

VPRI Technical Report TR-2007-008

Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201
tel: (818) 332-3001 fax: (818) 244-9761

STEPS Toward The Reinvention of Programming

First Year Progress Report
Dec 2007

 2

The STEPS project is setting out to create “Moore’s Law Software”: a high-risk high-reward ex-
ploratory research effort to create a large-scope-and-range software system in 3-4 orders of mag-
nitude less code than current practice. The detailed STEPS proposal can be found at
http://www.vpri.org/pdf/NSF_prop_RN-2006-002.pdf. Other documentation on this research can be
found in the Inventing Fundamental New Computing Technologies section of the VPRI web site:
http://www.vpri.org/html/work/ifnct.htm

Table of Contents
Research Personnel for the STEPS Project . 3
Viewpoints Research & Funding . 3

About This Report . 4
Motivation for This Project . 4

General Plan of Attack . 5
From “Atoms” to “Life” . 6
Comparisons & Orientations . 7
Language Strategies . 7
Relation to Extensible Languages Initiatives of the 60s & 70s 8
Relation to Domain-specific Languages of Today 8
Relation to Specification Languages & Models 8

Summary of STEPS 2007 Research Activities . 9
Major Progress in 2007 . 10

IS Meta-meta Language-language . 10
Graphical Compositing & Editing . 12

Jitblt . 12
Gezira . 13
Universal Polygons & Viewing . 16

A Tiny TCP/IP Using Non-deterministic Parsing 17
OMeta . 18
JavaScript . 19
Prolog & Toylog in OMeta . 20
OMeta in Itself . 21
“Lively Kernel” . 22
HyperCard Model . 24
Logo . 25
Visual Dataflow Programming . 26
Tiny BASIC . 27
Particles & Fields . 27
IDE for IS . 28
A Tiny FPGA Computer . 29
Architectural Issues & Lookaheads . 30

Comments . 34
Opportunities for Training & Development . 35
Outreach & Service . 35
References . 35
Appendix A – OMeta Translator from Logo to JavaScript 38
Appendix B – OMeta Translator from Prolog to JavaScript 39
Appendix C – Toylog: An English Language Prolog 41
Appendix D – OMeta Translator from OMeta to JavaScript 42
Appendix E – A Tiny TCP/IP Using Non-deterministic Parsing 44
Appendix F – Interactive Development Environment Tools for IS 47
Appendix G – Gezira Rendering Formulas . 50

STEPS Toward The Reinvention of Programming
First Year Progress Report, Dec 2007

 3

Research Personnel for the STEPS Project

Principal Investigators

Researchers

Colleagues and Advisors

Viewpoints Research Institute
Viewpoints Research Institute http://vpri.org/ is a 501(c)(3) nonprofit public benefit organization
set up to conduct advanced computer related research energized by the romance and methods of
ARPA-IPTO and Xerox PARC in the 1960s and 1970s.

Over the years we have been inspired by the overlap of “deep personal computing for children”
and “dynamic systems building”. This has brought forth inventions of systems that are close to
end-users (GUIs and WYSIWYG authoring systems, programming languages and environments,
etc.), fundamental software architectures, and many kinds of hardware organizations (personal
computers, displays, multiple CPU architectures, microcode, FPGAs, etc.).

Funding and Funders in 2007
One of the highlights of late 2006 was receiving major multiyear funding from a variety of
sources, that for the first time allowed several of the most difficult projects we’ve been interested
in to be started and staffed.

The major funding for STEPS are 5 year grants from NSF (Grant# 0639876) and from FATTOC
http://www.fattoc.com/static/overview.html. We would particularly like to thank the NSF CISE
Program Managers who were instrumental in securing this grant, and the President of FATTOC
for his generosity. Intel provided funding in 2006 that helped us put together the proposal for this
grant.

Other critical support in 2007 came from SAP, Nokia Labs, Sun Labs and Applied Minds, Inc.

Alan Kay (PI)

Ted Kaehler

Ian Piumarta (co-PI)

Yoshiki Ohshima

Alex Warth

Takashi Yamamiya

Dan Amelang
Scott Wallace

Dan Ingalls (co-PI)
Sun Microsystems

Andreas Raab

qwaq, inc

Jim Clune

UCLA

John Maloney
MIT Media Lab

Dave Smith
qwaq, inc

Kim Rose (co-PI)

Chuck Thacker

Microsoft

Vishal Sikka

SAP

David Reed

MIT

 4

STEPS Toward The Reinvention of Programming
- A “Moore’s Law” Leap in Expressiveness

We make, not just to have, but to know
About This Report
We have received surprisingly many inquiries about this project from outside the mainstream
computer science research community – especially from students and from people involved in
business computing. We think students are interested because this project seems new and a little
unusual, and the business folk because the aim is to reduce the amount of code needed to make
systems by a factor of 100, 1000, 10,000, or more.
Though quite a lot of this project is deeply technical (and especially mathematical), much of this
first year is “doing big things in very simple ways”. Besides being simple and understandable,
many of the results are extremely pretty, some even beautiful. This tempted us to make some of
these results more accessible to a wider group of readers. We have prepared several levels of de-
tail.
- The report in your hands is a summary of the first year’s results with a little technical detail.
- Appendices A-G contain more detailed examples (mostly short programs) of some of the results,

and are referred to in the body of this report.
- Finally, we publish much more detailed technical papers and reports in the literature and our web-

site http://www.vpri.org/html/work/ifnct.htm that contain deeper expositions of the work.

Motivation for This Project
Even non-computer professionals are aware of the huge and growing amounts of processing and
storage that are required just to install basic operating systems before any applications (also
enormous and growing) are added. For professionals, these large systems are difficult and expen-
sive to create, maintain, modify, and improve. An important question is thus whether all this is
actually demanded by the intrinsic nature of software functionality, or whether it is a “bloat”
caused by weak and difficult-to-scale ideas and tools, laziness, lack of knowledge, etc. In any
case, the astounding Moore’s Law increase in most hardware-related things has been matched by
the inverse process in software. A comment by Nicholas Negroponte: “Andy1 giveth, but Bill2
taketh away!”

However, we are not interested in complaining about Microsoft or any other software producers.
As computer scientists we are interested in understanding and improving the important areas of
our field. As Marshall McLuhan urged: “Don’t ask whether it is right or wrong. Instead try to find
out what is going on!”

Our questions about functionality are aimed at the user’s experience while doing personal com-
puting. They can use keyboards, various pointing devices, and other sensors, and usually have a
nice big bitmap screen and high quality sound as their principal outputs. “Personal Computing”
for typical users involves a variety of tasks (and not a big variety) that are mostly using simula-
tions of old media (paper, film, recordings) with a few twists such as electronic transferal, hyper-
linking, searches, and immersive games. Most users do little or no programming.

Science progresses by intertwining empirical investigations and theoretical models, so our first
question as scientists is: if we made a working model of the personal computing phenomena
could it collapse down to something as simple as Maxwell’s Equations for all of the electromag-
netic spectrum, or the US Constitution that can be carried in a shirt pocket, or is it so disorganized

1 Andy Grove of Intel.
2 Bill Gates of Microsoft.

 5

(or actually complex) to require “3 cubic miles of case law”, as in the US legal system (or per-
haps current software practice)? The answer is almost certainly in between, and if so, it would be
very interesting if it could be shown to be closer to the simple end than the huge chaotic other
extreme.

So we ask: is the personal computing experience (counting the equivalent of the OS, apps, and
other supporting software) intrinsically 2 billion lines of code, 200 million, 20 million, 2 million,
200,000, 20,000, 2,000? There are apples vs. oranges kinds of comparisons here, and lots of wig-
gle room, but it is still an important and interesting question.

For example, suppose it might be only 20,000 lines of code in a new kind of programming system
and architecture – this is a modest 400-page book, not the tiny “constitution in the pocket”, but
not a multivolume encyclopedia or a library of 1000 books (20 million lines of code) or 10,000
books (200 million lines of code). This enormous reduction of scale and effort would constitute a
“Moore’s Law” leap in software expressiveness of at least 3 and more like 4 orders of magnitude.
It would also illuminate programming and possible futures for programming. It might not be
enough to reach all the way to a “reinvention of programming”, but it might take us far enough up
the mountain to a new plateau that would allow the routes to the next qualitative change to be
seen more clearly. This is the goal and mission of our project.

General Plan of Attack
The STEPS Proposal http://www.vpri.org/pdf/NSF_prop_RN-2006-002.pdf lays out the goals and
sketches some of the dozen “powerful principles” we think can provide the architectural scaling
and “dynamic math” that will allow the runnable model of the system to be both small and under-
standable.
The illustration below shows the “power supply” at the far left and the end-user at the far right,
with a dozen principles more or less distributed to three areas. Some of the powerful principles
date back into the 1960s and some were postulated more recently. A few have been used in earlier
projects, but most of them have never been the guiding principles for a system of this level of
comprehensiveness. One of our favorite cartoons “THEN A MIRACLE OCCURS …” is perched over
the middle area, and this is apt since most of the unknowns of this project lie there.

Our plan of attack is to do many experiments and to work our way to the center from the outsides.
This has some strategic value, particularly at the left where one could quickly use up 20,000 lines

An illustration we dared not show in our proposal …

 6

of code just doing a tiny, but necessary, part like TCP/IP, or compilation, or state-of-the-art
graphics generation. Things are a little easier on the right (at least eventually) because the miracle
will have happened (the “TAMO Principle”). However, we need quite a few facilities at each end
before the miracles are invented, and so part of the bootstrapping process involves making some-
thing like the system before we can make the system.

The desired “miracles” at the heart of the STEPS project have to do with coming up with more
powerful “engines of meaning” that can cover wide areas of our large problem space. For exam-
ple, there is a very large collection of cases in which objects are in multiple dynamic relationships
to their “container” and to each other – graphic layout and construction, text handling and format-
ting, super Spreadsheets, “data bases”, scheduling, even register allocation in code generation.
We use the metaphor “particles and fields” for this general area. As with many other concerns in
computing, each of the traditional trio of syntax, semantics and pragmatics needs to be addressed,
but for us, the most important is to come up with a semantic-meaning-kernel that can have ex-
pressive syntactic forms defined for it, and for which extensive enough pragmatics can be devised.
In other words, it is the runnable debuggable semantics of particles and fields that is central here.

Another example is the myriad of pattern-matching and transformation cases in all levels of the
system from the very bottom level code generation, to publish and subscribe control structures, to
a new of way of doing TCP, to forward and backwards inference, to the definition of all the lan-
guages used, to end-user facilities for scripting and search, etc. These are all instances from the
same abstraction, which can be expressed very compactly (and need to be).

So, while we count the lines of code we use (which are expressed in languages with careful syn-
tax that we define), the battles here are fought, won or lost on how much power of meaning lies
under the syntactic forms. Because one of our main principles is to “separate meaning from op-
timizations” we only have to count the lines of meaning that are sufficient to make the system
work. Because meaning has to be runnable and debuggable, there are some pragmatics involved
whose code has to be counted. These are part of the definition of “active-math” meanings and are
separate from optimizations that might be added later. The system must be able to run with all the
separate optimizations turned off.

Quick Steep Slope From “Atoms to Life”

Most of today’s computer hardware is very weak per instruction and provides few useful abstrac-
tions (in contrast to such venerable machines as the Burroughs B5000 [Barton 61]). So it is easy
to use up thousands of lines of low-level code doing almost nothing. And the low-level language
C needs to be avoided because it is essentially the abstraction of very simple hardware (and this is
actually a deadly embrace these days since some recent hardware features have been put in just to
run low-level C code more efficiently). Thus we need to have our own way to get to bare machine
hardware that has an extremely steep slope upwards to the very high-level languages in which
most of our system will be written. The chain of abstractions from high-level to machine-level
will include a stage in the processing that is roughly what C abstracts, but this will always be
written by automatic processes.

We also think that creating languages that fit the problems to be solved makes solving the prob-
lems easier, makes the solutions more understandable and smaller, and is directly in the spirit of
our “active-math” approach. These “problem-oriented languages” will be created and used for
large and small problems, and at different levels of abstraction and detail.

John von Neumann defined mathematics as “relationships about relationships”; Bertrand Russell
was more succinct: p implies q. One way of approaching computing is mathematical, but because
of the size and degrees of freedom expansion in computing, classical mathematics is only some-
what useful (and can even distract from important issues). On the other hand, making new

 7

mathematical frameworks for dealing with representations and inferences in computing – let’s
call these problem-oriented languages of sufficiently high level – can make enormous differences
in the quality and size of resulting designs and systems. The nature of this mathematics is that
most artifacts of interest will require debugging – just as large theorems and proofs must be de-
bugged as much as proved – and this means that all of our math has to be “runnable”. Again, the
central concern here is semantic, though we will want this “math” to be nicely human readable.

In addition to “runnable math” and ways to make it, we also need quite a bit of scaffolding for the
different kinds of “arches” that are being constructed, and this leads to the organization of tools
described below.

The central tool – called IS – is a pattern-directed transformation system with various levels of
language descriptions from very high-level languages in which we write code, all the way to de-
scriptions of the machine language instructions of our target machines. Two of the other dimen-
sions of this system are protoabstractions of (a) structurings (meta-objects) and (b) evaluations
(meta-code). Some of the translation systems are simple and very fast, some have great range and
generality (and are less speedy). In the middle of the transformation pipeline are opportunities to
make various kinds of interpreters, such as the byte-code VMs that we have employed since the
1960s (although this year we have concentrated exclusively on generating machine code).

A Few Comparisons and Orientations
JavaScript is not an Ultra High Level Language (it is a VHLL, a bit like Lisp with prototypes) but
it is well and widely understood enough to make a useful vehicle for comparisons, and for various
reasons we have used it as a kind of pivot point for a number of our activities this year. About
170 lines of meta-description in a language that looks like “BNF with transformations” (OMeta)
is sufficient to make a JavaScript that runs fast compared to most of the versions in browsers (be-
cause IS actually generates speedy machine code rather than an interpreter).

The OMeta translator that is used to make human readable and writable languages can describe
itself in about 100 lines of code (it is one of these languages).

IS can make itself from about 1000 lines of code (of itself described in itself).

One of the many targets we were interested in this year was to do a very compact workable ver-
sion of TCP/IP that could take advantage of a rather different architecture expressed in a special
language for non-deterministic processing using add-on heuristics. Our version of TCP this year
was doable in these tools in a few tens of lines of code, and the entire apparatus of TCP/IP was
less than 200 lines of code. (See ahead for more details.) We had aimed at a solution of this size
and elegance because many TCP/IP packages run to 10,000 or 20,000 lines of code in C (and this
would use up all of our code budget on just one little subsystem).

Modern anti-aliased text and graphics is another target that can use up lines of code very quickly.
For example, the open source Cairo system (a comprehensibly done version of PostScript that is
fast enough to be used for real-time interfaces) is about 44,000 lines of C code, most of which are
various kinds of special case optimizations to achieve the desired speed. However, underlying
Cairo (and most good graphics in the world) is a mathematical model of sampling and composit-
ing that should be amenable to our approach. A very satisfying result this year was to be able to
make an “active math” system to carry out a hefty and speedy subset of Cairo in less than 500
LOC (more on this ahead).

Language Strategies
The small size required to make useable versions of very high-level languages allows many
throwaway experiments to be done. How the semantics of programming languages should be ex-
pressed has always been a much more difficult and less advanced part of the extensible language

 8

field. (We are not satisfied with how we currently achieve this, even though it is relatively com-
pact and powerful.) Each different kind of language provides an opportunity for distilling better
semantic building blocks from all the languages implemented so far. At some point a more com-
prehensive approach to semantics is likely to appear, particularly in the mid-range between very
high-level and low-level representations.

Relation to Extensible Languages Initiatives of the 1960s and 1970s
The advent of BNF and the first uses of it to define “translator writing systems” (for example
“The Syntax Directed Compiler” by Ned Irons) led to the idea of statically (and then dynami-
cally) extensible languages (“IMP”, Smalltalk-72, etc.). Part and parcel of this was the belief that
different problems were best expressed in somewhat custom dialects if not whole new language
forms. Some of our very early work also traversed these paths, and we plan to see how this old
dream fits to the needs and users of today. However, for the first few years of this project, most of
our interests in easy extensions are aimed at finding succinct characterizations of the problem and
solutions spaces – semantic architectures – for various systems problems that must be solved.

Relation to Domain-specific Languages of Today
In the last few years several good-sized initiatives (cf., Fowler-05) have arisen to retread the
ground of “problem-oriented languages” (now called Domain-specific Languages). One of the
most impressive is “Intentional Software” by Charles Simonyi (“Intentional Software”, Simonyi,
et al.). This project, like ours, came out of some “yet to be dones” from research originally carried
out at Xerox PARC, and both the similarities and differences trace their routes back to that work.
Similar are the mutual interests in having the surface level expressions of code be done in terms
that closely fit the domain of interest, rather than some fixed arbitrary forms for expressing algo-
rithms. Most different is the interest in STEPS of making an entire “from end-users to the metal”
system in the most compact and understandable form “from scratch”. The emphasis in STEPS is
to make a big change in the level of meaning (both architectural and functional) that computers
compute. This should create new domains and languages for them.

Relation to Specification Languages and Models
Some of the best work in specification and semantic languages – such as Larch, OBJ, etc. – has
influenced the thinking of this project. Our approach is a little different. Every expression in any
language requires debugging. Any language that is worth the effort of writing and debugging any
kind of expression of meaning should simply be made to run, and just be the language. Similarly,
the recent work in modeling (too bad this term got co-opted for this) is only convincing to us if
the models can be automatically extracted (and if so, they then form a part of an underlying integ-
rity system that could be a useful extension of a type system). Our approach is simply to make the
expression of desirable meanings possible, and easy to write, run and debug. We use dynamic
techniques and the architecture at all levels to ensure safety in rather simple ways.

 9

2007 STEPS Research Activities

During the first year of the project we have concentrated on the extremities of the system: boot-
strapping live systems from meta-descriptions, and making user experiences and interfaces using
“unitarian” objects that can be composed indefinitely. For example, because our parsers can eas-
ily bootstrap themselves, they could easily be used as front ends for IS, Squeak and JavaScript.

- The IS version allows ultimate utilities to be made by compiling machine code.
- The Squeak version allows its considerable resources to be used to scaffold many experiments.
- The JavaScript version allows easy illustration of some of the experiments to be shown directly

in a web browser.
Another example is found in the low-level rich-function graphics and mathematical transforma-
tions that can bring an entire visible object scheme to life with very little machinery. All of these
will be described in more detail ahead.

We have built a number of “dumbbell models” this year using different architectures, each of
which supported experiments on their component parts. We are building these models to learn
and not necessarily to have. Many of them will ultimately be discarded once the invaluable expe-
rience of building them has been gained. This being said, in some cases the models have matured
into stable subsystems that will continue to serve us throughout the remainder of the project.

Major Results in 2007 are listed below and descriptions follow:
- several meta-parser/translators (Thesis work);

- IS, a parametric compiler to machine code that can handle a number of CPUs;

- a graphical compositing engine (Thesis work);

- a VG engine with speedy low-level mathematical rendering (Thesis work);

- a high-level graphics system using universal polygons, transforms and clipping windows;

- a number of languages including: JavaScript, Smallertalk, Logo, BASIC, Prolog, Toylog,
Dataflow, CodeWorks, and specialty languages for metalinguistic processing, mathematics,
graphics (SVG, Cairo) and systems (TCP/IP);

- an end-user authoring system made in JavaScript and SVG;

- a pretty complete HyperCard system using CodeWorks as the scripting language;

- control structure experiments in massive parallelism in our JavaScript and Logo;

- workable TCP/IP using non-deterministic inference in less than 200 lines of code;

- a major IDE system for IS;

- a working model of a tiny computer that can be instantiated on FPGA hardware;

- super high-level “compiling of agents” from declarative descriptions (Thesis work);

- architectural issues and designs.

These experiments served to calibrate our “sense of entropy” for various parts of our task. For
example, all the languages (including most of JavaScript) could be defined and made to run in
under 200 lines of code fed to our metasystems. The graphical compositing engine can handle a
hefty subset of Cairo (an open-source relative of PostScript) in less than 500 lines. This is critical
because we have to be able to cover the entire bottom of the system with just a few thousands of
lines of code, and thus we must validate the techniques we plan to use in the first phase of imple-
mentation.

 10

Major Progress in 2007: Findings and Summary Explanations

IS — Meta-meta Language-language and Parametric Compiler
Principal Researcher: Ian Piumarta

IS can instantiate new programming paradigms and systems, including itself. It demonstrates the
power of “extreme late binding” and treats many of the static vs. dynamic choices that are tradi-
tionally rigid (compilation, typing, deployment, etc.) more like orthogonal axes along which de-
sign decisions can be placed. A rapidly maturing prototype of IS has been made publicly avail-
able and several systems of significant complexity have been created with it.

The IS system can be thought of as a pipeline of transformation stages, all meta-extensible.

This is basically “good old-time computer science with a few important twists”. IS can be thought
of a “pipeline of transformations” coupled with resources – i.e., an “essence-procedure-
framework”, an “essence-object-framework”, storage allocation, garbage collection, etc. Each of
the transformational engines is made by providing meta-language rules. (The ones in the lan-
guage-specific front ends look a little like BNF, etc.).

JavaScript: For making a complete JavaScript language translator and runtime, it takes only 170
lines of meta-language fed in at the “Form #1 Rules for Translation” stage. (We have to make
much stronger languages than JavaScript in this project, but – because of the familiarity of
JavaScript – being able to make an efficient version so easily provides some perspective into the
“meta-ness” of our approach.)

This was partly easy because JavaScript is pretty simple mathematically and formally, and has
nothing exotic in its semantics. The outputs of the first Language Specific stage are standard
forms that can be thought of as tree or list structures. (See ahead for more description of this, and
Appendix N to look at this code.)

The Standard (fancy term: “canonical”) Form stage deals with semantic transformations into
forms that are more like computers (we can think of something that is like an abstract, improved,
dynamic C semantics at the end here).

The Target Computer stage is made from rules that specify the salient architectural forms (in-
structions, register set ups, etc.) and perhaps a few non-standard organizations the CPUs might
have. We currently have three targets installed: Intel, PowerPC, StrongARM. The result here is
actual machine code plus environment to help run it. As a result, JavaScript is quite speedy.

Target Computer
Transformations

Standard Forms
Transformations

Language Specific
Transformations

Form #1
Rules for
Translation

Form #1
Engine

Computer
Logic
Rules

…

…

Target

Computer
Hardware

Form #n
Engine

Form #n
Rules for
Translation

Form #m
Engine

Form #m
Rules for
Translation

…

… …

…

 11

Note that the very last “engine and rules” of computer hardware and logic could be further de-
composed if FPGAs are used. (See “Tiny Computer” example on page 29.)

Prolog: A more exotic language like Prolog requires a little more environment to be supplied be-
cause of its unification and backtracking semantics. But still, this only takes about 90 lines of
code total. This is because the syntax of Prolog is simple (9 lines of meta-language), and the addi-
tional semantics can easily be written in the somewhat Lisp-like IS language framework in about
80 more lines. (See ahead for more description of this, and Appendix C for the actual code.)

TCP/IP: One of the most fun projects this year was to make a tiny TCP/IP, thinking of it as a
kind of a “parser with error handling”. This is described a few pages ahead, took less than 200
lines of code to accomplish, and is a clear and efficient program written this way.

Graphics: Another fun project (described ahead) is a variety of efficient and compact graphical
transformations in the genres associated with PostScript imaging for text and graphics. Again, the
mathematics was organized for this: a language for expressing the mathematics was designed, the
language translation was done by a front-end to IS, and the optimization stages of the pipeline
were able to produce efficient machine code on-the-fly to do the operations. This means that spe-
cial casing the code (as is usually done in such graphic systems – e.g., Cairo) is not necessary.

Itself: Since IS is made from parametric languages, it should be able to make itself from a meta-
description. It takes about 1000 lines of code to make the engines and resources that will produce
a new version of IS. (This is good, because we really have to count IS as part of the code base for
this project.) Another way to look at this is that, for example, JavaScript from scratch really takes
about 1170 lines of code to make a runnable system for 3 different CPUs (but with the side-
benefit that other languages can be compactly made also with about 100–200 more lines of code
each).

IS has a number of front-ends that are used for different purposes.

OMeta (described ahead) is the most general and wide-ranging front-end, and has been used for
projects with the IS back-end, Squeak, and with JavaScript. TCP/IP used several interesting meta-
forms and languages that were specially made to as the solution progressed.

This project requires much stronger yet-to-be-invented language forms than the ones we’ve been
making in 2007. Quite of bit of the actual effort here will be to make the stronger semantic bases
for these languages. We are confident that the apparatus we’ve made so far will be able to ac-
commodate these stronger forms.

IS

System

… and many internal languages
and translators

General IS
Front-end

OMeta

Front-end

Etc…

 12

Graphical Compositing and Rendering
The story of this work has an interesting twist. The original plan was to deal with the immense
amount of progress and work that has been done in modern computer graphics by using the very
capable open source graphics package Cairo, which is a kind of second generation design and
adaptation of PostScript.

Cairo is large, but our thought was that we could use Cairo as “optimizations” if we could build a
small working model of the Cairo subset we intended to use. However, in a meeting with some of
the main Cairo folks they explained that much of the “bloat” in Cairo was due to the many special
case routines done for optimization of the compositing stage. What they really wanted to do was
just-in-time compilation from the “math” that directly expressed the desired relationships. The IS
system could certainly do this, and one of the Cairo folks – Dan Amelang (now part of View-
points) – volunteered to do the work (and write it up as his Master’s Thesis for USCD).

So, the “twist” here is that the IS model Dan made is actually directly generating the high effi-
ciency machine code for the compositing stage of Cairo. The relationship has been reversed:
Cairo is using the IS system as the “optimization.”

Jitblt
Principal Researcher: Dan Amelang

 — a graphical compositing engine in which pixel combination operators are compiled on de-
mand (done from meta-descriptions in IS). Traditional (static) compositing engines suffer from
combinatorial explosion in the number of composition parameters that are possible. They are
either large and fast (each combination is coded explicitly) or small and slow (the inner loops
contain generic solutions that spend most of their time in tests and branches). Jitblt uses the dy-
namic “behavior instantiation” facilities of IS to convert a high-level compositing description into
a complete compositing pipeline at runtime, when all the compositing parameters are known.
The resulting engine is small (460 lines of code) and fast (it competes with hand-optimized, ex-
plicitly-coded functions). It has been deployed as an alternative compositing engine for the popu-
lar “pixman” library, which is what Cairo and the X server use to perform compositing.
Several specially designed “little languages” allow parts of the pipeline to be expressed com-
pactly and readably. For example, the compositing operator over is quite simple:
 compositing-operator: over : x+y*(1.0 – x.a)
Hundreds of lines of code become one here. The Jitblt compilation has to do automatic processing
to efficiently make what is usually hand-written code cases. We can define the compositing op-
erator in as:
 compositing-operator: in : x*y.a
Another case is handling the enormous number of pixel formats in a way that can be automati-
cally made into very efficient algorithms at the machine code level. A very simple syntax for
specifying the makeup of a pixel is
 four-component-case :: component “,” component “,”component “,” component
 component :: comp-name “:” component-size
 comp-name :: a | r | g | b
 comp-size :: integer
Notice that this grammar is context sensitive. Combining the two formulas, we can express the
most used case in compositing for 32 bit pixels as the formula:
 a:8, r:8, g:8, b:8 in a:8 over x:8, r:8, g:8, b:8
using the syntax definition:

 13

 formula :: source “in” mask “over” dest
Most of the spadework here is in the semantics (including the context sensitivity of the syntax)
and especially the pragmatics of the compilation.

Two images digitally composited using Jitblt. The water texture image is masked by the anti-aliased text image and combined with the
sand dune background image using the Porter-Duff over operation (i.e., water in text over dunes).

Gezira
Principal Researcher: Dan Amelang

— a small and elegant 2-D vector graphics engine. Gezira is meant to be used primarily for dis-
playing graphical user interfaces but is well suited for displaying any 2-D graphical content such
as SVG artwork or Adobe Flash animations.
Gezira replaces all external dependencies on third-party rendering libraries in IS. Only the most
fundamental graphics components of the host windowing system are used. When desirable, Gez-
ira will use the frame buffer directly.
Gezira draws its inspiration from the Cairo vector graphics library. Gezira is the name of a small,
beautiful region in central Cairo (the city). Thus, the name "Gezira" is meant to suggest a small,
elegant vector graphics implementation that is born out of the core concepts of the Cairo library.
The primary goal of Gezira is to express the fundamentals of modern 2-D graphics in the most
succinct manner possible. At the same time, high-performance is also desirable where possible
without interfering with the primary goal. Gezira employs a number of novel approaches to
achieve this balance.
For example, the rasterization stage is often the most complex and performance-intensive part of
the rendering pipeline. Typically, a scan-line polygon fill algorithm is employed, using some
form of supersampling to provide anti-aliasing. Our goal was to avoid the complexity and per-
formance disadvantages of this approach while maintaining adequate output quality for our pur-
poses. To this end, Gezira uses an analytic pixel coverage technique for rasterization that can ex-
press exact pixel coverage via a mathematical formula.
This formula expresses the exact coverage contribution of a given polygon edge to a given pixel.
The total coverage of a polygon is merely the linear combination of the edge contributions. (A
variation of this formula allows for efficient rasterization by tracing the polygon edges, thus

 14

avoiding the "uninteresting" inner pixels.) This approach allows us to express this typically com-
plex stage of the pipeline in only 50 lines of code instead of the 500+ lines of code seen in similar
libraries. The Gezira rendering formula is presented mathematically in Appendix G.
Gezira, in its current state, already implements a good subset of standard vector graphics func-
tionality in 450 lines of code. This functionality includes high-quality anti-aliased rasterization,
alpha compositing, line and Bézier curve rendering, coordinate transformations, culling and clip-
ping.
Once the core mathematics, algorithms and data structures of Gezira stabilize, we will set out to
design a domain-specific language (or perhaps languages) for describing the graphics system. We
hope to reduce the system size by an additional order of magnitude through this effort.

1400 animated "snowflakes". Each snowflake is composed of 64 cubic Bézier curves. The snowflakes are transformed, decom-
posed, rasterized (with anti-aliasing) and alpha-blended together. Each snowflake is assigned a psuedo-random scale, position,
rotation, vertical velocity and angular velocity. The animation runs at ~10 frames per second on a 1.8 GHz Pentium M.

 15

Detail of the same snowflake scene, zoomed by a factor of 9. The vector graphics really shine here, as raster graphics would display
extreme pixelation at this scale.

 16

Universal Polygons and Viewing

Principal Researcher: Ian Piumarta

— a runnable model of graphics, windows and user interaction. Here is an example of “making
the many into one” at the level of meaning.
We chose 2D graphics for this experiment, but it would work just as well in 3D. The basic idea is
to find an element of graphical meaning that can be used at all scales and for all cases, and to
build everything else from it. A pragmatic solution could be triangles, since they can be (and of-
ten are) used to cover and approximate spatial regions for rendering (and some of today’s graph-
ics accelerators are triangle based). We chose polygons because they (along with curves interpo-
lated between their vertices) can be used to make shapes that are meaningful to all levels of users
(for example: triangles, rectangles, circles, ovals, text characters in many fonts, etc.). These can
be positioned and manipulated by simple transforms, and the fills can be combinations of textures
and mathematics. If we can composite and render them efficiently, then we have made the basis
for the general graphics of personal computing.
The multiplicity of components and corresponding complexity found in most UI toolkits is elimi-
nated by considering the UI as a “scene” described entirely by polygons and affine transforma-
tions. Even the characters making up regions of text are polygons, transformed into appropriate
spatial relationships. This unifies, generalizes and simplifies every entity in the UI. An encourag-
ing early result is that the Gezira graphics engine can render “glyphs-as-polygons” fast enough to
support real-time scrolling of text without the usual retained bitmaps or other complicating op-
timizations. The current prototype is about 3,500 LOC (including models of geometry, color,
typefaces, events, interaction and connections to platform windows), which will decrease as bet-
ter abstractions are formulated for the primitive elements and algorithms.
This is a good measure for much of what we wish to accomplish with visible objects.

Just polygons and affine transformations produce everything on this desktop.

 17

A Tiny TCP/IP Using Non-deterministic Parsing
Principal Researcher: Ian Piumarta

For many reasons this has been on our list as a prime target for extreme reduction.

- many implementations of TCP/IP are large enough to consume ½ to our entire code budget.
- there are many other low-level facilities that also need to be handled very compactly; for ex-

ample, the somewhat similar extreme treatments of low-level graphics described above.
- there are alternative ways of thinking about what TCP does that should collapse code down

to a kind of non-deterministic pattern recognition and transformation process that is similar to
what we do with more conventional language-based representations.

- TCP/IP is also a metaphor for the way complex systems should be designed and implemented,
and, aesthetically, it would be very satisfying to make a more “active math” formulation of it
that would better reveal this kind of distributed architecture.

The protocols are separated into IP (which handles raw sending and receiving of packets, but with
possible errors from vagaries of the networking machinery, such as out-of-order or dropped pack-
ets), and TCP (which is a collection of heuristics for error detection, correction and load balanc-
ing). This separation allows other strategies for dealing with packets to be attached to IP (for ex-
ample, UDP is a simpler protocol that allows developers to deal with streams and retransmissions
in their own manner).

In our “active math” version of this, the TCP stream and retransmission schemes are just a few
lines of code each added to the simpler UDP mechanics. The header formats are actually parsed
from the diagrams in the original specification documents.

Here, we give a glimpse of what the “programming with a grammar” looks like for the rejection
of incoming packets with non-expected tcp-port or tcp-sequenceNumber, and which provides cor-
rect tcp-acknowledgementNumbers for outgoing packets.

['{ svc = &->(svc? [self peek])
 syn = &->(syn? [self peek]) . ->(out ack-syn -1 (+ sequenceNumber 1) (+ TCP_ACK TCP_SYN) 0)
 req = &->(req? [self peek]) . ->(out ack-psh-fin 0 (+ sequenceNumber datalen (fin-len tcp))
 (+ TCP_ACK TCP_PSH TCP_FIN)
 (up destinationPort dev ip tcp
 (tcp-payload tcp) datalen))
 ack = &->(ack? [self peek]) . ->(out ack acknowledgementNumber
 (+ sequenceNumber datalen (fin-len tcp))
 TCP_ACK 0)
 ;
 (svc (syn | req | ack | .) | . ->(out ack-rst acknowledgementNumber
 (+ sequenceNumber 1)
 (+ TCP_ACK TCP_RST) 0)
) *
 } < [NetworkPseudoInterface tunnel: '"/dev/tun0" from: '"10.0.0.1" to: '"10.0.0.2"]]

The text between curly braces defines a grammar object. The '<' message, with a network “tun-
nel” interface as argument, creates and runs a parser for the grammar, connected to a stream read-
ing packets from the interface.

The first rule is a predicate that filters out unknown service port numbers. The next three describe
the appropriate replies to SYN packets, connection data transfer packets, and ACK packets re-
ceived from a connecting client. The 'out' function invoked from the actions in these rules recon-
structs a TCP/IP packet with the given parameters, fills in the checksum, and writes the packet to
the network interface.

 18

See Appendix E for a more complete explanation of how this “Tiny TCP” was realized in well
under 200 lines of code, including the definitions of the languages for decoding header format
and for controlling the flow of packets.

OMeta Principal Researcher: Alex Warth

— a highly expressive, wide-spectrum meta-translator. Tokenization, phrase recognition and
structural rewriting are central to many programming systems, and ours is no exception. They are
traditionally implemented as separate translation stages, necessitating incompatible intermediate
representations between each stage and a distinct engine to implement each transformation. We
have built a prototype pattern recognition and translation engine that unifies these three activities
within a single framework. These three (or more) phases communicate information in both direc-
tions, can be arbitrarily overlapped, and are used to describe (and bootstrap) their own implemen-
tation (inspired by the Meta II system, dating back to the 1960s). This latter point, in conjunction
with the dynamic features of IS, implies that the structures the translator manipulates are within
the domain of its own implementation, making “introspective” modification of the system’s
“chain of meaning” available to, and natural for, system designers and end-users alike.

The general form of an OMeta “rule” resembles BNF plus a translation/transformation meaning.
For example, the classical definition of addition syntax looks like:

addExpr = addExpr:x “+” mulExpr:y -> (x, '+', y)

The transformation part of this rule is an executable expression whose meaning depends on the
context. In this case, it could produce either a direct expression in another language (such as
Squeak or JavaScript), or it could produce a node in a tree to be further processed by IS.

Just as IS can have several front-ends, including this system, OMeta can use a variety of back-
ends.

In the next few examples we will show some of the languages that have been brought to life with
just a few lines of code in OMeta. We list them here:

JavaScript - 170 LOC in IS and Squeak. Compatible with version 1.4 that runs in all browsers.

Smalltalk - 200 LOC in JavaScript with a few changes.

Logo - 50 LOC in Squeak and JavaScript. See ahead, then Appendix A for more details.

Prolog - less than 100 LOC in JavaScript. See ahead, then Appendix B for more details.

Toylog - about 120 LOC in JavaScript. See ahead, then Appendix C for more details.

Codeworks - about 100 LOC in Squeak. Used in HyperCard as scripting language.

OMeta - about 100 LOC in IS, Squeak, JavaScript. See Appendix D for more details.

OMeta on

Squeak

Squeak

System

OMeta on
JavaScript

JavaScript

System

OMeta on

IS

IS

System

 19

JavaScript
Principal Researchers: Alex Warth and Yoshiki Ohshima

— a complete implementation in less than 200 lines of code. We built this to investigate and in-
spire our “unified, homogeneous” approach to the “chain of meaning” in programming system
implementation. JavaScript programs are parsed and translated into structures representing JS
semantics according to an OMeta-like “grammar”. Simple rewrite rules convert these structures
into the native structures of IS.

Most of the heavy lifting (converting these into executable machine code) is therefore completely
hidden from the system implementer, by presenting the implementation of IS itself as a reusable
component of any programming system.

This experiment suggests to us that a serious “standards-conforming” implementation would not
be significantly larger or more complex. We are particularly encouraged by the overall simplicity
of the implementation and the potential it represents for end-users to create their own expressive
programming languages and systems specifically targeted at their particular problem.

Dynamically Extensible JavaScript

If we add to the 170 lines of definition for JavaScript, the 40 lines of definition that it takes to
make OMeta itself (see ahead), we can create a JavaScript that can extend itself on-the-fly. This is
useful both for trivial needs (such as making more readable syntax in place of the awkward
JavaScript constructions), and for embedding new computing paradigms (such as Prolog) which
make problem solving easier and more expressive.

Simple Example: An expressive case statement for JavaScript

One example for an expressive case statement could look like this:
case f(x) + 2 of
 < 0: alert("this is a less than");
 == 0: alert("this is an ugly equals");
 > 0: alert("this is a greater than");

The basic idea is that we can separate the calculation of the value from the various tests and cases,
making the result easier to read, write and understand. This is easy to add to JavaScript using
OMeta-within-JavaScript.
ometa CaseJSParser : JSParser {
 stmt = "case" expr:v "of" caseBody:b -> {#call. {#call. {#func. {'_cv_'}.
 {#begin. {#return. b}}}. v}}.
 operator = "<" | "<=" | "==" | ">=" | ">".
 caseBody = operator:op addExpr:x ":" srcElem:t caseBody:f -> {#condExpr. {#binop. op. {#get. '_cv_'}. x}.
 {#func. {}. {#begin. t}}.
 f}
 | -> {#func. {}. {#begin. t}}.
}

Since we have all of JavaScript + OMeta defined in OMeta, it is easy to consider the idea of giv-
ing all of JavaScript a nicer look and feel. But we can go further – adding new bases to JavaScript
itself. The new case structure is an example of making a new control structure and giving it a
simple expressive look. A more comprehensive extension would be to define a number of deep
control structures that introduce non-deterministic processing (see the next example) or imple-
ment powerful ways to do massively parallel programming.

 20

Prolog and Toylog in OMeta

Principal Researcher: Alex Warth

Prolog has a simple, uniform syntax and it is straightforward to write an OMeta translator for it in
just a few lines.

Ometa PrologTranslator : Parser {
variable = spaces firstAndRest(#upper, #letterOrDigit):name -> (Var new: name mash).
symbol = spaces firstAndRest(#lower, #letterOrDigit):name -> (Sym new: name mash).
clause = symbol:sym "(" listOf(#expr, ','):args ")" -> (Clause new: sym : args).
expr = clause | variable | symbol.
clauses = listOf(#clause, ',').
rule = clause:head ":-" clauses:body "." -> (Rule new: head : body)
 | clause:head "." -> (Rule new: head : {}).
rules = rule*:rs spaces end -> rs.
query = clause:c spaces end -> c.
}.

However, the semantics of Prolog are rather different from most programming languages, particu-
larly with its use of variables and ability to “fail” and try other routes to success.

 father(abe, homer).

 father(homer, lisa).
 father(homer, bart).
 grandfather(X, Y) :- father(X, Z), father(Z, Y).

? grandfather(abe, X)

Our version of the semantics of Prolog came to about 80 lines of code (and in the process we discov-
ered a number of ways to make this quite a bit smaller in 2008). See Appendix C for what this looks
like written in JavaScript. This investigation leads to issues of “the control of control” and suggests
the existence of much better control primitives for language building.

The English syntax of Toylog is a little
more involved and required about 35
lines.

 Abe is Homer's father.

 Homer is Lisa's father.

 Homer is Bart's father.

 x is y's grandfather

 if x is z's father and z is y's father.

? x is y's grandfather

In Toylog, which is aimed at children,
questioning, answering and problem
solving were connected with animations
to make the underlying mechanisms
tangible and evident for a non-expert
audience.

One of the several JavaScript imple-
mentations was done using the Squeak
back-end (see to the right), and another
was done “all the way to metal” in IS.

Homer wants to find Donuts but encounters obstacles on his search.

Figure n: Javascript done in OMeta-Squeak

 21

OMeta in Itself
Principal Researcher: Alex Warth

OMeta is described in itself. Its self-definition, used to generate an OMeta parser within any “rea-
sonable” target language, is about 40 lines of code. See Appendix D for more details.

Embeddable OMeta
Besides being compact and easily transportable, the self-definition can be included with any lan-
guage description so that the OMeta translations can be used on-the-fly along with the normal
statements and expressions in the language. This is useful when dealing with a language of low ex-
pressive power (like JavaScript) but whose underlying semantics allow much more to be done.
This expressibility has also made it easy to make many improved versions of OMeta over the last
year, and allows us to investigate a more integrated notion of top-down non-deterministic pro-
gramming that unifies ideas from procedural control, pattern-directed invocation, and logic pro-
gramming.

 22

“Lively Kernel”: Morphic Architecture and Development Environment in JavaScript
Principal Researcher: Dan Ingalls (Sun Microsystems)

— a Squeak-like UI, media and development environment. Morphic is the screen level graphical
toolset of Squeak Smalltalk and has been used to make many systems over the last decade, in-
cluding the widely-distributed Etoys authoring environment. Both as an experiment in expressi-
bility, and one that might have some great practical use, this graphical architecture was re-
designed and rewritten in JavaScript and made to run both in the browser-based JavaScripts and
in our 200-line OMeta-based version.

The practical significance is that this powerful architecture is for the first time usable inside web
browsers without having to download plugins. All authoring can be done on-the-fly, no servers
are needed, and none of the paraphernalia of the xxMLs need be touched by human hands.

A widget set built from the graphical elements provides a kit for user interface construction and
tools are provided for extending and altering the widget set. A modest window-based IDE, built
from these widgets, allows users to edit their application programs and even the code of the sys-
tem itself.

What makes the Lively Kernel especially interesting is that it is simply a web page
(http://research.sun.com/projects/lively/). When a user visits this page, the kernel loads and be-
gins to run with no need for installation. The user can immediately construct new objects or ap-
plications and manipulate the environment.
The Lively Kernel is able to save its creations, even to clone itself, onto web pages. In so doing, it
defines a new form of dynamic content on the web, and affords a chance to look at the web in a

Morphic environment running in a browser-based JavaScript.

 23

new way. Moreover, since it can run in any browser, it promises that wherever there is the Inter-
net, there can be authoring.
In and of itself, the Lively Kernel is a useful artifact. But beyond its utility, its simplicity and
completeness make it a practical benchmark of system complexity, and a flexible laboratory for
exploring new system models such as secure and distributed processing and radically simple
graphics.
The download is about 10,000 lines of code (about 300k bytes), but it requires no installation, and
is smaller than many simple pictures and most document downloads from the web. This is both a
step forward for the web community, but is also a good metric for expressibility for JavaScript
(which as expected is fairly poor3). However, it is real, can run on top of our minimal bases, and
is a good target for our ongoing efforts to improve expressibility.

A Quick Summary of the Morphic Architecture
The Morphic architecture defines a class of graphical objects, or “morphs”, each of which has
some or all of the following properties:

A shape, or graphical appearance
A set of submorphs
A coordinate transformation that affects its shape and any submorphs
An event handler for mouse and keyboard events
An editor for changing its shape
A layout manager for laying out its submorphs

A WorldMorph captures the notion of an entire web page; its shape defines its background ap-
pearance if any, and its submorphs comprise all the remaining content of the page. A HandMorph
is the Morphic generalization of the cursor; it can be used to pick up, move, and deposit other
morphs, its shape may change to indicate different cursor states, and it is the source of user events
in the architecture. A morphic world may have several hands active at the same time, correspond-
ing to several active users of that page.
Interested readers are referred to the original papers on Morphic [Maloney and Smith 95, Ma-
loney 02], and to the Lively Kernel technical documentation.
The twist in the Lively Kernel is to use JavaScript for all the machinery of activity, thus avoiding
the need to install a plugin. Other libraries such as Dojo, Scriptaculous and others operate in the
same way without needing installation, but the Lively Kernel goes several steps further. First,
since its graphical library is built from the ground up in JavaScript, it sets the stage for a world
without HTML and the epicycles that revolve around it. Second, it brings with it a world model in
which everything is active and reflective from the beginning, a world of concrete manipulation
that is immediately empowering to developers and users alike.

3 Actually JavaScript is only part of the problem. Of course (and unfortunately) the JS resources in the
many varieties of web-browsers are not identical and compatibility kits don’t track very well. This is why
we like to do the entire package ourselves. However, because of MS and browser security problems, many
SysAdmins will not allow browser plugins to be downloaded. This is despite the fact that a plugin can be
run in a completely confined address space, whose only output could be non-executables (display pane
bitmaps, values and processes encoded as strings, etc.). It is quite maddening that there is a simple solution
to getting around the many poor choices in browsers, but that one of the poor choices (not to allow down-
loads into confined processes) disallows the solution!

 24

“HyperCard” Model
Principal Researcher: Ted Kaehler

Many of our systems over the years have been influenced by HyperCard (Etoys projects and
“bookmorphs”, for example), and we feel that a strong reconciliation of a Like-like model with
modern object architectures and UIs will point toward one of the central end-user models for the
STEPS project. (We also feel that the web browsers and many other deployed systems today
would have been much better if the developers had been willing to learn from HyperCard.)
We have implemented an HC-II that is very Like-like in spirit but has introduced a few changes
and improvements.
- First, it is page-oriented rather than stack (or document) oriented (a stack or doc is just an or-

ganization of card/pages, and a card/page can be in any number of stack/docs).
- The HyperCard notion of foreground and background has been generalized in several ways, in-

cluding identifying a background with the class idea, and the foreground on a card with the in-
stance state of an object.

- The UI is modeless, so there are no separate “button” or “field” or “background”, etc., modes
that have to be remembered and exited from. Instead, a variation of the Etoys UI conventions
is used.

- The scripting is done in a much more powerful, but still user-friendly scripting language that
has the semantic power of Squeak Smalltalk with a scripting syntax adapted from Codeworks.

- “card/pages” and “stack/docs” are “just objects” and thus can be recursively embedded in
themselves.

- All visible objects are formed from a universal visible object via shape changing and embed-
ding. Thus, they are all scripted the same way; they can be searched the same way.

- Many of the available “supply objects” go considerably beyond classic HC: for example,
“fields” in this version readily flow from container to container and thus provide real DTP
layout possibilities for text in documents.

- “card/pages” can be used as web pages via a plugin, and this allows Style-style authoring to be
used on the web/internet.

 25

Logo Here, Logo There
Researchers: Alex Warth and Yoshiki Ohshima

— with control structures as Croquet Tasks. An experiment of interest was to use the
OMeta sytem to make a parallel Logo system that used the Croquet-style
[http://opencroquet.org/index.php/System_Overview] model of “race-free” pseudo-time coordi-
nation to allow many thousands of turtles to be made and coordinated in real-time. This required
about 260 lines of OMeta and about 290 lines of supporting code to make. This is part of a large
number of experiments to make sure that our mechanism for parallelism is rich, safe, and will
scale to the entire Internet.

A logo program for spinning turtles is shown on the left. The slider governs the rate of flow between
the real-time and pseudo-time. Each turtle executes the program at a different speed.

 26

Visual Dataflow Programming
Principal Researcher: Takashi Yamamiya

— Dataflow is another style of programming we investigated by making a programming system
and user interface. This allowed us to explore the variable-free and path-oriented properties
of combinators as alternate parallel computation structures for expressions.

The program above is constructed from dataflow expressions. Dataflow is concerned with the
dependency relationships between data, not the flow of process. For example, in a physics simu-
lation, a moving bouncing ball is more clearly represented as data relationships between the X
axis, the Y axis, and the acceleration of gravity than as imperative statements in an “ordinary”
language. Moreover, within our live dataflow system one can modify any data item to see dy-
namically and immediately its effect on the whole system.

A subset of the “Joy” language is used for the internal representation of dataflow programs. Joy is
a language based on Combinatory Logic, useful for program transformation because it has no free
variables. We used a simplified Joy based on Linear Logic that requires the programmer to make
explicit any duplication or deletion.

 27

Tiny BASIC
Principal Researcher: Ian Piumarta

— program execution as a side effect of parsing. To set a performance bar we imple-
mented a much more efficient parser than OMeta, based on parsing expression grammars
[http://pdos.csail.mit.edu/~baford/packrat/] whose goal was to maximize speed at all costs. The
benchmark was an 85-line grammar for Tiny BASIC with another 200 lines of code to model the
runtime state (subroutine stack, variables, and so on). Placing appropriate side effects in the
grammar as semantic actions turns the parser into a “grammar-directed interpreter”. Repeatedly
parsing successive source lines to obtain the useful side effects in the semantic actions “runs” a
BASIC program at a rate of 250,000 lines per second (parsing about 3 megabytes of BASIC
source code per second) on modest hardware. This opened the door to more interesting experi-
ments, such as recognition-based approaches to TCP/IP and other network protocols described
elsewhere in this document.

Particles and Fields
Principal Researcher: Alex Warth, using ideas by Ted Kaehler

— the start of a comprehensive real-time constraint system. This is one of the dozen fundamental
principles of this project. It is a metaphor that covers multiple active objects (particles) that are
coordinated by a wide variety of local and global messaging (fields). A critical goal of our system
is to achieve massive scaling of numbers of objects, efficiency of coordination, safety, and kinds
of applications that can be easily made using the metaphor. One experiment in massive, coordi-
nated parallelism extended our 200-line JavaScript so that “particle and field” programs could be
easily written. A particularly compelling example of this metaphor is a “decentralized” text for-
matter in just a few lines of code that expresses the constraints (successive placement, line wrap-
ping) that act on each letter and between adjacent pairs of letters. This is a new implementation of
the example in the proposal to NSF for this project.

“Particle” letters settling in a 2-dimensional column-and-row “field”.

 28

 Interactive Development Environment for IS (Pepsi Version)
Principal Researcher: Scott Wallace

— bringing “live environment” features, traditionally only found in self-hosting dynamic envi-
ronments such as Smalltalk, into a source-code editing environment compatible with external
source files organized into a source tree.
The simple front-end facilities of the IS system work with flat files. A “source tree” is an inter-
locking set of source-code files, linked by compiler directives such as “{ include <filename> }”
and “{ import <filename> }” distributed across a number of directories. Many tens of files, in
several directories, are present in the source tree from which IS bootstraps itself.
Phase 1 of the IDE is a Squeak-hosted “semi-live environment” for viewing, traversing, querying,
and editing the code within a source-tree. The IDE constructs an internal “map” of all the objects,
methods, and other structures defined in the tree, and uses that map to provide various views of
the system. Each of the many query tools supports a source-code editing environment that in-
cludes:
o Ability to view and assess the system at any point along the source-editing development line.
o Ability to “commit’ an arbitrary set of changes back to the source tree.
o Ability to browse and edit changes made since the latest “commit”.
o Ability to view and edit code both as individual units (e.g., methods) and on a whole-file basis.
o Selective rollback both at the individual method or prototype level, and at the file level.
o Ability to pursue chains of enquiry at any point in the development process.

The above figure shows one of the query tools – a “system browser” showing some of the types
and methods within the Universal Polygons source tree. The full suite of query tools is described
in Appendix F.

 29

A Tiny FPGA Computer

Principal Researcher: Chuck Thacker (Microsoft, Inc.)
— implemented in Field Programmable Gate Arrays. We eventually plan to go “below the metal”
to make efficient parallel computational structures for some of the more adventurous solutions to
the problems of this project. FPGAs are the microcode of the 21st century, and our colleague
Chuck Thacker made a really tiny computer in FPGAs as a first test that can serve as an initial
target for our meta-translators. This required about 100 lines of Verilog to create a working ex-
ample. Our hope is that system hardware, just like system software, can be made accessible to,
and programmable by, a non-expert audience.

Registers
128 X 32

PC

Aout

WD

IM [31:0]

R/W Addr

R Addr

DM [31:0]

doSkip

InData[31:00]

+1

Data Memory

1K X 32

Instruction

Memory
1K X 32

PCmux

0, PCinc

WD

Ph 0

IM[31:25]

IM [23:17]

IM[16:10]

WD

W Addr

Aclk

Bclk

Aaddr

Baddr

Waddr

Bout

Skip Test

ALU [31:00]

Ph1

Ph 1

Add, Sub , Logic

IM [4:3]

Wclk
Ph 0

Ph 0

Ph 0 Rclk

Wclk

+ 2

PCinc2

PC

C,N

C,N InRdy

0, IM [23:00]

Jump

LoadConst

In

Load

WriteSelect

doSkip

Jump PCsel

Figure 1: The Tiniest Computer ?

IM[9:7]

IM[6:5]
Cycle

Ph 0

Ph 1 Rclk

Wclk

 30

Architectural Issues and Lookaheads
Principal Researchers: Alan Kay and Ian Piumarta

Many of the experiments done this year were manipulative and transformational, at the level of
making various kinds of languages with a range of efficiencies, with most of the larger architec-
tural issues still to be taken up in 2008 and 2009. But, since much of the expressiveness and code
reduction we are hoping for will come from new architectural paradigms, we have done quite a
bit of thinking this year about the issues in preparation.

One really interesting architectural experiment this year was the “Tiny TCP/IP” done as a kind of
non-deterministic parser and filter. Another was a bare start at “particles and fields” in the redo of
“Wandering Letters”. Quite a bit more will be done with each of these styles next year.
Several of the larger architectural issues for 2008 are at rather different levels of the system. One
is to make a proto system, building only on the foundational primitives for language semantics
and graphics that were done in experiment in 2007. At the other end of the system, a timely proj-
ect would be to take a set of criteria for one of the “real applications” we have to do and make all
work in a very compact form. Both of these projects would be advanced by inventing a better uni-
form object model. Finally, we need to pick one of the several TAMO meta-issues – choosing
from “separation of meaning and optimizations”, or “semantic publish and subscribe all the way
down” – and try to materially advance our understanding. The latter could be thought of as “an
Internet all the way down” object architecture using higher level semantic messaging.

A Complete Proto System Bootstrap
The “Lively Kernel” (LK) work (page 22) creates quite a few system structures on top of the
browser resident JavaScript and Simple Vector Graphics package. First are classes with inheri-
tance, then a version of the Morphic graphics environment from Squeak, then a 2.5D windows
and visible objects compositing and authoring environment, and finally a number of widgets and
mini-applications.

A good learning curve would be to (a) replace the browser JavaScript and graphics primitives
with the STEPS versions of these, and in parallel to (b) try to make a better implementation envi-
ronment than Morphic to do the same kinds of objects in LK, then (c) to design a better “applica-
tion” architecture for larger scale user-object-systems (see next section).

JavaScript++

IS

System

Vector Graphics

Rendering Compositing

Morphic

Windows,
Widgits

Apps

Classes

(b,c)

Uniform Visible

Objects Base

Uniform

User Objects

Neo-

Hypercard

(a) Lively Kernel

 31

A Complete “Application” Done with Minimal Code

It is hard to think abstractly about computing without real examples that have to be programmed
and debugged. This usually brings the castles in the clouds slamming down to earth! Here is an-
other example of an earlier requirement in this report: part of the bootstrapping process involves
making something like the system before we can make the system.
The trick is to take something that is understood well enough to clearly be part of the learning
curve and then try to finesse (or force) the next versions out by doing a real example that is out-
side the current bounds. This has been done very successfully this year in language-language sys-
tems. For next year, we need to make a real application that will be like the actual applications in
this system, so we can learn how to make them.

A nice one would be to cover the needs for word processing and desktop publishing with a very
powerful facility but with an easy to use and learn user interface. We can get requirements by
examining existing systems such as MS Word, PageMaker, etc. But we don’t want to try to re-
verse engineer either their exact functionalities or their user interfaces. Instead, we want to come
up with equivalent functionalities and UIs.

One of the interesting aspects of this specific problem is that there exist a number of extreme ab-
stract simplifications. For example, if we take a TEX squint at this, we can see that the layout
problems mostly fall within TEX’s constraint and dynamic programming model [Knuth 84] (and
that this model is a subset of the “particles and fields” fundamental principles we posit will make
this project possible). But the TEX user model is not suitable for most users in personal comput-
ing. If we look at the problem of desktop publishing with our end-user hat on, we see that the
similarities that allow TEX’s style of constraint solving to be done, can also be exploited in a
much simpler UI design in which most things can be approached through a single set of UI prin-
ciples.

A concomitant question has to do with user-oriented features and their interactions with a uniform
UI design. In theory, a DTP type application should “almost not exist”, in the sense that there is
no end of the kinds of visible objects that we would like to make, organize, composite and pub-
lish. This brings up the important issue of whether there could be a mostly automatic matching of
a style for UI interaction and recognizable polymorphisms in the uniform objects (probably).
Then the question turns to how much work and how messy will it be to try to handle necessary
idiosyncrasies by exception.

Multiple Perspective Object and Viewing Model

In the middle of all of this is the need for a very simple uniform object model, but that paradoxi-
cally permits more flexibility than most of the classic object models of the past. A very interest-
ing multiple perspectives object model was devised in the late 70s by Danny Bobrow and Ira
Goldstein as a significant extension to Xerox PARC Smalltalk [cf., the PIE papers] that was in-
spired in part by one of the PARC AI languages. The idea is that in the real world we don’t just
look at an “object” (such as a person) as a flat collection of all its properties and behaviors. In-
stead, we choose perspectives such as “physical object”, “mammal”, “father”, “son”, “manager”,
“employee”, etc. Each one of these perspectives will have characteristic properties and behaviors.
Some of these will be quite separate from all the others, and changes in some will effect changes
in others.

An interesting problem with multiple perspectives (which also appears in the somewhat parallel
devices of multiple inheritance) is whether the programmer has to qualify (to state somehow) the
perspective of the object to which messages are going to be directed. This is a pain, and the oppo-

 32

site ploy of having the system try to figure out what is desired (for example, because there is only
one method with a particular name) is fraught with difficulties (contexts and change, new meth-
ods can be added, etc.). One experiment we will try this year is the idea of having a binding to an
object also be a view of it that automatically provides a local nomenclature without ambiguity if
the match succeeds. We are not fans of traditional typing systems (too much extra work for too
little return), but the notion of expectations at the meaning level is important and useful, and this
starts to motivate a kind of typing that we think can finally pay its way.

We can see that a perspective is rather like a graphical view, in that it presents a subset of the ob-
ject organized for best understanding and use. A goal for 2008 is to actually unify these ideas and
assess the benefits.

Internet All The Way Down

Part of the solution to “an Internet all the way down” has interesting conflicts with today’s hard-
ware and we are curious to see just how far this can be taken without having to posit a different
(but pretty minimal) set of machinery to help out. Basically, we would like to make a distributed
object system that is (a) so protected that it can allow completely foreign objects to be brought in
from elsewhere without causing harm, and (b) so efficient that a much higher level of abstract
communication can be used between objects (perhaps an advanced form of “publish and sub-
scribe” or “forward inferencing using knowledge patterns”).

Besides encapsulation, the key to a real object system lies in the messaging system design and
realization. The actual language in a real object system is the messages that are sent around. Us-
ing the metaphor of “Internet All The Way Down” we can see that it would have been really nice
if the folks who created HTTP had thought more about what they were actually doing. They
could have created an excellent extensible language that would make both the web and the under-
lying Internet much more simple and useful.

On the other hand, since we don’t really know yet what we are doing here in this part of the proj-
ect (some of the NSF reviewers hated this!), we want to avoid making language commitments we
don’t want to keep. So we have to think about “meta-messaging” and what the mechanisms might
be for this, especially given that we would like to have however our messaging system turns out,
to work all the way down to the lowest primitive objects.
We don’t think that imperatives scale well, even if they are removed from the simple (and bad)
“getting and setting” uses of objects as abstract data types. Names don’t scale well either. So, in
part, we are looking for ways to get things to happen without (a) having to know who or how they
are going to be done, (b) without having to tell any object to “just go do this”, and (c) without
turning what is said into a big mystery that requires lots of cleverness to set up.
Part of this has been done pretty successfully in the past – but without big pressure on scaling – in
several of the better expert systems (for example, the Automated Reasoning Tool (ART) by In-
ference Corp). And it has been done for billions of years very successfully in cellular biology.
The basic idea is to design a system so that each module knows what, when and why it needs to
do its thing, and the doing of its own thing, a very large part of the time, will be a positive contri-
bution to the goals and dynamics of the whole system. We can see that this overlaps to some ex-
tent with “publish and subscribe” architectures, and also with one way to use Gelernter’s Linda
coordination system.

The idea here is to have objects that notice what is going on around them, and can produce inter-
nal changes only of themselves as appropriately as possible. The part of what is going on around
an object that it is interested in can be thought of as what it needs, and this can provide a basis for
automatically setting up mechanisms to detect these needs and provide triggering events when

 33

appropriate. Some years ago we did a children’s version of this called “Playground” that worked
well on a small scale and was very expressive.
The metaphor of noticing and reacting has interesting parallels with the issues of finding and us-
ing external resources. A perhaps too simple example: suppose we need a super fast sine routine
and we don’t want to go to the effort of doing the necessary work (let this be a stand-in for any
such external resource). We can draw from the entire Internet, but how do we know that we have
found the external resource that will help us? Type signatures do not have much power here.
Knowing a name for such a resource (sine) might not help (this function is called “circle 4” in
APL). We really want “semantic types” that can match desired meanings with promised meanings.
How can a matcher find and bind?

(The “Internet” as a place to find resources is meant concretely, but also as an analogy to “really
large collections of resources” such as are found in the software at any large computing intensive
business, government, university, etc. With lines of code running in the hundreds of millions –
literally – and possibly millions of modules, the need for scalable matching and binding is mani-
fest.)
One of our preliminary answers to this is that it is time for modules to include a working model of
their external environment and to be debugged by using this model. The “working model” is at
the same level of semantics as the “meanings” in the STEPS system. So, what is a model for sine?
We think it is the simplest way to produce an accurate functional result “quickly enough” but
perhaps not blindingly fast. The result is not just a number, but also a notion of acceptable toler-
ance. A matcher will have to do something very similar to what has to be done to test optimiza-
tions against meanings, which in this case probably involves sampling and close but non-exact
matching. This reminds us very much of the MO of Lenat’s AM and Eurisko systems, which tried
to gather evidence and make stub functional relationships as it was finding stronger versions of
what relationships meant.

In any case, the working model of environment of a module should be of sufficient richness to
allow the module to be debugged, to allow it to find more suitable modules to provide the exter-
nal resources needed, and to function as both checks and defaults.

A pretty good metaphorical term for noticing modules – monads – has already been hijacked from
Leibniz by category theorists, was used more as Leibniz intended in early ideas about objects, and
then got colonized by functional language folks for their own somewhat different uses.

Quite a bit of this style scales, but it is not so clear if the mechanisms do. We know from the for-
ward inferencing work at CMU and with ART that quite a bit can be done to compile the detec-
tors and triggers into very efficient structures. We think that one part of an FPGA architecture
could be fashioned to do this even faster and with larger scaling. It remains to be seen how far
this can actually go on the standard HW of today.
This experiment to come is somewhat reminiscent of early object days when it was realized that
good things would happen if everything could be an object intercommunicating via messaging –
even the number “3”. Quite a bit of work was required to make “3” behave, but then the whole
system got very simple and easy to make things with. A major question is whether this style can
stay pure enough to make a big difference in expressibility in the large (because any event driven
style can be used to mimic direct subroutine calls and thus subvert the more scalable “blind be-
havior” architecture). This is very similar to the problem of the subversion of pure object styles
by using objects to simulate data with abstract data types.

 34

Comments

There are overlaps of goals and techniques in some of these experiments. For example, the “Uni-
versal Polygons” experiment and the “Morphic Architecture” experiment both produce graphic,
media rich, end-user authoring environments. The latter uses ideas that have worked in the past
but put in a new bottle, while the former completely starts from scratch with an extremely simple
and wide-ranging graphics model that – while needing much more work – is more like we expect
the final system to turn out. As another example, we currently use several meta-pattern-matching
systems in different parts of our fundamental mechanisms.

As already mentioned, our “meta parser” is written in itself (this is an essential characteristic of
our entire system). Languages built with it (such as the JavaScript described above) can be trivi-
ally extended to include semantics whose domain is the “meta expressions” describing that lan-
guage. We can expose (make reflective) these language implementations in themselves. If we use
the underlying dynamic late-binding system, then we can make deep changes to these languages
“on-the-fly” by changing their own syntax/semantic functions from within themselves. This tech-
nique can reach all the way down to the IS “quantum mechanics” (machine instructions, or even
programmable hardware below them) that makes everything happen. This kind of flexibility is
almost a guaranteed characteristic of any system that is dynamically changeable and meta-
described entirely in itself.

It should be emphasized that our eventual ultra-high-level “miracle in the middle” will have to be
qualitatively better than languages that are already qualitatively better than JavaScript. On the
other hand, the JavaScript example does have the merit of dealing with a widely known (and
used) dynamic language so that comparisons made are much more easily understandable by the
outside world. JavaScript lacks so many features that it is illuminating to see what it takes both to
make the base system itself and to make many powerful extensions (and some actual reformula-
tions of weaknesses in it) that help us to think about what our eventual system should be like.

 35

Opportunities for Training and Development
Graduate students at UCLA and UCSD are actively participating in the design and development
activities of the project.

- Alessandro Warth gained experience with our COLA architecture and built a prototype meta-
parser that unifies parsing and structural pattern matching into a single activity. Alex is a
Viewpoints full-time researcher as well as a Ph.D. candidate at UCLA.

- Daniel Amelang gained valuable experience with the COLA architecture and used it to develop
a framework for graphical compositing in which the “pipeline” is instantiated on-demand and
“just-in-time”. He also developed the elegant, mathematical model of 2D rendering that we are
using in Gezira. Dan will submit a M.Sc. thesis (UCSD) later this year describing some of this
work. Dan is a full-time Viewpoints researcher.

- Narichika Hamaguchi was a visiting researcher from NHK (the Japan Broadcasting Corpora-
tion). He has gained experience with several of our prototypical tools and is combining that
with his considerable knowledge in the area of TVML to create new authoring tools for inter-
active media development. These tools will likely feature as part of the end-user “explorator-
ium” experience within our system.

Outreach
Ian Piumarta was an invited lecturer for Stanford University’s Computer Systems Colloquium
series (EE308, 14 February 2007) at which he presented many of the ideas underpinning the
“power supply” end of this project.

Viewpoints Research Institute organizes a three-day “Learning Lab” retreat in August every year
where we exchange research directions and experience with several tens of our colleagues from
academia and industry. Three of the presentations this year concerned this project.

Daniel Amelang formally presented our Jitblt and Gezira work at the X.Org Developers’ Summit
(October 2007, Cambridge, UK).

We host a mailing list for discussions about our publicly available software platform. The list
now has more than 200 subscribers. http://vpri.org/mailman/listinfo/fonc

Service
Alan Kay serves on the NSF CISE Advisory Committee, the ACM Turing Award Committee,
and the Computer History Museum Fellow Awards Committee.

References
Acknowledgements

The images featured in the Jitblt example (page 13) are both released under the Creative Com-
mons license Attribution-Noncommercial-Share Alike 2.0. They are "Catch the Sun" by Evan
Leeson and "Arena y Viento" by Pablo Arroyo. As required by this license, this composition is
also released under the CC Attribution-Noncommercial-Share Alike 2.0 license.

Refereed Publications

Alessandro Warth and Ian Piumarta, OMeta: an Object-Oriented Language for Pattern Matching,
ACM SIGPLAN Dynamic Language Symposium, 2007, Montréal, Canada.
http://www.cs.ucla.edu/~awarth/papers/dls07.pdf

 36

Technical Reports, Research Notes, Memos, Online Demonstrations

Ted Kaehler, Bare Blocks with a Thin Object Table: An Object Memory for COLA.
http://vpri.org/pdf/BareBlocks_RM-2007-005-a.pdf

Ian Piumarta, Efficient Sideways Composition in COLAs via 'Lieberman' Prototypes.
http://vpri.org/pdf/lieberman_proto_RM-2007-002-a.pdf

Ian Piumarta and Alessandro Warth, Open, Reusable Object Models.
http://vpri.org/pdf/obj_mod_RN-2006-003-a.pdf

Ian Piumarta, Accessible Language-Based Environments of Recursive Theories (a white paper
advocating widespread unreasonable behavior). http://vpri.org/pdf/colas_wp_RN-2006-001-a.pdf

Dan Ingalls, et al., A Lively Kernel Implemented in a Web Browser (live demo).
http://research.sun.com/projects/lively/

Dan Ingalls, et al., The Sun Labs Lively Kernel, A Technical Overview.
http://research.sun.com/projects/lively/LivelyKernel-TechnicalOverview.pdf

Alessandro Warth, OMeta Demonstration Pages.
http://www.cs.ucla.edu/%7Eawarth/ometa/ometa-js/

In Preparation: Theses, Technical Reports, Research Notes and Memos

Dan Amelang, Highly Mathematical Efficient and Compact Graphics Primitives (MS Thesis
UCSD).

Dan Ingalls, et al., The Lively Kernel: A self-supporting system for web programming, to appear
in the proceedings ECOOP 2008.

Ian Piumarta, A Minimal Architecture for TCP/IP.

Ted Kaehler, A New Approach to “HyperCard.”

Scott Wallace, A Development System for IS.

Yoshiki Ohshima, Experiments in Control Primitives and Scheduling.

Web/Internet Sites

Organization home page: http://vpri.org/

Project home page: http://vpri.org/html/work/ifnct.htm

Core software distribution page: http://piumarta.com/software/cola/

Core software mailing list: http://vpri.org/mailman/listinfo/fonc

OMeta demo pages: http://www.cs.ucla.edu/%7Eawarth/ometa/ometa-js/

Morphic in JavaScript home page: http://research.sun.com/projects/lively/

 37

References for Non-Viewpoints Work Cited

Baker, Henry G., Linear Logic and Permutation Stacks – The Forth Shall Be First, 1993.

Barton, R.S., “A new approach to the functional design of a digital computer”, Proceedings of the
WJCC, 1961.

Carriero, Nicholas and Gelernter, David, “Linda in Context”, Communications of the ACM 32(4):
pp. 444-458, 1989.

Fenton, Jay and Beck, K., Playground: An object-oriented simulation system with agent rules for
children of all ages, ACM Sigplan Notices, OOPSLA 1989, pp. 123-137.

Ford, B., Packrat parsing: simple, powerful, lazy, linear time, functional pearl. In ICFP ’02: Pro-
ceedings of the Seventh ACM SIGPLAN international conference on Functional programming,
pp. 36–47, New York, NY, USA, 2002.

Fowler, Martin, Language Workbenches: The Killer-App for Domain Specific Languages? 2005.
http://martinfowler.com/articles/languageWorkbench.html

Garland, Stephen J., Guttag, John V., Horning, James J.: An Overview of Larch. Functional Pro-
gramming, Concurrency, Simulation and Automated Reasoning, pp. 329-348, 1993.

Goguen, J.A., Winker, T., Meseguer, J., Futatsugi, K., and Jouannuad, J.P., Introducing OBJ, Oc-
tober 1993.

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S. and Kay, Alan, “Back to the Future – The Story
of Squeak, A Practical Smalltalk Written in Itself”, Proceedings of the ACM, OOPSLA, October
1997. SIGPLAN Notices 32(10), October 1997.

Irons, Edgar T., IMP, Communications of the ACM, Jan. 1970.

Irons, Edgar T., The Syntax Directed Compiler, Communications of the ACM, ca. 1960.

Knuth, Donald E., “The TeXbook” (Computers and Typesetting, Volume A). Addison-Wesley,
1984. ISBN 0-201-13448-9.

Lenat, Douglas B., "EURISKO: A Program That Learns New Heuristics and Domain Con-
cepts," Vol. 21, Artificial Intelligence Journal, 1983.

Maloney, J. and Smith, R., “Directness and Liveness in the Morphic User Interface Construction
Environment,” Proceedings UIST ’95, pp. 21-28, November 1995.

Maloney, John, “An Introduction to Morphic: The Squeak User Interface Framework”, Squeak
Open Personal Computing and Multimedia, ed., Mark Guzdial and Kim Rose, Prentice Hall, NJ,
2002.

Shorre, D.V., META II a syntax-oriented compiler writing language, Proceedings of the 1964
19th ACM National Conference, pp. 41.301-41.3011, 1964.

Simonyi, C., Christerson, M., and Clifford, S., Intentional Software, OOPSLA 2006, October 22-
26, Portland, OR, ACM, 1-59593-348-4/06/0010.

von Thun, Manfred, A short overview Joy, 1994.
http://www.latrobe.edu.au/philosophy/phimvt/joy.html

Wing, Jeanette, N., A two-tiered approach to specifying programs. Technical Report
LCS/TR{299} MIT, May 1983. Ph.D. Thesis, Depts. of EE and Computer Science.

 38

Appendix A: Extended Example: An OMeta Translator from Logo to JavaScript
(by Alex Warth)

Turtle rt: n [self turnBy: n].
Turtle lt: n [self turnBy: n negated].
Turtle fd: n [self forwardBy: n].
Turtle bk: n [self forwardBy: n negated].
Turtle pu [self setPenDown: false].
Turtle pd [self setPenDown: true].

ometa LogoTranslator : Parser {
 name = spaces firstAndRest(#letter, #letterOrDigit):xs -> (xs squish mash).
 cmdName = name:n
 ?(n ~= 'to') ?(n ~= 'end') ?(n ~= 'output') -> n.
 number = spaces digit+:ds -> (ds mash).
 arg = ":" name.
 cmds = cmd*:xs -> (xs join: ';').
 block = "[" cmds:xs "]" -> ('(function() {', xs, '})').
 primExpr = arg | number | block
 | "(" (expr | cmd):x ")" -> x.
 mulExpr = mulExpr:x "*" primExpr:y -> (x, '*', y)
 | mulExpr:x "/" primExpr:y -> (x, '/', y)
 | primExpr.
 addExpr = addExpr:x "+" mulExpr:y -> (x, '+', y)
 | addExpr:x "-" mulExpr:y -> (x, '-', y)
 | mulExpr.
 relExpr = addExpr:x "<" addExpr:y -> (x, '<', y)
 | addExpr:x "<=" addExpr:y -> (x, '<=', y)
 | addExpr:x ">" addExpr:y -> (x, '>', y)
 | addExpr:x ">=" addExpr:y -> (x, '>=', y)
 | addExpr.
 expr = relExpr.
 cmd = "output" expr:x -> ('return ', x)
 | cmdName:n expr*:args -> ('$elf.performwithArguments("', n, '", [',
 (args join: ','),
 '])').
 decl = "to" cmdName:n arg*:args cmds:body "end" -> ('$elf.', n, ' = ',
 'function(', (args join: ','), ') {',
 body,
 '}').
 topLevelCmd = decl | cmd.
 topLevelCmds = topLevelCmd*:xs spaces end -> ('(function() { var $elf = this;

', (xs join: ';'), '})').
}.

 39

Appendix B: Extended Example: An OMeta Translator from Prolog to JavaScript
(by Alex Warth)

Prolog has a very simple syntax, needing 9 lines of OMeta for translation into JavaScript.

Ometa PrologTranslator : Parser {
variable = spaces firstAndRest(#upper, #letterOrDigit):name -> (Var new: name mash).
symbol = spaces firstAndRest(#lower, #letterOrDigit):name -> (Sym new: name mash).
clause = symbol:sym "(" listOf(#expr, ','):args ")" -> (Clause new: sym : args).
expr = clause | variable | symbol.
clauses = listOf(#clause, ',').
rule = clause:head ":-" clauses:body "." -> (Rule new: head : body)
 | clause:head "." -> (Rule new: head : {}).
rules = rule*:rs spaces end -> rs.
query = clause:c spaces end -> c.
}.

However, Prolog is rather different from JavaScript, so we write some JavaScript code to provide the
meanings for Prolog’s searching and matching semantics. Less than 80 lines of code are required for
this support.

function Sym(name) { this.name = name }
Sym.prototype.rename = function(nm) { return this }
Sym.prototype.rewrite = function(env) { return this }
Sym.prototype.toAnswerString = function() { return this.name }

function Var(name) { this.name = name }
Var.prototype.rename = function(nm) { return new Var(this.name + nm) }
Var.prototype.rewrite = function(env) { return env[this.name] ? env[this.name] : this }
Var.prototype.toAnswerString = function() { return this.name }

function Clause(sym, args) { this.sym = sym; this.args = args }
Clause.prototype.rename = function(nm) { return new Clause(this.sym, this.args.map(function(x)
{ return x.rename(nm) })) }
Clause.prototype.rewrite = function(env) { return new Clause(this.sym, this.args.map(function(x)
{ return x.rewrite(env) })) }
Clause.prototype.toAnswerString = function() {
 return this.sym.toAnswerString() + "(" + this.args.map(function(x) { return
x.toAnswerString() }).join(", ") + ")"
}

Array.prototype.rename = function(n) { return this.map(function(x) { return x.rename(n) }) }
Array.prototype.rewrite = function(env) { return this.map(function(x) { return x.rewrite(env) }) }
Array.prototype.toAnswerString = function() { return this.map(function(x) { return
x.toAnswerString() }).join(", ") }

function Rule(head, clauses) { this.head = head; this.clauses = clauses }
Rule.prototype.rename = function(n) { return new Rule(this.head.rename(n),
this.clauses.rename(n)) }

function addBinding(env, name, value) {
 var subst = {}
 subst[name] = value
 for (var n in env)
 if (env.hasOwnProperty(n))
 env[n] = env[n].rewrite(subst)
 env[name] = value
}
function assert(cond) { if (!cond) throw "unification failed" }

Sym.prototype.unify = function(that, env) {
 if (that instanceof Sym)
 assert(this.name == that.name)
 else {
 assert(that instanceof Var)
 if (env[that.name])
 this.unify(env[that.name], env)
 else
 addBinding(env, that.name, this.rewrite(env))
 }
}
Var.prototype.unify = function(that, env) {

 40

 if (env[this.name])
 env[this.name].unify(that, env)
 else
 addBinding(env, this.name, that.rewrite(env))
}
Clause.prototype.unify = function(that, env) {
 if (that instanceof Clause) {
 assert(that.args.length == this.args.length)
 this.sym.unify(that.sym, env)
 for (var idx = 0; idx < this.args.length; idx++)
 this.args[idx].unify(that.args[idx], env)
 }
 else
 that.unify(this, env)
}

function State(query, goals) { this.query = query; this.goals = goals }

function nextSolution(nameMangler, rules, stateStack) {
 while (true) {
 if (stateStack.length == 0)
 return false
 var state = stateStack.pop(),
 query = state.query,
 goals = state.goals
 if (goals.length == 0)
 return !window.confirm(query.toAnswerString())
 var goal = goals.pop()
 for (var idx = rules.length - 1; idx >= 0; idx--) {
 var rule = rules[idx].rename(nameMangler), env
 try { rule.head.unify(goal, env = {}) }
 catch (e) { continue }
 var newQuery = query.rewrite(env),
 newGoals = goals.rewrite(env),
 newBody = rule.clauses.rewrite(env)
 for (var idx2 = newBody.length - 1; idx2 >= 0; idx2--)
 newGoals.push(newBody[idx2])
 stateStack.push(new State(newQuery, newGoals))
 }
 }
}

function solve(query, rules) {
 var stateStack = [new State(query, [query])], n = 0
 while (nextSolution(n++, rules, stateStack)) {}
 alert("no more solutions")
}

 41

Appendix C: Extended Example: Toylog: An English Language Prolog
(by Alex Warth)

This example uses a different OMeta front-end syntax translation.

ometa ToylogTranslator : Parser {
 rule = clause:head "if" conj:body "." -> (Rule new: head : body)
 | clause:head "." -> (Rule new: head : {}).
 clause = iClause('', {}, false).
 iClause :rel :args :not = ("not" !(not := not not)
 | var:x !(args add: x)
 | word:x !(rel := rel,
 (rel size > 0
 ifTrue: [x capitalized]
 ifFalse: [x]))
 | thing:x !(args add: x)
)+
 !(rel := Clause new: (Sym new: rel) : args) -> (not
 ifTrue:
 [Clause new:
 (Sym new: 'not') :
 {rel}]
 ifFalse: [rel]).
 var = (("who" | "what" | "when"):ans
 | spaces lower+:xs !(xs join: ''):ans
 ?(ans size = 1 and: [(ans at: 0) ~= $a])
) -> (Var new: ans).
 wordPart = spaces lower+:xs -> (xs join: '').
 word = wordPart:xs $' wordPart:ys -> (xs, ys capitalized)
 | ~("if" | "not" | "and") wordPart
 | $' wordPart:xs -> (xs capitalized).
 thing = spaces firstAndRest(#upper, #lower):xs -> (Sym new: (xs join: '')).
 conj = listOf(#clause, 'and').
 rules = rule*:rs spaces end -> rs.
 query = clause:c spaces end -> c.
}.

Typical Toylog facts and definitions
 Abe is Homer's father.
 Homer is Lisa's father.

 Homer is Bart's father.

 x is y's grandfather if x is z's father and z is y's father.

Typical Toylog query
 Abe is y’s grandfather?

 42

Appendix D: Extended Example: An OMeta Translator from OMeta to JavaScript (by Alex Warth)

This is the OMeta translator that defines OMeta and translates its definitions to JavaScript code. The grammar
does not generate JavaScript directly; instead it generates an intermediate abstract syntax tree (AST) that can be
further analyzed and manipulated by subsequent OMeta grammars.

ometa NewOMetaParser : Parser {
 tsName = listOf(#letter, #letterOrDigit):xs -> (xs mash).
 name = spaces tsName.
 tsString = $' (~$' char)*:xs $' -> (xs mash).
 character = $$ char:x -> {#App. #exactly. x printString}.
 characters = $` $` (~($' $') char)*:xs $' $' -> {#App. #seq. xs mash printString}.
 sCharacters = $" (~$" char)*:xs $" -> {#App. #token. xs mash printString}.
 string = ($# tsName | $# tsString | tsString):s -> {#App. #exactly. s}.
 number = ('-' | -> ''):sign digit+:ds -> {#App. #exactly. sign, ds mash}.
 keyword :xs = token(xs) ~letterOrDigit -> xs.
 hostExpr = foreign(self.SqueakParser, #unit):x -> (x squish mash).
 args = "(" listOf(#hostExpr, ','):xs ")" -> xs
 | -> {}.
 application = name:rule args:as -> ({#App. rule}, as).
 semAction = ("!" | "->") hostExpr:x -> {#Act. x}.
 semPred = "?" hostExpr:x -> {#Pred. x}.
 expr = listOf(#expr4, '|'):xs -> ({#Or}, xs).
 expr4 = expr3*:xs -> ({#And}, xs).
 optIter :x = "*" -> {#Many. x}
 | "+" -> {#Many1. x}
 | -> x.
 expr3 = expr2:x optIter(x):x (":" name:n -> {#Set. n. x}
 | -> x
)
 | ":" name:n -> {#Set. n. {#App. #anything}}.
 expr2 = "~" expr2:x -> {#Not. x}
 | "&" expr1:x -> {#Lookahead. x}
 | expr1.
 expr1 = application | semAction | semPred
 | (keyword('undefined') | keyword('nil')
 | keyword('true') | keyword('false')):x -> {#App. #exactly. x}
 | spaces (character | characters | sCharacters
 | string | number)
 | "{" expr:x "}" -> {#Form. x}
 | "(" expr:x ")" -> x.
 rule = &name:n rulePart(n):x (";" rulePart(n))*:xs "." -> {#Rule. n. {#Or. x}, xs}.
 rulePart :rn = name:n ?(n = rn) expr4:b1 ("=" expr:b2 -> {#And. b1. b2}
 | -> b1
).
 grammar = keyword('ometa') name:n
 (":" name
 | -> 'OMeta'):sn
 "{" rule*:rs "}" -> ({#Grammar. n. sn}, rs).
}.

 43

The AST structures produced by the above translator are converted into JavaScript by another OMeta
translator, shown below. (Separating the abstract syntax makes the underlying semantics that have to
be implemented clearer.)

The OMeta/JS Code Generator

" By dispatching on the head of a list, the following idiom allows
 translators to avoid checking for different kinds of lists in order. "
ometa Translator {
 trans = {:x apply(x):answer} -> answer.
}.

ometa NewOMetaCompiler : Translator {
 App 'super' anything+:args -> (self.sName, '._superApplyWithArgs($elf,', (args join: ','), ')');
 App :rule anything+:args -> ('$elf._applyWithArgs("', rule, '", ', (args join: ', '), ')');
 App :rule -> ('$elf._apply("', rule, '")').
 Act :expr -> expr.
 Pred :expr -> ('$elf._pred(', expr, ')').
 Or transFn*:xs -> ('$elf._or(', (xs join: ','), ')').
 And notLast(#trans)*:xs trans:y
 !(xs addLast: 'return ', y) -> ('(function(){', (xs join: ';'), '})()');
 And -> '(function(){})'.
 Many trans:x -> ('$elf._many(function(){return ', x, '})').
 Many1 trans:x -> ('$elf._many1(function(){return ', x, '})').
 Set :n trans:v -> (n, '=', v).
 Not trans:x -> ('$elf._not(function(){return ', x, '})').
 Lookahead trans:x -> ('$elf._lookahead(function(){return ', x, '})').
 Form trans:x -> ('$elf._form(function(){return ', x, '})').
 Rule :name locals:ls trans:body -> (self.gName, '[''', name, ''']=function() {', ls, 'return ',
 body, '};').
 Grammar :n :s !(self at: #gName put: n;
 at: #sName put: s)
 trans*:rules -> (self.gName, '=', self.sName, '.delegated();', (rules join: ''),
 self.gName, '.prototype=', self.gName, ';').

 locals = {anything*:vs} -> ('var ', (vs join: ','), ';')
 | {} -> ''.
 transFn = trans:x -> ('(function(){return ', x, '})').
}.

 44

Appendix E: Extended Example: A Tiny TCP/IP Done as a Parser (by Ian Piumarta)

Elevating syntax to a 'first-class citizen' of the programmer's toolset suggests some unusually expres-
sive alternatives to complex, repetitive, opaque and/or error-prone code. Network protocols are a per-
fect example of the clumsiness of traditional programming languages obfuscating the simplicity of the
protocols and the internal structure of the packets they exchange. We thought it would be instructive
to see just how transparent we could make a simple TCP/IP implementation.

Our first task is to describe the format of network packets. Perfectly good descriptions already exist in
the various IETF Requests For Comments (RFCs) in the form of "ASCII-art diagrams". This form was
probably chosen because the structure of a packet is immediately obvious just from glancing at the
pictogram. For example:

+-------------+-------------+-------------------------+----------+--+
| 00 01 02 03 | 04 05 06 07 | 08 09 10 11 12 13 14 15 | 16 17 18 | 19 20 21 22 23 24 25 26 27 28 29 30 31 |
+-------------+-------------+-------------------------+----------+--+
| version | headerSize | typeOfService | length |
+-------------+-------------+-------------------------+----------+--+
| identification | flags | offset |
+---------------------------+-------------------------+----------+--+
| timeToLive | protocol | checksum |
+---------------------------+-------------------------+---+
| sourceAddress |
+---+
| destinationAddress |
+---+

If we teach our programming language to recognize pictograms as definitions of accessors for bit
fields within structures, our program is the clearest of its own meaning. The following expression cre-
ates an IS grammar that describes ASCII art diagrams.

'{
 structure :=
 error = ->[self error: ['"structure syntax error near: " , [self contents]]]
 eol = '\r''\n'* | '\n''\r'*
 space = [\t]
 comment = [-+] (!eol .)* eol
 ws = (space | comment | eol)*
 _ = space*
 letter = [a-zA-Z]
 digit = [0-9]
 identifier = id:$(letter (letter | digit)*) _ -> [id asSymbol]
 number = num:$digit+ _ -> [Integer fromString: num base: '10]
 columns = '|' -> (structure-begin self)
 (_ num:number -> [bitmap at: column put: (set bitpos num)]
 (num:number)* '|' -> (let ()
 (set bitpos num)
 (set column [[self readPosition] - anchor]))
)+ eol ws -> [bitmap at: column put: (set width [bitpos + '1])]
 row = (n:number -> (set row n)
) ? '|' -> (let ()
 (set anchor [self readPosition])
 (set column '0))
 _ (id:identifier '|' -> (structure-field self id)
 _)+ eol ws -> (set row [row + width])
 name = id:identifier (!eol .)* eol -> (structure-end id)
 diagram = ws columns row+ name | error
 }

It scans a pictogram whose first line contains numbers (identifying bit positions) separated by vertical
bars (anchor points, '|'). Subsequent lines contain vertical bars (matching some subset of the anchors in
the first line) separated by field names that will become the names of accessors for the bits between
the anchors. Any line beginning with a dash '-' is a comment, letting us create the horizontal lines in
the pictogram. The final line of input recognized contains a single identifier that is a prefix to the
structure accessors; this lets us write a 'caption' on a pictogram whose first word is the name of the
structure depicted. The first line of the grammar gives it the name 'structure' and the final rule can be

 45

referred to from within any other grammar by the name 'structure-diagram'.

We can now define accessors for the fields of an IP packet header simply by drawing its structure. The
following looks like documentation, but it's a valid program. It declares and defines accessors called
ip-version, ip-headerSize, and so on through ip-destinationAddress.

 { structure-diagram }
+-------------+-------------+-------------------------+----------+--+
| 00 01 02 03 | 04 05 06 07 | 08 09 10 11 12 13 14 15 | 16 17 18 | 19 20 21 22 23 24 25 26 27 28 29 30 31 |
+-------------+-------------+-------------------------+----------+--+
| version | headerSize | typeOfService | length |
+-------------+-------------+-------------------------+----------+--+
| identification | flags | offset |
+---------------------------+-------------------------+----------+--+
| timeToLive | protocol | checksum |
+---------------------------+-------------------------+---+
| sourceAddress |
+---+
| destinationAddress |
+---+
 ip -- Internet Protocol packet header [RFC 791]

The first line '{ structure-diagram }' is a top-level COLA expression representing an anonymous
grammar object. This grammar has a trivial default rule that matches the 'diagram' rule defined in the
'structure' grammar. The anonymous grammar object is evaluated by the COLA shell, and immedi-
ately starts to consume text from the program until it satisfies the structure-diagram rule. In doing so,
it defines the ip-* accessors of our packet header structure. The COLA read-eval-print loop regains
control after the entire structure diagram has been read.

Given a packet p read from a network interface, we can check that (ip-version p) is 4, (ip-
destinationAddress p) is our interface's address and (ip-protocol p) is 6, indicating a TCP packet. The
payload begins at p + (4 * (ip-headerSize p)) and will be a TCP header, which we also choose to de-
clare and define by drawing its contents:

 { structure-diagram }
+-------------+----------+----------+-------------------+---+
| 00 01 02 03 | 04 05 06 | 07 08 09 | 10 11 12 13 14 15 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
+-------------+----------+----------+-------------------+---+
| sourcePort | destinationPort |
+---+---+
| sequenceNumber |
+---+
| acknowledgementNumber |
+-------------+----------+----------+-------------------+---+
| offset | reserved | ecn | controlBits | window |
+-------------+----------+----------+-------------------+---+
| checksum | urgentPointer |
+---+---+
 tcp -- Transmission Control Protocol packet header [RFC 793]

If we provide a single service then it is enough to reject incoming packets having an unexpected tcp-
port or tcp-sequenceNumber and to provide correct tcp-acknowledgementNumbers in outgoing pack-
ets. The state of the tcp-controlBits (containing the TCP SYN, ACK, PSH and FIN bits) is sufficient
to determine unambiguously the appropriate reply. Although overkill for such a simplified TCP im-
plementation, we can write the control structure as a trivial grammar:

 46

['{ svc = &->(svc? [self peek])
 syn = &->(syn? [self peek]) . ->(out ack-syn -1 (+ sequenceNumber 1) (+ TCP_ACK TCP_SYN) 0)
 req = &->(req? [self peek]) . ->(out ack-psh-fin 0 (+ sequenceNumber datalen (fin-len tcp))
 (+ TCP_ACK TCP_PSH TCP_FIN)
 (up destinationPort dev ip tcp
 (tcp-payload tcp) datalen))
 ack = &->(ack? [self peek]) . ->(out ack acknowledgementNumber
 (+ sequenceNumber datalen (fin-len tcp))
 TCP_ACK 0)
 ;
 (svc (syn | req | ack | .) | . ->(out ack-rst acknowledgementNumber
 (+ sequenceNumber 1)
 (+ TCP_ACK TCP_RST) 0)
) *
 } < [NetworkPseudoInterface tunnel: '"/dev/tun0" from: '"10.0.0.1" to: '"10.0.0.2"]]

As before, the text between curly braces defines a grammar object. Quoting that object and then send-
ing it a '<' message with a network interface as argument will create and run a parser for the grammar
connected to a stream reading packets from the interface.

The first rule is a predicate that filters out unknown service port numbers. The next three describe the
appropriate replies to SYN packets, connection data transfer packets, and ACK packets received from
a connecting client. The 'out' function invoked from the actions in these rules reconstructs a TCP/IP
packet with the given parameters, fills in the checksum, and writes the packet to the network interface.
The 'up' function delivers the packet and its payload to a local service provider. The final (unnamed)
rule in the grammar is the start rule that says to reset the connection if the service is unknown, to reply
appropriately to SYN, data transfer and ACK packets, and to ignore everything else. A few functions
called from the above code are not shown; they are short and their names should indicate clearly what
they do. The four helper functions referred to within the named rules are not as obvious, and are de-
fined as follows:

(define tcp? (lambda (p) (== 6 (ip-protocol p))))

(define svc? (lambda (p) (let ((ip [p _bytes]))
 (and (tcp? ip) (tcp-service-at (tcp-destinationPort (ip-payload ip)))))))
(define syn? (lambda (p) (let ((ip [p _bytes]))
 (and (tcp? ip) (& TCP_SYN (tcp-controlBits (ip-payload ip)))))))
(define req? (lambda (p) (let ((qi [p _bytes]))
 (and (tcp? qi) (with-tcp-ip qi (and (== 0 acknowledgementNumber) datalen))))))
(define ack? (lambda (p) (let ((ip [p _bytes]))
 (and (tcp? ip) (or (> (ip-length ip)
 (* 4 (+ (ip-headerSize ip) (tcp-offset (ip-payload ip)))))
 (& TCP_FIN (tcp-controlBits (ip-payload ip))))))))

The with-tcp-ip syntax is a combination of with-ip and with-tcp, which are defined by the structure
diagrams to run their body code in a context in which the fields of a particular instance of the named
structure are available without explicit use of the prefix or the name of the instance.

Using the above network stack, we can now provide a simple 'daytime' service on port 13 like this:

(define daytime-receive
 (lambda (if ip tcp data len)
 (set (char@ data len) 0)
 (printf "DAYTIME client sent %d bytes:\n%s\n" len data)
 (strlen (strcpy data [[Time now] _formatted_: "%a %d %b %Y %T %Z\n"]))))

(tcp-service-at-put 13 daytime-receive)

 47

Appendix F: Interactive Development Environment for IS (by Scott Wallace)

(a) System Browser For a given source tree, shows all the object type-definitions, and all the
code of each type represented. Checkboxes at top allow the alternatives of viewing by hierarchy
(as illustrated) or viewing alphabetically by type-name, and also the alternatives of listing under
each type only the methods explicitly defined by it or listing its "full protocol" (including inher-
ited methods.) An "annotation pane" provides collateral information about the currently selected
method, and buttons and menu-items in the tool allow for queries to be issued.

 48

(b) Individual Object Lexicon For a given object, this tool shows all of its code (including in-
herited methods) and (once it is running in the target system) all of its state, and allows every-
thing – all code and all state – to be edited. The centerpiece of this tool is its "search" capability,
allowing the user to find methods, within the protocol of a given object, by name/keyword. In the
example below, the user has typed "draw" into the Search pane, and in consequence only the
three methods in the object's protocol whose selectors contain the substring "draw" are displayed:

(c) Message-Set Lists These provide a uniform mechanism for browsing the results of multiple
queries within the bounds of the same tool. Typical queries include: senders, implementers, refer-
ences... (see "Facile Queries" below.) In the example below, the results of three different queries
are all seen in the tool. The < and > buttons in the control panel at the top of the tool allow the
user to retrace his browsing history within the tool, and the "reuse" checkbox allows the user to
decide whether further queries should be serviced within the tool or whether new windows should
be used for them.

 49

(d) "Flattened File-List" This tool presents all the files that participate in the source tree in a
single, flat list, and allows the user to see and change the contents of the files at any time, using
the highly-evolved Squeak text-editing tools. Automatic versioning is provided, and the "Re-
vert..." button allows for selective rollback.

(e) "Message Names" The entire system can be searched for methods whose names (selectors) match
any given string pattern; the retrieved methods can be viewed and edited in-place within the tool, and
all the usual queries can be initiated within the tool as well. In the example below, the user has
searched for methods whose selectors contain the fragment "draw". Three selectors were found. One
of these, #drawOn:in:, has been clicked on by the user, revealing three object types which implement
that method. One of these implementations, that of TransformView, has been selected, and the source
code we see in the bottom pane is the code for TransformView's implementation. of #drawOn:in:.

Facile queries – An important property of effective code development in live IDE's is that most
of the plausible queries that the programmer needs to make during development can be posed
from within the tool currently being used, and (ideally) the results of most such queries can be
viewed within the tool from which the query was launched. Some of the queries that can be in-
voked at any point from within any tool of the IDE are: Browse all methods:

- that implement a given message
- that send a given message
- that reference a given instance variable of a given object type
- reference a given global entity
- whose selectors contain a given string pattern
- for the inheritance hierarchy of a given method
- that have been changed since the last commit.

 50

Appendix G: Gezira Rendering Formulas (by Dan Amelang)

Given the x and y coordinates of the lower-left corner of a pixel, the coverage contribution of an
edge AB can be calculated as follows:

The total coverage contribution of a polygon is the linear combination of the edge contributions,
with some additional adjustment:

