
so draws the line. © has nothing more to do
so it tells Smalltalk, which, having nothing
more to do, displays itself and waits for more
messages.

The power of expression in Smalltalk
comes from the ways that any user can extend
the number of objects (including new class
descriptions) which can interpret messages and
cause new effects. For example:

<& C^x<-50»
Here we are asking Smalltalk to
associate two objects, the
symbol x (quoted as a literal
word because we mean it, not
what it may stand for), and the
number 50.

Smalltalk Page 44

The children chose the pointing hand
((&*) to symbolize the idea of a literal
word. We had been using double quote
(") but they felt that something which
seemed to point directly at the token
made the idea more clear. They were
able to replace (") with (&) using
the font editor.

£1 x!
50 If we mention the name part of

something we told Smalltalk to
learn, it will give us the other;
so 50 is given back.

<Q x + 45!
95 This also works in context. 50

was the "meaning” of x. With
all the other possible numbers
it belongs to a class which
knows (among other things)
how to add. So we are really
sending 50 (a number) the
message +45 which it knows
how to do.

<£J dr* y«-x+45!
95 y is now associated with the

number 95.

<Q> dr* square + class (do 4 (© go 100 turn 90))!

Here we are associating the
symbol square with some actions
to take. The symbol class is
used to indicate that an
abstraction is being associated
with the name square. In an
earlier version of Smalltalk, we
adopted the Logo convention in
which to indicates that the
symbol following should be
associated with some action:

to square (do 4 (© go 100 turn
90)!

square!
As before, when the name of
something we told Smalltalk to
learn is mentioned, the other
part is retrieved — in this case
some turtle messages to be done
4 times cause a square to be
drawn.

When children are asked to look at the
above definition to see what there is about it

Smalltalk Page 45

that has to do with 'squareness' in general, they
point to the 'turn right 90’ (© turn 90), the 'do
4 times' (do 4(...)), and 'moving forward some
distance' (© go...) not necessarily 100. A
definition such as

£i C^square<-class size
(Csr’size*-:.
do 4

(© go size turn 90))!

more fully captures the idea of 'square'. The
notation means that 'square' will learn 'size' by
receiving a message (dr’sizef*:.). The number
associated with 'size' will then be used by the
turtle (© go size) to determine just how far an
edge should be drawn.

square 50. square 100. square 150.!

<£& for n«-l to 200 do (square n. © turn 3.)!

n is the number of repetitions done so far.
The graphic result of the above messages is
depicted to the right.

We have now created an object just like those
which are already in Smalltalk. It has a name,
square; it can be sent messages; it can receive
messages and act according to their contents;
and it can send messages of its own to aid
production of desired effects.

This basic ability, to dynamically add new
"recipes" to an already existing repertoire, is
found in all so-called stored program machines.
However, the way it is done and the intrinsic
power of the particular act highly constrain the
kinds of things that users actually attempt.
Most programming languages can only talk
about doing one thing at a time (such as the
previous examples) and, unlike Smalltalk, find
it very difficult to discuss and represent even
such simple situations as patients flowing about
in a hospital, kids in a school, trains on a
track, spaceships in the sky, or bouncing balls
in free space.

All of these examples illustrate an
important epistemological idea — grouping
objects in common when they possess similar
qualitative properties which differ only in
quantity.

Classification into kinds or classes of
objects that are generalizations of their
properties is a popular idea in our history. In

^square 50. square 100. square 1501

*

J2M<c n *-t to 200 dc
ii* f§> tmrm 4.if

Smalltalk Page 46

these terms, humans are a class because they
have common properties like language, tool
using, physical appearance, and so on. Each
individual person is an instance of the class
human and has his own meanings for the
shared properties, e.g., all humans have the
property eye color but Sam’s eyes are blue,
Bertha's are green.

Smalltalk itself is built from classes.
"number" is a class. Each individual number
such as 2 or 17 is an instance of the class
number. They differ only in their numerical
value (which is their sole property). They all
share a common definition of the different
messages they can receive and send, "turtle" is
a class; each instance shares the ability to draw
lines, but has its own knowledge of its
orientation and where it is located in the
drawing area.

To teach kids to program in Smalltalk, we
selected a series of projects that use, modify,
and extend the definition of a class we named
box. The kids are given a partial definition in
which members of the class share the ability to
draw and undraw, to turn, and to grow. The
kids write programs to make boxes dance on the
screen, spin around to draw designs, and play
leapfrogs. They then modify the class
definition in order to teach the members of the
class box how to move around the display screen
and to follow the stylus. Using box as a model,
they invent their own class definitions,
substituting the drawing of a square box to be
any other shape: a circle, a rectangle, a
spaceship, a box with a lid that opens up, a
geometric design, and so on.

There are several ways to define the class
box. One version has each member of the class
retain knowledge of its size, its position on the
screen, and the orientation (the tilt) of its
drawing. An alternative definition, which we
describe below, provides each member of the
class with knowledge of an instance of the class
turtle. The turtle instance remembers the
proper orientation and location on the display
screen. This definition might look like:

Smalltalk Page 47

dr* box «- class : size ©
(isnew => (dP3 © «- turtle.

size 4- 50.
SELF draw.)

<f draw => (do 4
(© go size turn 90))

<f undraw (© white.
SELF draw. © black)

grow => (SELF undraw.
(3P3 size +■ size +
SELF draw.)

<f turn => (SELF undraw.
© turn :.
SELF draw)

<(move ^ (SELF undraw.
© penup goto (:)(:) pendn.
SELF draw.))

The syntax for a conditional statement is:

question => (actions to take if question
answered positively)

else do this action

In the above definition, we are associating
the symbol box with a set of actions. Each
time a new member of the class is created, the
question isnew is answered positively. Three
actions are then taken: create a new turtle to
draw this box instance, associate the symbol size
with 50, and then send a message to draw the
square on the screen.

With its eyes (<f), a box instance looks at
any message it receives.

If it sees then it carries out
the message: the actions listed below:

draw The box has its turtle draw a
square on the screen.

undraw The turtle can draw with white
or black ink. If we assume the
background is white, then
drawing with white ink is a way
of erasing black marks.

grow After erasing itself, the box
instance retrieves a message
which is interpreted as an
increment to its size. It then
redraws itself as a bigger or
smaller square.

turn To change the orientation of the
box instance on the screen, the

I^JoeHboKl

IJf grow im* Joe tyro 45.1

Smalltalk Page 48

turtle turns. The turtle
retrieves a message which it
interprets as the amount it
should turn to the left or right.

. >-\nr
Q) |M IHI|> “ < r j >t i i

Sill "iriw.
»f

move To change the position of the
box instance, the turtle must
goto new x and y coordinates.
To avoid leaving a trace on the
screen when it changes position,
the turtle picks up its pen
(penup) and then puts it down
again (pendn) after moving
(goto).

Hence, we could type:

(&b joe 4- box !
Associate the symbol joe with a
new instance of the class box.

joe grow 100. joe turn 45. !
Send a message to the box joe
to grow 100 units and then to
turn right 45 units.

We can then teach Smalltalk how to turn a box
10 units to the right and do it 72 times. We
add a new message to the class definition:

<f rotate => (do 72 (SELF turn 10))

To draw the pictures shown to the right,
we change the background of the display screen
to black and tell Smalltalk:

Gr* ann 4- box. ann grow 50.
(§* jan 4- box.
joe rotate, ann rotate, jan rotate. !

The last picture was made by sending messages
to three different size boxes to rotate 15 units.

Knew * Q4 4rlw * ff 4 * Q 4 w »
ft 4 turn » 0 4 wove » 0 Insert

* Mtc> 72 BEIP Uirn fteokce
Dekfe
Me ve

\ Posh
Enter
I..e.»ve
Exit

Smalltalk, Dynabooks, and Kids Page 49

V. Smalltalk, Dynabooks, and Kids

We are in the business of model building,
and one of the models we are trying to build is
a way of giving people access to useful means
and media for thinking about things. The
model has to fit unanticipated notions. Does
it? Can people comfortably use Smalltalk to
model their real world and their imaginary
ones?

We have been introducing children to the
magical world of controllable media. The
environment we set up in PARC contains a
number of Dynabooks, a music keyboard, a
turtle, and most importantly, the children who
are learning about "ideas and reality" by
designing and constructing tools of their own.

Example Smalltalk Programs

In this section, we present several examples
of the kinds of programs kids have already
designed. Each example is a modification and
extension of the box class that was defined in
the previous section; each was developed over a
period of several weeks. These students met
twice a week, with sessions lasting from 1-1/2
to 2 hours.

Lisa extended the box class definition,
adding the ability to recognize the message
open. The response to this message was to have
the instance of the box open its lid (one side
of the square) a specified amount.

(§* joe <- rbox. !

joe open 70. !

Dennis wrote a guessing game as a means
for learning how to read characters from the
typewriter keyboard. The object of his game is
to choose a secret code number corresponding to
a character on the keyboard (ASCII code); the
player tries to guess the appropriate character
by striking the keys. Lisa used this program,
adding hints and the restriction that the player
has only ten guesses, after which the player
receives the correct answer. She then
incorporated the game into her box class: each
instance remembers a code number and responds
to the message guess by starting the game. If
the player guesses correctly, the box lid opens
and a design is drawn.

joe<- rbox 89. !

Smalltalk, Dynabooks, and Kids Page 50

joe guess, i
too low
too high
you win!

The design is drawn by the turtle program
design:

(§* design <- class a b
(C^ a<-:. b«-0.
do 100 (© go & b«-b+l. © turn a)) ko high

The value that the turtle © turns each time, a,
is identical to the code number.

Lisa extended her class definition once
more by adding the ability to point to a box on
the screen. Now the player presses a button on
the pointing device to indicate that the game
should start; the box that finds the cursor
inside its square area plays the guessing game.

Instances of the class box are square
shaped. Susan defined several new classes, each
a different shape, but each capable of drawing, SF”
undrawing, turning, growing, and moving. Her
shapes included a class for triangles, rectangles,
and circles. She then generalized these classes [<<
into a class for polygons: each instance jyt'ii wii
remembers its position on the screen, its
orientation, its size, and the number of sides it
has. The message grow took on a new meaning:

& ann «- shape 5 !

Ann is an instance of the
class shape; it is a
polygon with 5 sides.

ann grow your size !

Ann increases the length
of each of her five sides.

ann grow your sides 3 |

Ann is now an octagon.
Susan's messages look more
and more like English
sentences.

Susan’s then extend her class definitions to
include a class menu. She has learned how to
create Smalltalk windows (display frames), write
words in the windows, and find out at which
word the cursor is pointing. She uses the
words to determine the messages to be sent to

Smalltalk, Dynabooks, and Kids Page 51

an instance of shape. The windows are
instances of the class menu.

She is able to point to an instance that has
already been created and then send it messages
to grow (size or sides), turn, movie, delete, or
copy itself (thus creating a new instance).
Since each instance of shape owns its own
turtle, ©, she can also send messages to change
© width or color !!. A new instance of shape
receives control from the menu by pointing to
the word select and then pointing to the desired
instance.

Kathy and Dennis were both interested in
designing rocketships. Dennis wanted his ship
to shoot torpedoes, while Kathy was interested
in simulating rocket takeoff, ignition fire,
travel, and landing. Kathy's rocketships were
simple extensions of the box class in which the
response to the message draw was to combine a
rectangle and two triangles to form a ship with
fire coming out one side. Each rocketship owns
an instance of the class turtle; the turtle
remembers the ship's position and orientation.
To move the ship forwards or backwards, the
turtle receives a message to go (+ or -) a
specified distance. Hence, Kathy did not have
to consider the complex problem of computing
trigonometric functions, a level of mathematics
with which she is not yet familiar.

Dennis has been inventing different
versions of spacewar games. His first attempt
involved two ships, one designated as "left", the
other as "right". The left ship was controlled
by striking keyboard keys a, s, w, z, and d;
the right ship was controlled by keys ;, ', [, /,
and 1. The keys respectively mean: ship turn
left, ship turn right, ship go forwards, ship go
backwards, and ship shoot a torpedo. After
learning how to test for inclusion in a square
area, Dennis was able to "blow up" a ship if it
was hit by a torpedo.

Initially, Dennis' war game required the
two players to take turns striking keys; the
player lost his turn if he hit a meaningless
key. Winning depended on optimizing the
ship's movement. Dennis also tried a version in
which the players could hit the keys as fast as
they pleased, and the control program, war,
would try to respond to every key without
alternating players. He then designed a new
rocketship, instances of the class treck. Treck
ships are peaceful ships that move in formation
through space. Dennis' present goal is to use

5J

0. am grew your size 5*1*

|3.mn grow your size

Q mu grow your side s JJ

.ftstape uieiuiF”

Q,nm doit*
point SOUKWheTe*

point somewhere
point somewhere
point some where
point seine where

trimgle .
pentagon
octagon

grow
grows
turn
draw
undraw
mow*
copy

kathv's rocket ships

Smalltalk, Dynabooks, and Kids Page 52

the treck ships as ’’sitting ducks”, under attack
by the war ships.

In doing their projects, we note that these
programmers had to understand division by
negative numbers, testing inequalities, counting
with increments, graphing, and testing for
inclusion within an area of a polygon, as well
as notions of classification and instantiation.
They studied the differences between integer
and decimal arithmetic, the application of
conditional logic and sequencing operations, and
coped with problems of computational context.

These four programmers are 12 years old;
their teacher is thirteen.

Outlined of Planned Projects

In the near future, we hope to expand and
move our learning environment to a location in
Palo Alto near schools and playgrounds. The
major part of the day will be spent exploring
with children, and pursuing structured
experiments in visualization, abstraction,
content, and curricula—much of it in
conjunction with interested teachers from
neighborhood schools, many of whom have
already expressed great willingness to help.
The center will be a community resource the
rest of the day, which will allow us to gather
information about casual use of the medium.

The initial design of our resource center is
based on 12 Dynabooks. In addition to
keyboard, display screen, and point device,
peripheral equipment includes music keyboards,
hi-fi amplifiers and speakers, touch-sensitive
screen, a graphics printer, and an alphanumeric
printer. We have also sought games, books, art
materials, and mechanical devices that the
children can use to enhance their explorations.

There are three major aspects of our
resource center program.

1. We intend to provide an environment
conducive to using and building personalizable
tools for developing ideas in art and music, as
well as in science and mathematics. The word
’’personalizable" is key to our conception of the
Dynabook. Some of our efforts have
concentrated on using the kinds of activities
found in other computers-in-education projects,
but in a truly personal learning
environment—one in which the student is

. ■!-".

I j7 I>

space war by dennis

Smalltalk, Dynabooks, and Kids Page 53

encouraged to extend, modify, generate, and test
varied ideas about the content of newly
acquired information.

2. We are interested in assessing the
utility of such a resource within a residential
community. Hence, we hope to do more than
provide our own examples of the use of the
Dynabook in and across subject areas such as
English, art, drama, music, and mathematics.
To this end, we will seek examples of the use
of the Dynabook by visitors from the immediate
community. Through this variety of users, we
seek to broaden our experiences in the resource
center.

3. Specific programs for testing the use of
the Dynabook idea are planned. The first, that
of teaching programming concepts for the
purposes of providing a (computer) framework
for problem-solving and for graphic design, has
already been initiated [13,14]. Working with
over 100 students, we have already devised,
modified, and evaluated methods for teaching
Smalltalk programming. Much of the
information already gathered has stirred new
ideas for input/output techniques, encouraged
expanded applications of a personal
information-retrieval system, and given us a
measure of certainty about ways in which kids
will be able to use our interim Dynabook.

We are currently creating two types of
structured curriculums. The purpose of the first
is to teach the user how to use to advantage
the numerous building blocks we have
developed. This curriculum is intended for the
user who already has an objective in mind and
is investigating the value of the Dynabook in
pursuing it. The second curriculum comprises a
program for developing thinking skills needed
in learning to define activities ("wants or
needs"). We broadly identify these skills as:

an ability to generate ideas that are
appropriate to a given task constraint, an
ability to vary one's ideas widely;

an ability to perceive old tools in new
ways in order to make use of them for a new
purpose;

an ability to view ideas (or information)
in different domains; and

an ability to generate activities that are
personally interesting in the sense that they
make daily tasks and leisure time more
enjoyable.

Smalltalk, Dynabooks, and Kids Page 54

relevant in the context of this second
curriculum. Many concepts, such as
computational context and questions of control,
are encountered in both programming and
everyday activities. A trivial result of our
research will almost certainly be that the
children with whom we share our Dynabooks
will know many, many things that their
counterparts don't know. We are much more
interested in whether different metaphorical
structures are formed, whether the kids think
more powerfully, more flexibly. This is the
area where the ability to transfer deep ideas
and techniques to new areas of interest should
be qualitatively evident if there is anything to
our suppositions at all.

We use our computers in much the same
way Covington and Crutchfield [6] use detective
stories for creativity training, for getting a
child to generate reasonable but novel ideas
that can lead to a solution to a stated problem.
Moreover, we can attempt to encourage a child
to generate the very problems he or she tries to
solve, thus fostering divergent thinking skills.
A list of the kinds of question asking and
question generating skills that we are nurturing
appear in the following section entitled
"Teaching Smalltalk". Also, some music and
drawing skills, as well as adeptness at
organizing material and specifying patterns of
behavior, should be apparent in students who
have spent time in our program.

We will be exploring the difficult task of
helping students search for problems as well as
solutions, using text and font editing, storage
and retrieval of factual material, music
synthesis, and drawing and painting, as well as
Smalltalk programming. We will use these
explorations to formulate the two curriculums
mentioned earlier. There are three areas in
which we anticipate exciting results and in
which we will therefore concentrate our initial
efforts at evaluation. They are detailed in
sections:

1. Teaching Smalltalk
2. Plans for a Readiness Program
3. Experiments with Schools

1. Teaching Smalltalk

We are interested in teaching children of
all age groups how to control sound and
pictures through Smalltalk, and plan to learn a

;

|

Smalltalk, Dynabooks, and Kids Page 55

great deal about their inherent abilities to
abstract and generalize. How can these skills
be aided through providing a suitable
environment?

Why teach programming? Programming is an
"activity-centered" learning experience. We
view the ability to program as a new dimension
for exercising good thinking habits; and for
exploring tasks, in contrast to merely
performing them. Smalltalk models provide a
(manipulable) perspective on a programmer's
view of his world; Smalltalk objects provide a
consistent and useful means for investigating
logical implications of classification schemes.
When a student writes a program, he is free to

things his own way, as an expression of his
creativity and individuality. The kids write
programs to button boxes and turtles

...decode and encode messages,

...make up new language constructs,

...create and control graphic objects, and

...define their own (game) rules and
strategies.

What are we learning? In teaching
programming language, we are learning

...how to present new concepts and
ideas,

...how to observe what the kids are
doing, and

...how to motivate kids to try new
projects.

We are exploring ways to find out

...what a child knows,

They compose music, play it back, relate it to
programming and animation, and improvise on
the keyboard to their own accompaniments.
The kids are learning:

real symbolic/mathematical thinking and
concepts;

that the physical world can be "captured"
and understood by doing it themselves;

that creativity and skill in balance are far
more powerful than either apart;

that style can be learned and improved
through debugging and restructuring;
and

that they can do things—that they are not
objects to be manipulated by the rest of
the world but are people who can act on
the world themselves.

a turtle maze

Smalltalk, Dynabooks, and Kids Page 56

...what kinds of structures are used to
relate knowledge, and

...how the child learns to manipulate
these structures.

In the long term, we will evaluate our teaching
by examining:

the design structures of the programs;
the levels of abstraction which are used;
the extent to which the kids use existing

models and permute or extend them;
the concepts learned as viewed from use of

these concepts in programs;
the manner in which the kids seek

information for debugging or extending
their programs;

the extent of tool-building versus the
combination of existing tools; and

how well the effects of the causes are
visualized, and how debugging techniques
are used.

We capture the protocol (the sequence of
keystrokes) of a user's session on the machine
and examine it to determine what kinds of
information are needed to find bugs and explore
a program's structure. We ask the kids about
the analogies they use and what their current
picture is of what they are doing. This
knowledge is helping us develop:

a Smalltalk monitoring system (visualization
package), placing major concern upon the
visual presentation of the state of
execution;

a means for letting Smalltalk be
self-explanatory, to increase the reality
of viewing our students as autonomous
learners; and

some automatic "filter” programs which will
allow us to focus on important changes
in the student's style and approach.

Tutorial Dialogues with Smalltalk

We are experimenting with a variety of
methods for capturing student-tutor interactions.
Using only the stored protocols, we are unable
to record the verbal assistance and sketches a
human tutor makes on paper. We are presently
making conventional audio and videotape
recordings of selected student-tutor dialogues.
More than fifty hours of videotaping, coupled
with keystroke-by-keystroke records of student
seesions on the Dynabooks, have provided us

Smalltalk, Dynabooks, and Kids Page 57

invaluable information on (a) how the kids
understand and use the concepts they are taught
(in many cases, we capture one student’s
explanations to another, and learn, through
their analogies, how the students view their
work); (b) the kinds of questions and analogies
tutors use that do or do not succeed in helping
students (edited clips of this material will form
part of our preservice tutor-training program);
and (c) techniques of videotaping kids and
computers. These recordings have aided us
immeasurably in the evolution of our tutorial
design.

Specifically we are asking the following
questions:

What kinds of information do people seek
in order to determine characteristics,
features or bugs, of a descriptive
definition? How does one learn to see
aspects of a problem?

What is the nature of the representation of
information that satisfies individual
learning needs?

What kinds of questions can a person ask
himself in order to direct his search for
information?

How, through his own question asking, does
a helper demonstrate productive problem
solving behavior?

Can we provide a useful model of good
question asking? Polya's [26] initial
endeavors in this area represent an
important starting point in developing
such a model. We have to seek
variations that rely on modes of
exploration as well as individual
background. What do we have to know,
for example, about a person learning
Smalltalk before we can provide him
with a model that directs his viewing of
his own work?

Finally, how does the helper determine that
the learner has understood a particular
concept well enough to terminate the
current helper-learner interaction?

We are not primarily concerned with the
implementation of a computer-based helper;
rather, we want to determine the nature of the
media any helper might use in communicating
methods and aids. This information will
naturally direct the design of an on-line
browsing system, but might also provide some
insights into the very arts of teaching and
learning. We are building an on-line library of

Smalltalk, Dynabooks, and Kids Page 58

our project ideas in which browsers can see
what our Smalltalk objects do by viewing
animated representations of the objects.

The kids themselves can think about their
Smalltalk definitions by creating pictures and
sounds depicting the messages each object
understands and sends.

The Smalltalk document system will be a
useful mechanism through which students can
keep notes about what they are learning,
cross-indexing on concepts they feel they have
used, storing example programs they have
completed, and commenting on any difficulties
they have encountered. The students can then
use the retrieval mechanisms to ask themselves
questions about their own work, explore
relationships between different programs, and
investigate the usefulness of models and
building blocks. Their own choices for key
concepts will help them organize their work and
focus on similarities and differences, while
helping us learn how they understand what they
have been doing.

Composing Pictures from Geometric Shapes

In observing kids constructing pictures with
turtle geometry commands (Smalltalk simulation
of the Logo line-drawing language), we noticed
two main problem areas: (1) a difficulty in
determining the subparts that should be written
in order to construct the whole picture; and
(2) a difficulty, once the parts are shown to
them, to reconstruct the whole picture.
Although these are symptomatic of conceptual
programming problems, we observed that they
may, in part, be visual problems. That is, the
child views the picture as a whole and is
unable to break it apart, or the child can not
synthesize well enough to put the pieces back
together. (A bit like humpty dumpty’s soldiers.)

For example, a first problem in drawing a
train is seeing the relationship between the
rectangles, the circles and the total object; it is
not necessarily which state transformations to
use to piece the shapes together.

As Papert comments, one of the synthesis
problems is a sequencing problem: all the parts
are there but the order in which to glue them,
as well as the glue itself, is not. In some
cases, the child is able to put together very
simple pictures but finds it too difficult to

IT.]

■ i

,-V') (•••)• •(/■>;) ••(•) _

pictures made from geometric shapes

Smalltalk, Dynabooks, and Kids Page 59

make the same picture on a smaller scale, to
repeat pictures on the screen, or to change the
picture slightly by simple changes (such as
replacing an equilateral triangle by an isosceles
triangle, or a square by a rectangle).

The problems the children demonstrated are
not necessarily solved by more programming
examples. The problems likely show up in
non-programming work the student does:
copying from a blackboard to paper at his desk,
moving his eyes across a page, making maps or
constructions in art class. Walk through a day
with a ten year-old child and you will see a lot
of cutting, pasting, drawing and moving of
geometric shapes. Some require perceptual
skills the child has not yet learned and is
busily figuring out; most require some
imagination on the part of the child; all
require transferring information from one space
to another, from one medium to another.

A set of Smalltalk programs were designed
to help a child use a display and pointing
device to manipulate simple geometric objects:
to make pictures, to invent doodles; and to both
compose and decompose these combinations. A
child can construct complex pictures by scaling,
rotating and copying simple geometric objects.
Simple Smalltalk programs generate designs
from basic geometric shapes by variations on
repeating, rotating, scaling, superimposing,
placing, and combining drawings of these
shapes.

This work with picture construction is,
admittedly, a predecessor to learning iconic
programming. By ’’iconic programming" we
mean the specification of a sequence of
instructions by pictorial, non-alphanumeric
symbols. Simple examples were implemented on
the PLATO system in such lessons as Moveman
and in a language under development called
PAL [2]. The Moveman idea is borrowed from
the movement of Papert’s turtle; it is limited in
terms of the kinds of things the single icon can
do and in terms of the user's ability to modify
it. Although not described as such, we view
PAL as a potentially useful system for
specifying animation sequences, mainly limited
by the user's inability to draw his or her own
icons and to share these icons with friends.

These observations of limitations of other
programs reflect the very high premium we
place on flexibility and modifiability.
Providing a variety of carefully selected

pciys J f00.
pcint IM t2&.
pc-tys S 75.
|x:i»t ,18 f 128.
pclys 10 40. \

by Tom, age 10

0 tt0\

Qlpoint mx my. see 0 134•

(fipoinl mx my. see 0 i40\

mx my. see 0 100*

y

by Scott, age 9

Smalltalk, Dynabooks, and Kids Page 60

examples, in which rules are used and strategies
applied, undoubtedly reinforces the use of the
rules and strategies. We expect that making it
possible to formulate and test hypotheses and
counterexamples will extend the user's
understanding of their applicability and limits.
Brown's work on SOPHIE [3], a system for
learning about electronic trouble shooting, is a
unique example of the application of these
ideas. Our instantiations on this idea include
helping the user to restructure the control
mechanisms (of, for example, a program for
constructing pictures from shapes), to redesign
graphic layouts, to replace and append to
objects, to delete, modify, or add to (game and
simulation) rules and strategies, and to reverse
playing roles.

toy JOSHUA

making story books

2. Plans for a Readiness Program

We believe that every young child is an
exceptional child. And we are convinced that
children will not fail in school if they are
properly prepared for academic study before
they are expected to perform.

Our approach is basically to motivate a
child to learn to read and to write by
concentrating on his or her learning to
communicate, to ask questions, tell stories, and
acquire information. A child learns arithmetic
because it can help him do things that bring
him enjoyment. For instance, children we have
worked with can plot on graphs and use the
binary number system, and create classes and
instances of those classes. We suspect this is
at least partly because these abilities make
possible graphic and other effects that are
attractive to these children. They are learning
to explore uses and implications of their own
designs.

Exploring, probing for detail, and generating
ideas characterize a thoughtful person; they are
characteristics that we think can and should be
acquired early.

We are interested in developing thinking
games (written in Smalltalk) for primary
school-aged children who will be able to play
and modify them, as well as write their own.
Coupled with materials we mention below and
those developed by other researchers, these
games will make up a special program for a
group of five year-old children. We plan to
supplement computing activities with a variety and coloring books

Smalltalk, Dynabooks, and Kids Page 61

of kinesthetic materials During this age, the
basis for many concepts and abilities are
initially learned through manipulation of
physical objects. The reader will note that our
choice of activities reflects a Piagetian
epistemology (frame of reference). We have
delineated activities for different stages; the
activities outlined in this part concentrate on
sensory-motor development for primary ages.

Thinking Games for Primary-aged Children

Among the published collections of
activities for children of various ages, we have
found several that are extendable into
Dynabook-based activities. They include
Thinking Goes to School by Hans Furth and
Harry Wachs [12], which provides a program
for children in kindergarten through third
grade. The activities described in this book are
designed to "develop the child’s thinking ability
[through] experience with the acts of thinking".

At the fourth-fifth grade level, Workjobs,
by Mary Lorton [21], is a collection of
manipulative activities, each built around a
single concept of perception, matching,
classification, sounds and letters, sets, number
sequences, combining and separating groups, or
relationships. The activities use homemade
materials that fit any school’s budget: cardboard
carpentry, dime-store paraphernalia, and
household memorabilia. Another source is the
Productive Thinking Program of Covington and
Crutchfield [6], the result of research into
training children to yield enhanced performance
on Torrance tests of creative thinking. We
borrow freely from these books in presenting
the Dynabook as a medium for early experiences
that develop a child's thinking habits.

General Movement Thinking, conscious
control of one's body, is basic to a child's
ability to move his eyes across a page or from
blackboard to desk, and to hold a pencil or
brush without strain. Conventional media for
stimulating general movement thinking include
a gym mattress for transporting and positioning
the body into swimming, crawling,
wheelbarrowing, and bicycling motions; a
balance board and a walking rail for
coordinating the head, limbs, and torso; and a
few balls for juggling and playing catch.

We add a Dynabook for animating drawings
of human body movement, of juggling, hopping,

Smalltalk, Dynabooks, and Kids Page 62

skipping, bouncing, balancing, throwing, and
catching. Animation is a fun way to study
sequencing movements, classifying movements,
and judging spatial relationships between body
parts. Taking advantage of the ability to
superimpose movies, we can attribute these
movements to endless varieties of objects. (One
example is the tossed-ball animation shown on
the next three pages).

Discriminative Movement Thinking is
typically practiced with eye tracking games
devised from such devices as: a turntable,
marbles, and string, finger paint sets and clay.
These concentrate on learning to control one's
finger movements. The Dynabook can help a
child practice hand-eye control by combining a
stylus for pointing with graphics for games of
tracing through a maze or tracking animated
objects, and finding hidden shapes in geometric
designs. We also add the Dynabook with a
musical keyboard. It is a fun way to learn to
coordinate movement with sound.

Smalltalk, Dynabooks, and Kids Page 63

Superimposing Movies

The sequence on the left consists of three
movies: a tossed ball, a backboard, and a
basketball player.

The. sequence on the right consists of two
movies: the same tossed ball movie, and a
clown with rolling eyes.

i« ' ■/ j f A
/ „ V

' Wll-

1 ‘

Smalltalk, Dynabooks, and Kids Page 64

Smalltalk, Dynabooks, and Kids Page 65

Smalltalk, Dynabooks, and Kids Page 66

Perceptual Thinking—visual, graphic, and
auditory—involves decoding, encoding and
interpreting sensory data. Conventional
educational games use: parquetry blocks for
determining similarities and differences between
shapes; a pegboard and pegs, tackboard and
tacks, for copying shapes and connecting dots
and for displaying designs and shapes to copy;
and jigsaw puzzles for filling in outlines, with
and without directing lines.

Such activities serve as a bridge to the
more abstract world of the Dynabook, a world
for creating numerous variations on these
games. With the Dynabook, children can
construct designs from basic geometric shapes,
arrange, permute, overlap and match shapes and
pictures. They draw pictures, imagining how a
scene would look from various spatial or social
perspectives; and compose pictorial stories for
friends. These static activities can come alive
by integrating the pictures with movement and
sound. Children can also investigate the absurd
by removing parts of pictures or completing
partial scenes, making greeting cards, cartoons,
and story books (The series entitled The
Metaphorical Way [15] offers extensive
applications of this idea.)

For example, our version of the PLATO
game faces, shown to the right, can be done by
a child. The child paints his own choice of
eyes, eyebrows, nose, and mouth, or selects from
drawings stored by his friends. Moreover, the
quiet face can now move, changing the game
from one of forming facial shapes, to one of
investigating facial expressions. The example
superimposes a movie of eyebrows with that of
a mouth, over a face movie. The 3-frame
eyebrow movie interacts with the 4-frame
mouth movie to give us effectively 12 different
facial expressions. The game takes on a livelier
nature as the child adds yet another movie—two
frames depicting blinking eyes.

The display screen is a new medium for
studying laws of conservation and invariance
through symbolic models. Visual thinking
games emphasize concepts of parts-whole and
time perception. Exercises in copying,
completing, removing, and transforming pictures
and music, develop a child's skills in nonverbal
communication.

In Logical Thinking, knowing how to
execute a rule correctly is one level of
performance. Knowing how to explore a system

Smalltalk, Dynabooks, and Kids Page 67

of rules, and even to specify these rules,
requires, perhaps, a higher level. Perhaps here
the Dynabook is uniquely suited. Children can
construct or modify games that require
invention and testing of classification schemes,
exploration of the relationship between a thing
and its class, between a thing and its name and
a class and its name; they can find new ways of
ordering, permuting, and cross-classifying.

Button Boxes and Turtles

The MIT Logo project recently extended the
range of usefulness of their mechanical turtle
[1] with the invention of a button box control
device. Young children push iconically-labelled
buttons to move the turtle around the floor,
making the turtle draw simple pictures with its
built-in pen, toot its horn and blink its light
during the trip.

Using the button box in this form, our goal
is to provide an attention-grabbing system in
which the child can explore the notion of a
sequence of actions causing a pictorial effect.
The goal in using this device is to help very
young children (a) visualize the concept of
sequencing, and (b) stretch their capacity for
attending to a single task. We have observed
that the medium is a new context for thinking
about direction relative to an individual object.

We have written Smalltalk simulations of
the button box and other iconic languages that
allow easy editing of command sequences and
permit manipulation of a class of objects (for
example, a class of trains). We think of these
Smalltalk simulations as "weaning" activities to
introduce the notion of a sequence of tasks
producing abstract results.

We have been using these non-alphanumeric
systems with children between the ages of 4
and 7. They use, first, the actual button box
and then the simulations. Our goal is simple:
to determine which of the above concepts we
can teach using a combination of mechanical
"toys" and Smalltalk simulations.

I , 4 4 5 g l i '*« H’

button box simulations

Smalltalk, Dynabooks, and Kids Page 68

3. Experiments with Schools

We have already begun projects in
cooperation with several local schools. These
projects will continue with efforts concentrated
on tying our computer work together with the
kids' classroom activities. The following two
experiments make use of our text editing, font
editing, and animation capabilities; while the
third investigates the impact graphic feedback
has on a child's decision-making processes.

English Classes for Junior High and High
Schools

We already know, informally, that 12- to
13-year-old kids enjoy using a computer text
editor for preparing book reports and their own
stories and compositions. Some teachers place
sufficient importance on the form of these
reports that the students receive two grades,
one for form and one for content. We have no
doubt that grades on form would increase if
reports could be prepared with a good text
editor. But why not the content too? Why not
provide a way for students to create form and
let form help them express their ideas?

Using a text and font editor, it is easy to

...insert, delete, and modify characters,
words and sentences, and

...move these text elements around the
page.

We can also

...mix fonts,

...design fonts,

...use the multiple window capability
to easily compare and contrast
non-contiguous text selections, and

...mix pictures, sketched on the
computer, with the text.

So the student can quickly and easily try
different presentations of his ideas, adding and
deleting information as these changes seem
appropriate, even changing the form of
individual characters, and then obtain a
well-formatted hard copy for his teacher.
When kids are graded on form, it is not
surprising that they hesitate to change anything
once their paper is typed. Yet it is from
neatly typed text that we can best see what the
completed paper says.

Smalltalk, Dynabooks, and Kids Page 69

Of the many efforts devoted to improving
writing skills, some have exploited the
technique of dissemination of student work in
the form of class journals and newspapers as a
vehicle for practicing communication skills and
for encouraging students to apply evaluative
standards to their work. Ross Quillian at the
University of California, Irvine, California has
college students contribute to "journals"
refereed by their classmates; the
elementary-level students of Moore [23] publish
a weekly newspaper. Preparation of such
publications enhances the nature of the
student’s own evaluation of his writing because
the material must be judged with respect to the
context in which it will be published. We can
support students in the production of a variety
of documents, from private papers to
undertakings with considerable distribution.

High Schools

We plan to explore the role of a powerful
computing medium in high school art, music,
creative writing, design, and drama groups.
Using Smalltalk, the students can explore the
concept of communication: how can objects
communicate with one another, affect one
another, interact or cooperate with one another?
Constructing Smalltalk simulations develops an
understanding of how to

...select pertinent information,

...assign ownership of that
information,

...communicate among owners to
exchange information, studying
computational context, and

...investigate scheduling and control
mechanisms.

Of the several efforts at introducing
computers at the high school level, one of the
more advanced is the Soloworks math program
at the University of Pittsburgh [9]. It is an
effort to develop a high school math program
that combines access to a time-shared computer
and terminals (the available language is Basic),
a flight simulator, and a variety of audio/visual
materials. In teaching programming, the
Soloworks group has adopted the project
approach we have emphasized: facilitiating the
development by the students of new and unique
extensions of concepts and facts they have been
taught. We expect our efforts at this level to
both parallel and learn from Soloworks’ results

Smalltalk, Dynabooks, and Kids Page 70

in teacher training and teacher involvement,
sample projects, and evaluation methods (which
are not unlike those we previously described).

Spaceship Simulation Project

Another project we are exploring involves
kids in a local elementary school's fifth-grade
class. They are studying reading, writing, and
arithmetic in the context of a simulation of a
huge spaceship. The kids use a large mock-up
of a ship, design the form of government that
will control the lives of 3000 space citizens on
a year-long journey, and make significant
socio-economic decisions that affect life aboard
a ship traveling in outer space. This year the
kids will use Dynabooks in their
decision-making activities. They will be able to
design a model ship on a graphics display and
will be able to simulate space travel and space
adventures. We are interested in determining
the effect graphic feedback from a simulation
of their projected trip will have on their design
and planning decisions.

Summary Page 71

VI. Summary

What would happen in a world in which
everyone has a Dynabook? We have suggested
that the quality of the relationship between
learner and subject would be drastically
changed, that the use of a portable library
would make the world an interactive, active
learning center. The Dynabook currently is too
large to be portable, but it will allow us to
begin investigating its role in improving the
quality of human expression through its use in
a resource center.

We have stated several specific goals. In
summary, they are

1. to provide coherent, powerful examples of
the use of the Dynabook in and across
subject areas:

a. to develop readiness programs for
young children;

b. to help high schoolers develop new
metaphors for thinking about
problems, and for communicating and
expanding their ideas;

2. to study how the Dynabook can be used to
help expand a person's visual and auditory
skills;

3. to provide exceptional freedom of access so
kids can spend a lot of time probing for
details, searching for a personal key to
understanding processes they use daily; and

4. to study the unanticipated use of the
Dynabook and Smalltalk by children in all
age groups.

Acknowledgements Page 72

VII. Acknowledgements

Many people (both from the Learning Research Group and from other
groups at PARC) have worked hard to help make our dreams a reality.
We have attempted to list below the names of these people.

From the Learning Research Group

Permanent Staff

Adele Goldberg
Dan Ingalls
Chris Jeffers
Alan Kay
Diana Merry
John Shoch
Dick Shoup

Visitors

Ron Baecker
Dennis Burke (age 12)
Barbara Deutsch
Marian Goldeen (age 13)
Susan Hammett (age 12)
Bruce Horn (age 15)
Tom Horsley
Lisa Jack (age 12)
Ted Kaehler
Kathy Mansfield (age 12)
Eric Martin
Steve Purcell
Dave Robson
Steve Saunders
Bob Shur
Dave C. Smith
Bonnie Tenenbaum
Steve Weyer

From Other Groups at PARC

Patrick Baudelaire
Dave Boggs
Bill Bowman
Jim Cucinitti
Peter Deutsch
Bill English
Bob Flegal
Ralph Kimball
Bob Metcalfe
Ed McCreight
Mike Overton
Alvy Ray Smith
Bob Sproull
Larry Tesler
Chuck Thacker
Truett Thach

References Page 73

VIII. References

[1] from General Turtle Inc., Cambridge, Mass.

[2] We reference several publications on PLATO:

Alpert, D. and D. Bitzer, Advances in Computer-based Education,
Science, 167, 1582, 1970.
Bitzer, D. Computer-assisted Education, McGraw-Hill Yearbook of
Science and Technology, February, 1973.
Ghesquiere, J., C. Davis, C. Thompson, Introduction to TUTOR, PLATO
Service Organization, CERL University of Illinois, 1974.
Kammerahl, Hanna, PAL: Picture Algorithm Language, working draft of
doctoral dissertation for Computer Science department, University of
Illinois, Urbana, Illinois.

[3] Brown, John S., Richard Burton, and Alan Bell, SOPHIE: Sophisticated
Instructional Environment for Teaching Electronic Troubleshooting, BBN
Report No. 2790, Final Report, March 1, 1974.

[4] Bunderson, C. Victor, TICCIT Project: Design Strategy for Educational
Innovation, Brigham Young University, Provo, Utah, ICUE Technical
Report No. 4, September, 1973.

[5] Burroughs B5500 Information Processing System Reference Manual,
Detroit: Burroughs Corporation, 1964.

[6] Covington, M. V., R. S. Crutchfield, L. Davies, and R. M. Olton, The
Productive Thinking Program, Columbus: Merill, 1972.

[7] Dahl, Ole-Johan, and Kristen Nygaard, SIMULA—an ALGOL-Based
Simulation Language, CACM, IX, 9, September, 1966, pp 671-678

[8] Dahl, Ole-Johan, Bjorn Myhrhaug, and Kristen Nygaard,
SIMULA—Common Base Language, Norwegian Computing Center, Oslo,
Norway, 1970.

[9] Dwyer, T.A., Heuristic Strategies for using Computers to Enrich
Education, in the International Journal of Man-Machine Studies, Vol. 6,
pp. 137-154, 1974.

[10] Feurzeig, W., et al. Programming-Languages as a Conceptual Framework
for Teaching Mathematics, Final Report on BBN Logo Project, June 30,
1971.

[11] Fisher, D. A., Control Structures for Programming Languages, doctoral
dissertation, Carnegie-Mellon University, May 1970.

[12] Furth, Hans, and Harry Wachs, Thinking Goes to School, New York:
Oxford University Press, 1974.

[13] Goldberg, Adele, Smalltalk and kids—commentaries. PARC-LRG-3, June,
1974.

[14] - ,Classroom Communication Media, ACM SIGCUE TOPICS in
Instructional Computing, Vol 1, Teacher Education, January, 1975, (with
Bonnie Tenenbaum).

References Page 74

[15] Gorden, W.J.J., The Metaphorical Way of Learning and Knowing,
Cambridge: Porpoise Books, 1971.

[16] Kay, Alan, FLEX: an extensible simulation language which can be
directly executed by computer. University of Utah Note, September,
1967, University of Utah, ARPA Project, Salt Lake City.

[17] - ,FLEX: a flexible extensible language. M.S. Thesis. University of
Utah, May, 1968 (University Microfilms).

[18] - ,The reactive engine. doctoral dissertation, University of Utah,
September, 1969 (University Microfilms).

[19] - ,A personal computer for children of all ages. Proceedings of the
ACM National Conference, August 1972, Boston.

[20] - ,A dynamic medium for creative thought. Proceedings of National
Council of Teachers of English Conference, November, 1972,
Minneapolis.

[21] Lorton, Mary, Workjobs, Menlo Park: Addison-Wesley, 1972.

[22] McCarthy, John, P. Abrahams, D.J.Edwards, T.P. Hart, and M.I.Levin,
LISP 1.5 Programmer s Manual, Cambridge: MIT Press, 1962.

[23] Moore, O.K., and A.R. Anderson, Some Principles for the Design of
Clarifying Educational Environments, in Goslin, David (ed), Handbook
of Socialization Theory and Research, N.Y.: Rand McNally, 1969.

[24] Papert, S., Teaching Children Thinking, IFIP Conference on Computer
Education, 1970, Amsterdam: North-Holland.

[25] Papert, S., Teaching Children to be Mathematicians Versus Teaching
About Mathematics, Inter. Jour. Math. Educ. Sci. Tech., Vol 3, 249-
262, 1972.

[26] Polya, G., How to Solve It, Princeton University Press, 1957.

[27] Shaw, C. JOSS: A Designer's View of an Experimental On-Line
Computing System, AFIPS Conference Proceedings, XXVI, 1, Fall, 1964,
pp 455-464.

[28] Smith, David C., PYGMALION: A Creative Programming Environment,
doctoral dissertation, Stanford University Computer Science
department, to appear, 1975.

[29] Sutherland, Ivan C., SKETCHPAD: A Man-Machine Graphical
Communication System, MIT Lincoln Laboratory TR 296, May, 1965.

