
Distributed Simulation and the
Time Warp Operating System

David Jefferson (UCLA)
and

Brian Beckman, Fred Wieland, Leo Blume, Mike DiLoreto,
Phil Hontalas, Pierre Laroche, Kathy Sturdevant, Jack Tupman,

Van Warren, John Wedel, Herb Younger (Jet Propulsion Laboratory),
and

Steve Bellenot (The Florida State University)

Abs t rac t

This paper describes the Time Warp Operating System,
under development for three years at the Jet Propulsion
Laboratory for the Caltech Mark III Hypercube multi-
processor. Its primary goal is concurrent execution of
large, irregular discrete event simulations at maximum
speed. It also supports any other distributed applica-
tions that are synchronized by virtual time.

The Time Warp Operating System includes a complete
implementation of the Time Warp mechanism, and is
a substantial departure from conventional operating
systems in that it performs synchronization by a general
distributed process rollback mechanism. The use of
general rollback forces a rethinking of many aspects of
operating system design, including programming in-
terface, scheduling, message routing and queueing,
storage management, flow control, and commitment.

In this paper we review the mechanics of Time Warp,
describe the TWOS operating system, show how to
construct simulations in object-oriented form to run
under TWOS, and offer a qualitative comparison of
Time Warp to the Chandy-Misra method of distributed
simulation. We also include details of two benchmark
simulations and preliminary measurements of time-to-
completion, speedup, rollback rate, and antimessage
rate, all as functions of the number of processors used.

1. Introduction

Discrete event simulations are among the most expen-
sive of all computational tasks. One sequential execu-
tion of a large simulation may take hours or days of
processor time, and if the model is probabilistic, many
executions will be necessary to determine the output
distributions. Nevertheless, many scientific, engineer-
ing and military projects depend heavily on simulation

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1987 ACM 089791-242-X/87/0011/0077 $1.50

because it is too expensive or too unsafe to experiment
on real systems. Any technique for speeding up simu-
lations is therefore of great economic importance.

One obvious approach is to execute different parts of
the same simulation in parallel. Most large systems
that people want to simulate are composed of many in-
teracting subsystems, and the physical concurrency in
these systems translates into computational concur-
rency in the simulation. When the system to be simu-
lated is extremely regular in its causal/temporal behav-
ior, i.e. at each simulation time most objects in the
simulation change state, and the real time needed to
compute that change of state is approximately constant,
then a time-stepped approach is reasonable. Cellular
automata and docked logic circuits fall into this cate-
gory. Such systems can often be easily parallelized by
executing different parts of the model synchronously in
simulation time, so that all subsystems are simulated in
parallel at simulation time 1, and then all in parallel at
time 2, etc. However, it is a much greater challenge to
extract concurrency from systems that are highly irreg-
ular in their temporal behavior. For them the event-
driven paradigm (as opposed to the time-stepped) is ap-
propriate.

In this paper we discuss the design and performance of
the Time Warp Operating System (TWOS) a multipro-
cessor operating system directed toward parallel discrete
event simulation. TWOS is a prototype system run-
ning on the 32-node Caltech/JPL Mark III Hypercube. It
is not intended as a general-purpose operating system,
but rather as an environment for any single concurrent
application (especially simulations) in which synchro-
nization is specified using virtual time [Jefferson 84].
Besides simulations, potential applications include
large distributed databases, real time systems, and ani-
mation systems.

The main innovation that distinguishes TWOS from
other operating systems is its complete commitment to
an optimistic style of execution and to process rollback
for almost all synchronization. Most distributed oper-
ating systems either cannot handle process rollback at
all, or implement it in a limited way as a rarely-used
mechanism for special purposes such as exception han-
dling, deadlock breaking, transaction abortion, or fault

77

recovery. But the Time Warp Operating System em-
braces rollback as the normal mechanism for process
synchronization, and uses it as often as process blocking
is used in other systems. TWOS contains a simple,
completely general distributed rollback mechanism
capable of undoing or preventing absolutely any side-
effect, direct or indirect, of an incorrect action. In par-
ticular, it is able to control or undo such troublesome
side effects as errors, infinite loops, I/O, creation and
destruction of processes, asynchronous message comm-
unication, and termination.

The basic Time Warp mechanism [Jefferson 82] has
been implemented or simulated several times before,
but always on top of other systems, e.g. Lisp [Jefferson
82], Jade [,Joyce 87], [Li 87], [West 87], [Xiao 86], or Simula
67 [Berry 86]. However, there are good reasons to be-
lieve that Time Warp should not run on top of another
operating system, but should be the operating system.
Rollback forces a rethinking of almost all operating
system issues, including scheduling, synchronization,
message queueing, flow control, memory management,
error handling, I /O, and commitment. Since all of
these are handled in some way by every operating sys-
tem, building the Time Warp mechanism on top of
another operating system would require having two
levels of scheduling, two levels of process synchroniza-
tion, two-levels of message queueing, and so on. Ours
is the first implementation where the Time Warp
mechanism is the primary level of operating system on
a true multiprocessor.

TWOS is written in C (with some assembly language in
the lowest layer) and has been under development for
three years at the Jet Propulsion Laboratory. It was
originally designed for the Caltech Mark II hypercube,
but now runs instead on the newer Mark III hypercube
[Fox 85], [Peterson 85], and also on a network of seven
Sun workstations. The older Mark II hypercube, a fore-
runner of the Intel iPSC, was constructed of 32 nodes,
each of which contained an Intel 8086 processor and an
8087 floating point coprocessor with 256K bytes of RAM.
The nodes were connected by bidirectional channels in
the topoloR¥ of a 5-dimensional Boolean hypercube.
The newer Mark III hypercube nodes consist of one 16
MHz Motorola 68020 processor for computation, a 68881
floating point coprocessor, a second 68020 processor
dedicated to internode communication, 4 megabytes of
dynamic RAM, and internode communication chan-
nels with a 64M bit/sec peak transfer rate. The meas-
urements given later in this paper were all made on the
32-node Mark III at JPL. When a larger 128-node mach-
ine is completed later this year, we will extend our
measurements for larger simulations to that scale.

TWOS is a single-user system that supports distributed
applications composed of processes communicating by
message. It can use any number of processors, not just a
power of two, since the hypercube topology is rendered
invisible above the lowest level of software. Each node
is multiplexed so that as many processes can share a
node as can fit in its memory.

TWOS is not intended to support general time sharing
among independent processes. Furthermore, since it is
still a prototype, it has some significant limitations. It
does not yet permit dynamic creation of processes at
runtime, nor dynamic migration of processes for load
management. Because of architectural limitations
there is only low bandwidth output from the applica-
tion, and no interactive input. TWOS applications
today operate in a simple download-and-go manner.

TWOS retains' the same general modular decomp-
osition as an ordinary distributed operating system; it
differs only in that different algorithms are used inside
those modules. Although it has highly unusual proc-
essor scheduling, memory management, process
synchronization, message queueing, and commitment
protocols, they each play the same familiar roles as they
do in other distributed operating systems.

In the remainder of this paper we will describe the gen-
eral issues of Time Warp and virtual time. Then in
Section 3, 4, and 5 we describe the programming model
imposed on users by TWOS, the TWOS calls used to
program a simulation, and give an small example sim-
ulation intended for execution under TWOS. In Sec-
tion 6 we give a qualitative comparison between the
Chandy-Misra approach to distributed simulation and
the approach taken by Time Warp. In Sections 7 and 8
we talk specifically about the TWOS implementation,
first its structure and then its performance. Section 9
offers some conclusions and future directions.

2. T ime W a r p and Vir tual T ime

2.1 Background

The basic Time Warp mechanism, which is at the heart
of TWOS, was invented by Henry Sowizral and David
Jefferson (then at the Rand Corporation and the Uni-
versity of Southern California respectively) as a method
for speeding up discrete event simulations [Jefferson
82]. The major contribution of that work was the idea
that process rollback should be considered a funda-
mental synchronization tool for distributed simulation.
Before Time Warp was described most researchers
probably believed that general rollback in an asynch-
ronous environment was either fundamentally im-
possible to implement, or prohibitively expensive.
Time Warp offered a simple and elegant implement-
ation based on the notions of antimessages and annihi-
lation.

Later the theory of virtual time was introduced as a
paradigm for organizing and synchronizing certain
kinds of distributed systems [Jefferson 85]. Virtual time
is a global temporal coordinate axis defined by the ap-
plication as a measure of its progress and as a scale
against which to specify synchronization. The Time
Warp mechanism was then reinterpreted as being not
just a distributed simulation mechanism, but as the
primary implementation for the broader abstraction of
virtual time. There is a strong space-time symmetry

"/8

between the theories of virtual memory and virtual
time, and between their respective implementations,
demand paging and the Time Warp mechanism.

2.2 When is Time Warp needed?

Time Warp may not be appropriate for every distrib-
uted application. But those applications whose be-
havior can be specified using an artificial time scale (e.g.
logical time, simulation time) are candidates. Even
then there are protocols simpler than Time Warp that
may perform better under certain conditions. For ex-
ample, when a simulation can be described as a static
network of interacting processes such that most of the
arcs in the network have an approximately equal
amount of message traffic, then the Chandy-Misra dis-
tributed simulation mechanism [Chandy 81] may per-
form better than Time Warp. (See the cautionary study
[Reed 87].) Whenever "time slip" is not important to
the analysis of a simulation model, the SRADS mech-
anism [Reynolds 82] is simpler and may perform better.
However, Time Warp seems to have the widest applic-
ability with the fewest restrictions, and seems to be the
only choice for applications that contain instances of
the following virtual time synchronization problem.

2.3 The Virtual Time Synchronization Problem

Assume that an application is composed of processes
that communicate by timestamped messages. One such
process, together with incoming messages from many
different senders, is shown in Figure 1. The figure
shows several messages that have already arrived and
are queued in increasing timestamp order. All incom-
ing messages are funnelled into a single input queue.

Messages in transit

I Receiving 1 1,2.811,.31 9.71 .s process
Input queue

Figure 1: Virtual Time synchronization problem

The message timestamps are not real times, but virtual
times, and are assigned by the senders to specify the or-
der in which the messages must be processed. We do
not assume that messages will arrive nicely in increas-
ing timestamp order. Although all timestamp-driven
synchronization mechanisms perform better when
messages arrive in approximately the correct order, in
general we must assume that they might arrive in any
order. Furthermore, we do not know anything about
the subset of the possible timestamps that will actually
appear on arriving messages. Timestamps may be real
numbers, and it is not the case that successive time-

stamps must be separated by some minimal difference,
so we cannot even bound the number of messages that
might arrive bearing timestamps between t I and t2.

The virtual time synchronization problem then is this:
How can the operating system control the execution of
a process so that it receives its messages in nondecreas-
ing timestamp order and is guaranteed to make pro-
gress? We might try examining the next unprocessed
message in the input queue. If it is the 'true next' mes-
sage, i.e. the message with the next highest timestamp
from among all those that have arrived or will ever
arrive, then we should execute it; but if it is not then we
should block the process until the 'true next' message
does arrive. Unfortunately this strategy cannot work
because, since timestamped messages can arrive in arb-
itrary order and we cannot know what timestamps will
appear, there is no way to recognize the 'true next'
message when it does arrive.

In general, it is impossible to solve the virtual time
synchronization problem using local information if the
only synchronization tool allowed is process blocking.
But with a stronger synchronization primitive, namely
process rollback, we can solve it.

2.4 Sketch of the Time Warp mechanism

The Time Warp mechanism [Jefferson 82, 84] takes an
optimistic approach, and assumes at each moment that
the messages already in the input queue are the 'true
next' ones and proceeds accordingly to execute them in
timestamp order. Of course, new messages can arrive
asynchronously during this execution, and as long as
they have timestamps higher than the highest time-
stamp processed so far, the arriving messages are simp-
ly enqueued in their proper order. But whenever a
message arrives with a timestamp t less than some that
have already been executed, then the optimism was
unjustified and Time Warp must

(a) roll back the process to a time just before
virtual time t ;

(b) execute the new message at virtual time t;
and

(c) start re-executing messages with timestamps
greater than t, again in timestamp order,
cancelling all of the effects of any output
messages that were sent after t during the
last forward execution but were not re-sent
in this one.

In order to support rollback TWOS regularly takes a
snapshot of the state of each process. These states are
stored in a queue associated with the process and are
reinstated whenever it is necessary to roll back. The
difficult part of rollback is the implementation of step
(c), the cancellation of the effects of messages that
should never have been sent. To accomplish this Time
Warp introduces the concept of antimessages.

"/9

Every event-, query-, and reply-message (the three
kinds of messages that are exchanged among processes)
is considered to have a sign, either + or -. Two mes-
sages that are identical in all fields but of opposi te signs
are said to be ant imessages of one another. Whenever
a process P requests a message to be sent, TWOS actually
creates a messa~e-ant imessa~e pair. The posi t ive mes-
sage is de l ivered to the in tended receiver 's input queue,
while the negat ive one is re ta ined by P in its output
queue. As long as P does not roll back because of a
message arr iving with a t imestamp in its past , the neg-
at ive messages remain in the ou tput queue and are
eventua l ly garbage-col lected as par t of commitment .
However , when P rolls back to s imulat ion time t a n d
executes forward again, it will usual ly take a different
execution pa th and send a different sequence of ou tput
messages this t ime as it executes pas t s imulat ion t ime t
than it d id last t ime it executed pas t s imulat ion t ime t.

As a process executes forward after t ime t, TWOS com-
pares every message-send request from P with the old
(negative) messages in P's ou tput queue. If a new mes-
sage is a l ready represented in the ou tpu t queue both it
and its ant imessage are discarded, since the receiver
a l ready has a copy. For any new message not represent-
ed in the ou tpu t queue TWOS transmits its posi t ive
copy and saves its negat ive copy in the ou tput queue.
Finally, any (negative) message in the ou tput queue
that is not re-requested for t ransmission dur ing the
new forward execution of P mus t be incorrect, and
TWOS mus t cancel the cor responding posi t ive mes-
sage, mean ing that all of its side-effects, direct and in-
direct, mus t be undone.

Posit ive and negat ive messages are treated exactly sym-
metr ical ly by TWOS in all respects. The only signifi-
cance of the signs is this: whenever a message is insert-
ed into a queue that contains its own antimessage, the
two messages annihi late and the queue gets shorter.
Thus, the queueing discipl ine in TWOS, which is used
universa l ly for t imes tamped messages, satisfies the fol-
lowing algebraic laws for any queue Q and any posit ive
or negat ive message m:

-(-m)= m
Insert(Insert(Q,m) , -m) = Q.

With this under s t and ing of antimessages, the rest of
the Time W a r p cancellat ion mechanism is simple: to
undo the side-effects of a posi t ive message m from P to
Q, it suffices to remove the ant imessage -m from P's
ou tpu t queue and t ransmit to Q's input queue. There
are basical ly two cases to consider:

(1) I f - m arrives in Q's future, then it wil l annihi late
wi th the m in P's inpu t queue and the cancellation
is finished;.

(2) If -m arrives in Q's past, it will cause Q to roll
back, bu t it will also annihi late wi th -m, so that
when Q executes fo rward again nei ther +m nor -m
exist Q will not see either of them.

Al though we do not have space to demonst ra te it here,
this cancellat ion mechanism (called lazy cancellation
[Gafni 85]) works under any circumstances and guaran-
tees progress of the s imulat ion as a whole. If the mes-
sages tend to arrive at a process in almost correct order ,
as they do in actual practice, then there will be compar-
at ively little roll ing back necessary. In fact, it is essen-
tial that messages arr ive in almost correct order on the
average. "Almost correct order" means that the num-
ber of inversions in a long sequence be only l inear in
the length of the sequence, rather than quadrat ic (which
is the wors t case). Essentially all s imulat ions of real
physical systems can be expected to have this behavior
if run long enough.

3. T h e T W O S P r o g r a m m i n g M o d e l

The Time Warp Opera t ing System suppor ts a s imple
object-oriented p rog ramming model wi th a global
process name space. Each process has a 20-character
name that is globally unique. A n y process can send a
message to any other process at any time s imply by
referr ing to the name of the receiver. There is no
not ion of a 'channel ' , 'pipe ' , or 'connection' be tween
two processes, and there is no need to 'open' a con-
nection before sending messages. This model was cho-
sen to p rov ide ma x imum flexibility in the design of
complex simulat ions, so that it is not necessary to
declare statically which processes will communicate
wi th each other.

A process is logically composed of four parts, shown in
Figure 2 in a Pascal-like syntax, al though in fact we
wri te them in C according to a discipline that approx-
imates this structure.

The StateVariables have scope global to all four en-
try sections and retain their values between incoming
messages.

The Initialization Section is a code segment that
is executed once-only at ini t ial izat ion t ime (when vir-
tual t ime is -~¢) and whose main purpose is to init ialize
the StateVariables. It may send event messages wi th
finite t imestamps, but they will not be received until
all ini t ial izat ion sections are complete. An Initial-
ization Section may not send query messages, how-
ever, since they have the effect of request ing informa-
tion from earl ier in v i r tual time, and there is no t ime
earl ier than -~.

The EventMessage Section is invoked whenever a set
of event messages is to be processed. It usual ly modifies
the StateVariables and sends one or more query or
event messages.

80

begin
var StateVariables;

{ Variables whose value
across events }

is retained

Initialization Section:
begin

{ Code to be executed during
initialization at time -~;

end;

EventMessage Section:
begin

{ Code to be executed when an
event message is processed;

Can have side-effects; can send
Event Messages and Query
Messages; }

end;

QueryMessage Section:
begin

{ Code to be executed when a
query message arrives;

Must be side-effect free and
can send only Query Messages;

Must send exactly one Reply;
end;

Termination Section:
begin

{ Code to be executed at
termination at time +~;

end;
end.

Figure 2: Structure of a TWOS process

The QueryMessage Section is invoked to process a
query message. It must be side-effect free, and thus can-
not modify the state variables or send any event mes-
sages (because they would cause side-effects). It may,
however, send additional query messages. The Query-
Message Section is required to generate exactly one
reply message to the query message that invoked it.

The Termination Section is invoked when the sim-
ulation is ended, at vir tual t ime +~0. Its main purpose
is to al low final statistics to be output before termin-
ating execution. It may send query messages, but not
event messages s ince the latter would have to be
processed later in vir tual t ime and there is no time later
than +¢¢.

Any of the four entries may declare local stack vari-
ables, but the values of those variables are not pre-
served across invocations. Only SCateVariables re-
tain their values across invocations.

Except at ini t ial izat ion and terminat ion the only t ime a
process executes is to handle an incoming message.

Processes are thus message driven, and do not execute
between incoming messages. Of course, a process may
send itself an event message. The processing of an

event message is called an event, us ing t e r m i n o l o g y
d r a w n from simulat ion.

There are two significant restrictions imposed on the
behavior of processes. First, a process must be r igidly
de termin i s t i c in its inpu t -ou tpu t behavior. In order to
prevent a domino effect dur ing rollback it is vital that a
process, when rolled back and restarted in an earlier
state wi th the same input messages as before, should
generate exactly the same output messages. This re-
striction is a theoretical necessity, but it should not be
exaggerated. For example, there is no problem with the
use of p s e u d o r a n d o m number generators; they can be
used freely as long as all r andom seeds are among the
S t a t e V a r i a b l e s so that their values can also be rolled
back when necessary.

The second restriction is that processes should not use
heap storage (e.g. n e w 0 in Pascal or m a l l o c 0 in C).
To suppor t rol lback the entire state of a process mus t be
saved from time to time, and heap s torage makes state-
saving difficult a n d / o r slow. This restriction is just a
performance issue, and al though we have not found it
to be too burdensome yet, it is a potential liability.

The p rog ramming restrictions in this model are not
enforced by TWOS. They are the kind of restrictions
that should be enforced instead by linguistic mecha-
nisms in an object-oriented s imulat ion language. For
now we rely on the discipline of our applicat ion pro-
g rammers .

Processes request ou tput by sending event messages to
special operat ing system processes whose type is s t d -
o u t , not by making operat ing system calls. This con-
vent ion is convenient, but it is also necessary, because
in an envi ronment where rollback can happen at any
time it is possible that an output request will have to be
unrequested. Time Warp mus t buffer ou tpu t requests,
and not execute them until they can be commi t ted .
Discussion of commitment is deferred until Section 7.

4. T W O S interface

Here we present the system calls available to simula-
tion p rogrammers wishing to run under TWOS. These
descript ions have been sl ightly simplified, p r imar i ly by
leaving out error parameters . We will discuss their
implementa t ion in the next section. In what follows
we will refer to the current vir tual time, i.e. the vir tual
t ime at which the call is made, as Now. The under l ined
parameters are modif ied by the call.

Time Warp Operating System calls:

Me (MvName)
Sets the MyName parameter to the 20-character name
of the calling process.

81

Virt ual Time (VTime)
Sets the VTime parameter to Now, i.e. the current
s imula t ion time.

SendEventMessage (ReceiveTime, Receiver,
Text)

This call t ransmits an event message containing
T e x t to the process named R e c e i v e r , and schedules
it to be received at vir tual t ime R e c e i v e T i m e . It can
only be invoked from the EventMessage S e c t i o n
of the sending process, and then only if R e c e i v e -
T i m e is greater than or equal to Now.

At vir tual t ime Recei veTime the operat ing system
will invoke the EventMessage Section of the re-
ceiving process, giving it access to this message and
all other messages arr iving at the process R e c e l v e r
with the same receive time. Al though R e c e i v e -
T i m e can equal Now, there must not be a cycle of
processes each of which sends a message to the next
with Re cei ve Time equal to No w. Semantically the
behavior of such a cycle is analogous to deadlock,
though under TWOS it will cause infinitely repeat-
ed rollback instead. A process may send a message
to itself, but if it does so it must be with a R e c e i v e -
T i m e strictly greater than Now so as not to violate the
rule about cycles.

S endQueryMessage (Receiver, Text, R e p l y)
This pr imi t ive t ransmits a query message contain-
ing Text to the process named Receiver. It acts
much as a remote, side-effect free function call to
another object to obtain information about its state
at t ime Now. The query message is scheduled to be
received Now, i.e. at the current vir tual time. It then
blocks the calling process to await the reply, which
also comes back at virtual t ime Now, and whose con-
tent is del ivered into the buffer R e p l y .

At any given vir tual time, query messages are pro-
cessed before event messages; hence the reply to a
query message sent at t ime 100 is based on informa-
tion at the receiver before any event at t ime 100 is
executed. In part icular, if a process sends a query
message to itself from par t -way through the execu-
tion of its own EventMessage Section, the reply
will be based on the state variables as they were just
before the E v e n t M e s s a g e S e c t i o n started execu-
t ion.

It is permi t ted to have a cycle of query messages (all
wi th in the same vir tual time). The behavior is
analogous to recursive invocations of the Q u e r y -
M e s s a g e sections of the processes involved in the
cycle.

SendRepl yMessage (Text)
This call must be invoked once and only once for
each invocation of the QueryMessage Section of a
process. It sends a reply message containing T e x t
back to the sender of the query, to be received at
vir tual t ime Now. The reply is uniquely associated

with the query message that caused it to be gener-
ated, and is analogous to the re turn of a remote
function call. When it arrives, the reply will restar t
the receiver (i.e. the sender of the query) at the point
in the EventMessage section or QueryMessage
Section where it was suspended.

MCount (l~)
Several event messages may arrive at a process at
the same vir tual time, and M c o u n t sets n to the
number of such messages, typical ly one. It can only
be invoked from the EventMessage S e c t i o n of a
process.

R e a d E v e n t M e s s a g e (k, T e x t)
This call reads the text of the k ' th event message
that ar r ived with t imestamp of Now into buffer T e x t .
It can only be invoked from the E v e n t M e s s a g e
section.

ReadQueryMessage fText)
This call reads the text of the current query message,
and can be invoked only from the # u e r y M e s z a g e
section of a process. Since the QueryMessage
S e c t i o n of a process must be side-effect free, only
one query message at a t ime is processed even if
several queries arr ive at the same process with the
same vi r tual time.

5. H o w to w r i t e a s i m u l a t i o n u n d e r T W O S

In this section we i l lustrate a s imulat ion des igned to
run under TWOS. We will wri te a very s imple s imu-
lat ion of one of the servers in a queueing ne twork
shown in Figure 3. There is one customer source, A,
and three servers B, C, and D. Upon leaving station B
90% of the customers (randomly selected) go to stat ion
D, and only 10% to station C. We will assume that all

sources and servers are exponent ial wi th pa ramete r A,
and that queueing is FIFO.

Figure 3: Simple queueing network

The natura l decomposi t ion of this ne twork is as four
processes, one for each of the sources and servers. The
fol lowing code f ragment will implement server process
B. Bear in mind that this pseudocode is presented only
for i l lustrat ion of the synchronizat ion and message
hand l ing features in TWOS.

82

begin { Logical process B }
{ Arrival and service rate }

const A = 1.0;
{ snare variables }
var Q Len : integer;

{ Current queue length }
Seed : integer;

{ Random seed }
Cum Q Len : real;

{ Cumulative, time-weighted
queue length; for calculating
mean queue length at end }

Last Ev Time : VirtualTime;
{ Simulation time of event

preceding this one }

Initialization Section:
begin

{ Code to be executed during initial-
ization; }

Q Len := 0;
S-eed := 1234567;
Cum Q Len := 0.0;
Last Ev Time := 0.0;

end;

EventMessage Section:
begin
vat i : integer; { Loop counter }

n : integer;
{ Number of event msgs arriving

at same virtual time }
Type : string;

{ Type of event, either 'End-
Service' or 'CustomerArrival' }

Current : VirtualTime;

{ Read current simulation time }
Virtual Time (Current) ;

{ More than one event may be scheduled
at this simulation time--up to two
customer arrivals and one service
end. Do all, in arbitrary order. }

MCount (n) ;
for i := 1 to n do

begin
{ Find out what kind of event }
ReadEventMessage (i, Type) ;
case Type of

'EndService ' :
begin

{ Send customer onward }
if random (Seed) < 0.9

then
SendEventMessage (Current,

'D ', 'CustomerArrival ')
else

SendEventMessage (Current,
'C ', 'CustomerArrival ') ;

Cum Q Len :=
Cure Q Len + Q Len *
(Current-Last Ev Time);

Last Ev Time := Current;
Q Len:= Q Len - i;
if Q Len-5 0 {Start service}

then { Message to self }
SendEventMessage (Current

+ ExpRandom (Seed, A),

'B', 'EndService ') ;
end;

' Cus t omerArri va i ' :
begin

if Q Len = 0 {Start service}
then

SendEventMessage (Current

+ExpRandom (Seed, A),

'B ', 'EndService ') ;
Cum Q Len :=

Cure Q Len + Q_Len *
(Current-Last Ev Time);

Last Ev Time := Current;
Q_Len : = Q Len + 1

end
end {of case stmt }

end { of for stmt }
end; { of EventMessage Section }

QueryMessage Section :
begin

{ Empty. No queries in this example. }
end;

Termination Section :
begin
print ('Mean queue length of B = '

Cum Q Len / Last Ev Time)
end;
end. { of logical process B }

The explanation for this code is as follows:

5.1 State variables

There are only four variables in the state of process B.
Two of those, S e e d and e L e n actually represent the
state of the system being ~mula ted . S e e d is the ran-
d o m seed dr iv ing both the service t ime dis tr ibut ion
and the decision about where a customer goes when it
leaves B. Q L e n represents the length of the queue of
customers 1J-ned up for service at B. In this case, since
all customers are identical and queueing is FIFO, the
state of the queue can be adequately represented by just
its length.

The other two state variables, Cure Q L e n and
L a s t E v T i m e , are par t of the ins t rumentat ion of the
model , and are necessary to calculate the main per-
formance pa ramete r of interest, the mean queue length.

5.2 Init ial ization Section

In this code all four state variables are initialized. This
ini t ial izat ion is considered to occur at s imulat ion t ime
-~,, i.e. before any events have taken place.

5.3 EventMessage Section

This code is invoked whenever an event is to be pro-
cessed for B. An event message arriving at process B,
signals one of two kinds of events. If the text of the
message is ' c u s t o m e r A r r i va 1 ' it signals the arrival of
a customer, either from A or C. If the text is ' E n d -

S e r v i c e ' it indicates that a service per iod has com-
pleted at B and that the customer just served should be
moved along to either C or D while the one at the head
of the queue (if any) should begin service.

83

The first thing the EventMessage Section does is
read the simulation clock, into the variable N o w (using
the V i r t u a l r i m e call). This is necessary for the calc-
ulation of mean queue length.

The EventMessage Sect ion then checks how many
event messages have arrived at this simulation time,
using the M C o u n t call. This is necessary because in this
model up to three distinct event messages may arrive at
process B at the same simulation time, since one cust-
omer's service may end at exactly the same simulation
time that two other customers arrive from A and C.
The simulation of those actions together constitute a
single event in TWOS by virtue of the fact that they
occur at the same place (B), and the same simulation
time. However, in this: model the logic is such that any
such compound event can be simulated by processing
the (up to) three event messages serially, in any order.
This is why the for loop that acts as the main control
structure of the EventMessage Section.

In the case that an event message signals the end of
some customer's service three things must be done.
First, the customer must be sent on to the next queue-
ing station. This is done by the SendEventMessage
call. Note that the 'CustomerArrival ' event message
is scheduled to be received at simulation time Now, i.e.
at the same time as the current simulation time. This
is because in a queueing model no time elapses between
a customer's completion of one service and its entry
into the next queue.

Second, the queue length must be decremented (to re-
flect the depart ing customer) and the statistical vari-
ables must be updated.

Finally, if the queue is still non-empty after one cus-
tomer has left, then the service of the next customer
must start. An event message indicating ' E n d -
S e r v i c e ' is sent by B to itself, scheduling the time that
the service period will be over.

If, on the other hand, the event message signals the ar-
rival of a new customer, then only two steps are neces-
sary. First, the queue length must be incremented and
the associated statistics updated. Second, if the arrival
of this customer changes the queue from empty to
nonempty then the arriving customer must immedi-
ately start service and the end of his service must be
scheduled.

All of this computat ion in the event section takes place
in one instant of simulation (virtual) time, and thus
constitutes a single atomic action.

5.4 Query Section

This model does not need to use the TWOS query
mechanism, and thus this section is empty.

5.5 Termination Section

The termination section is executed after the simula-
tion proper is completely finished. In this case all that
needed is to calculate and print the final statistic.

6. Comparison with the Chandy-Misra approach

The best known methods for distributed simulation are
based on ideas by Chandy and Misra. Unfortunately, no
comprehensive quantitative comparisons between
their techniques and Time Warp have yet been per-
formed, primarily because of the sheer size of the un-
dertaking. But here we will try to give at least some
qualitative comparison between the two.

The Chandy-Misra methods share with Time Warp two
requirements: (1) a simulation should be decomposed
into logical processes (which we have been calling sim-
ply processes) each of which represents a physical pro-
cess, i.e. a subsystem of the model to be simulated; and
(2) the logical processes communicate only via time-
stamped event messages, each of which represents an
interaction between subsystems at a particular simula-
tion time. Both methods are asynchronous, in that
they allow some processes to be ahead in simulation
time while others lag behind in order to achieve greater
concurrency.

But there is little resemblance beyond these basic facts.
Time Warp and the Chandy-Misra methods implement
different paradigms of discrete event simulation; they
require different amounts of static knowledge about the
model to be simulated; they differ completely in their
approach to the critical mechanisms of synchroniza-
tion; and they perform best in different regions of the
space of all simulations. The rest of this section will
cover these differences in more detail.

6.1 Differences in simulation paradigm

A program written for Chandy-Misra is not directly
runable under Time Warp, and vice-versa, because they
represent different views of discrete event simulation.
A logical process LP receives a sequence of t imestamped
event messages M1, M2 Mn, with timestamps
tl < t2 < ... < tn respectively. Under the Chandy-Misra
mechanism, when an event message Mi with time-
stamp ti is received by LP, LP simulates the behavior of
physical process PP over the simulation time interval
ti-1 to ti, i.e. the in terva l preced ing ti. This sometimes
requires event messages to be sent to other processes
with timestamps strictly less than ti. The logic of the
method, in particular the requirement that messages be
sent in increasing timestamp order along each channel
(see below), guarantees that there can be no cycle of
interactions allowing an event to effectively cause
changes in the past.

84

In contrast, when a Time Warp logical process LP re-
ceives an event message with t imes tamp ti, it s imulates
a single instant in the behavior of the physical process
PP, not an interval of its behavior. During an event it
can send addi t ional event messages with t imestamps
greater than or equal to ti, but not lower.

As a result, a p rogrammer tends to imagine the be-
havior of his model as organized into a sequence of
intervals in order to use the Chandy-Misra mechanism,
but imagines it as a sequence of discrete events (in-
stantaneous) in order to use Time Warp. Both para-
d igms are legitimate, but they force different idioms on
the p rog rammer for certain s tandard s imulat ion effects,
such as effectively preempt ing (or cancelling) a prev-
ious ly scheduled event.

6.2 Static restrictions

Under the Chandy-Misra mechanism the model is rep-
resented as a network of logical processes with discrete
channels connecting them. A logical process may have
any number of incoming or outgoing arcs, but the size
and topology of the ne twork is usual ly v iewed as stati-
cally declared. This is not a trivial restriction; we can-
not s imply consider the ne twork to be fully connected
and then use only a subset of the channels, because (as
we shall see) in all variat ions of the Chandy-Misra
mechanism there is considerable overhead associated
with unused channels.

Under Time Warp there is no ne twork of channels
connecting the processes. Instead, any process may send
a message to any other at any time. The interaction
topology is completely dynamic. It is thus easy to sim-

ulate systems such as colliding pool balls, war games, or
part icle interactions, that have the p roper ty that which
objects interact with which others is not statically deter-
mined .

Another difference between the two methods concerns
the order in which messages can be sent between two
processes. Under the Chandy-Misra mechanisms a
process mus t send messages in increasing t imestamp
order along each of its ou tput channels. See Figure 4. If
a process A at t ime 80 sends a message with t imestamp
100 along channel c to process B, then A can never
again send a message the same channel with a time-
s tamp less than 100. It is quite common in s imulat ions
for a process such as A to want to send later, at t ime 90,
a message to B with t imestamp 95, effectively preempt-
ing (or modifying) the effect of the message with time-
s tamp 100. This is not impossible under the Chandy-
Misra mechanism, but the p reempt ing message cannot
be sent to B along the same channel c; it must instead be
sent along another channel c'.

It may seem that establishing a second channel to han-
dle the few cases when it is desirable to send messages
out of order is at most a minor inconvenience. How-
ever, when sending messages out of order is rare, then
the second channel c' establ ished to handle that case is a

Figure 4: In the Chandy-Misra mechanism messages
must be sent in timestamp order along each channel

rarely used, and it is exactly in those cases that the
Chandy-Misra mechanisms have their largest over-
heads.

The Time Warp mechanism does not require messages
from A to B to be sent in increasing t imestamp order;
they may be sent in any order, a l though usual ly the
more invers ions there are in the sequence, the more
often the receiver will have to roll back.

6.3 Synchronization mechanisms

The Chandy-Misra and Time Warp mechanisms differ
most s ignif icant ly in their synchronizat ion mecha-
nisms. The Chandy-Misra mechanisms are conserva-
tive, in that a process is not a l lowed to receive a mes-
sage with t imes tamp t until it is certain that no message
will ever arrive with a t imestamp less than t. In prac-
tice this means that a process must usual ly be blocked as
long as any of its input queues is empty. Thus, if one of
the input queues to process P is rarely used, then P will
remain blocked most of the time.

Under Time Warp a receiving process does not have a
separate input queue for each possible sender. Instead,
all incoming messages are funnelled into a single time-
s t amp-orde red queue. Time Warp is optimistic in that
it al lows a process to receive a message at t ime t with no
guarantee that there will not be another wi th a time-
s tamp less than t. Usual ly this opt imism will be just-
ified, but sometimes it will not; when a message does
arr ive wi th t imes tamp t ' < t, the receiving process mus t
roll back and cancel all incorrect side-effects back to time
t ~.

The major complicat ion with the Chandy-Misra mech-
anism is that its basic pol icy of blocking a process when
one or more of the input queues is empty often leads to
deadlock. Any cycle in the network of interacting pro-
cesses can be the seed of a local deadlock, which then
tends to expand to become global. The major challenge
in imp lemen t ing the Chandy-Misra mechanisms, and
the main differences among them, is in deal ing with
deadlock.

Many approaches have been s tudied for either avoid-
ing deadlocks (e.g. the null message technique) or for
breaking them (e.g. the circulating token technique), but
no one method seems yet to work well in all cases
[Misra 86]. Almost certainly a combinat ion of mechan-
isms, dynamica l ly selected, will be necessary in any
complex, i r regular s imulat ion.

85

With the Time Warp mechanism there is no need for
deadlock avoidance or deadlock breaking. There is a
global mechanism for GVT calculation that is necessary
for commitment of irreversible actions, but its invoca-
tion is driven by storage management and response
time requirements, and not by the need to avoid dead-
lock.

6.4 Domain of high performance

The Time Warp mechanism requires considerable
overhead in the form of state-saving and the handling
of antimessages in order to make rollback possible.
When rollback occurs, additional processor and com-
munication resources are consumed. In Contrast, over-
head of the Chandy-Misra mechanism is almost entire-
ly in the management of deadlock by whatever mech-
anism is in use.

These differences are not simply in the amount of
overhead, but in the kind. Time Warp incurs its over-
head in those parts of the model where there is activity.
No state saving or message communication is necessary
in those parts of the model that are quiescent. In addi-
tion, the overhead of rollback, when it does occur, oc-
curs off of the critical path of the computation, i.e. not
in those processes that are farthest behind in simula-
tion time.

In the Chandy-Misra mechanism, however, most of the
overhead is incurred where there is inactivity in the
model. Deadlocks and unnecessary process blocking
will be most common where there are unused or in-
frequently used channels, and hence it is around the
inactive channels that there is the greatest need for null
messages or deadlock detection tokens.

Al though experimental verification is lacking, it would
seem from the above discussion that the Chandy-Misra
mechanism would probably be superior to Time Warp
when the simulation can be decomposed into a static-
ally-defined network of logical processes in which all or
most of the logical channels have regular event mess-
age traffic. Where there are numerous pairs of pro-
cesses that can interact but do so rarely, or (which
amounts to the same thing) if the topology of commu-
nication changes dynamically, then Time Warp will be
likely to perform better.

7. T i m e W a r p as a n O p e r a t i n g S y s t e m

The Time Warp mechanism is described more fully in
other papers, especially [Jefferson 82] and [Jefferson 85]).
Our purpose here is to describe Time Warp in its role as
an operating system, in contrast to other operating sys-
tems. We do so briefly, by comparing it module by
module with more standard operating systems.

TWOS is structured as shown in Figure 5.

U s e r

S i m u l a t i o n

C o d e

Scheduling
Rollback
Antimessages
Annihi la t ion
GVT
Flow Control
Errors
I/O commitment

Creation
Destruction
Statistics
Load Mgt

e ~ , .

Trap & interrupt handling
Context management
Reliable msg. communication
Message routing
Loading
Host communication

Caltech Hypercube Mark HI

68~0 / 68881
68020 comm. processor
32 nodes
4M bytes/node
5 bi-directional

channels / node

Figure 5: Structure of TWOS

A p p l i c a t i o n

L a y e r

T i m e W a r p

L a y e r

(portable)

Kerne l

L a y e r

~not portable)

H a r d w a r e

L a y e r

The operating system is represented by the two middle
layers. The lower of the two, called the kernel, provides
basic interrupt handling, context management, and
low-level message communicat ion primitives. None
of the kernel is specific to simulation; it is in theory
quite generic. It is not necessarily portable, and some of
it must be reimplemented on every machine that
TWOS is to run on. Some of it is in assembly language.

The upper layer, called the executive layer or the Time
Warp layer, contains all of the code that implements
the Time Warp mechanism. This code is entirely writ-
ten in C and is portable. (It has already been ported
from the Mark II, 8086-based hypercube to the Mark III
68020-based machine.)

As described earlier, TWOS has the same overall struc-
ture as a conventional distributed operating system, but
each of its parts contain very unconventional algo-
rithms. The following subsections describe these
differences in more detail.

86

7.1 Processor Scheduling

Most d is t r ibuted opera t ing systems that al low more
than one process per node schedule each processor ac-
cording to some time-sliced, mul t ip le-queue mech-
anism with round- rob in schedul ing within each queue.
The mul t ip le queues dis t inguish high pr ior i ty from
low pr ior i ty processes, or compute-bound from I / O -
bound processes, etc., and different length time slices
may be associated with each queue.

Time Warp ' s schedul ing a lgor i thm is not t imesliced at
all, bu t pre-emptive lowest virtual time first. Time
Warp always executes the eligible process that is at the
lowest vir tual time, with arbi trary choice to break ties.
A process will execute indefinitely, as long as it has the
lowest vir tual t ime of any process on its processor. If,
while executing one process, a message arrival and
rollback causes another to become farthest behind on
that processor, then the first process is p re-empted and
the second one runs.

In general a process is always eligible to execute as long
as it has unprocessed messages remaining in its input
queue. The only exception is in the handl ing of quer-
ies. When a process sends a query message it is sus-
pended until either (a) the reply message arrives, in
which case the process is resumed, or (b) another event
or query message arrives with a lower t imestamp, in
which case the process rolls back out of the suspended
state to whatever vir tual t ime is appropria te .

7.2 Message Queueing

Most operat ing systems use FIFO message queueing at
every stage of routing, for reasons of simplici ty and
fairness, and because preservat ion of message order is
often requi red in appl icat ion-level communica t ion
p r imi t ives .

But under TWOS messages are not necessarily pro-
cessed in the order sent; they are processed in time-
s tamp order. Hence, they are always enqueued, both
dur ing in termedia te rout ing and at their final dest ina-
tion, in increasing t imestamp order. Messages wi th low
t imestamps get preferential t reatment and faster for-
wa rd ing service than other messages, a convention
that is consistent wi th the preferential scheduling treat-
ment of processes wi th low vir tual times.

Negat ive messages traveling in the forward direction
and posi t ive messages traveling in the reverse direction
(for flow control) get addi t ional pr ior i ty since they will
l ikely free space and prevent wasted effort at their dest-
ina t ions .

Negat ive messages cancel with their posi t ive counter-
parts whenever they are found in the same queue. In
pr inciple , this can be an intermediate forwarding
queue, but this latter embel l i shment is not yet imple-
men t ed .

7.3 Process Synchronization

Most d is t r ibuted opera t ing systems provide var ious
blocking-or iented message receive primit ives, i.e. if no
message of the class being wai ted for has arrived, then
the process blocks until one does. In those systems that
recognize remote procedure calls or transactions there
may be an abort ion mechanism as well.

Under Time Warp a process blocks only if it has no un-
processed messages in its input queue or if it is wai t ing
for the reply to a query. But it does a full rollback im-
media te ly (even if executing) whenever a message ar-
rives with a t imes tamp less than the process' current
vir tual time. A process can roll back out of the blocked
state, then execute forward and reenter the blocked
state.

7.4 Flow Control

In most opera t ing sys tems the only aspect of s torage
m a n a g e m e n t sens i t ive to the re la t ive speeds of the
processes is message flow control, and there are var ious
protocols for blocking a sender so that it does not over-
flow the m e m o r y of the receiver.

For several reasons, however , f low control under Time
Warp is much more critical and difficult. First, Time
Warp mus t concern itself not only with incoming mes-
sages filling up memory , but also with outgoing mes-
sages (of which the sender keeps a negative copy) and
saved states as well. Second, because any process can
send a message to any other with no explicit channels,
flow control cannot be done on a channel basis. It mus t
be done on a process or node basis. Third, most oper-
ating systems delete a message and free storage as soon
as the receiver has read it. But TWOS cannot do that
because a rollback may require that the message be read
again. Finally, because it executes most efficiently when
there are many back states and messages available to
suppor t rol lback TWOS general ly at tempts to run with
memory almost complete ly full. This puts addi t ional
stress on the f low control and storage allocation mech-
anisms.

Time Warp ' s basic f low control tool is message send-
back [Gafni 85]. There is not space here to describe the
protocol in full, but it is based on the idea that when
memory is full and space is needed for a new arr iving
message with t imestamp t, then one way to make room
is to f ind a message in an input queue with virtual send
time greater than t, and return it to its sender, i.e. un-
send it. This will l ikely cause the sender to roll back to
a state before it sent the message, but it will then exe-
cute forward again and resend the message later. Al-
though message sendback may seem unusual , it is
mere ly the communicat ion analog of process rollback.

7.5 Commitment

Some operat ions, such as output , destruct ion of an ob-
ject, d iscarding an old state or message, and process

87

te rminat ion are computa t iona l ly i rreversible and thus
require commitment from the opera t ing system before
they can be performed. Many operat ing systems need
no commitment protocol at all, and just perform ir-
reversible actions on request. Others have commit-
men t protocols des igned to guarantee atomicity of
transactions or remote procedure calls.

Time Warp ' s commi tment requi rement is that no irre-
versible action can be commit ted at vir tual t ime t until
all events that might affect the action or cause its can-
cellation, namely those at v i r tual t imes less than or
equal to t, are complete. Therefore, from time to t ime
TWOS calculates an es t imate of the quant i ty called
G loba lV i r t ua l Time (GVT), def ined to be the mini-
m u m vir tual t ime of any uncomple ted event or mes-
sage t ransmission in the application. Once GVT is
known to be greater than or equal to some value t, then
Time Warp can commit all ou tput requests at vir tual
t ime less than t, release all message and state buffers
wi th vir tual t imes less than t, and repor t to the user any
errors ou ts tanding from vir tual t imes less than t.

8. T h e P e r f o r m a n c e o f T W O S

We are now engaged in a lengthy performance tuning
and measurement p rogn m for TWOS. Since the goal
is to execute mult iprocess s imulat ions as quickly as
possible, the p r imary evaluat ion criterion is the t ime to
complet ion of benchmarks . We are also interested in
secondary performance measures , such as memory
usage, the fraction of processor t ime spent in activity
that ends up being rolled back, the fraction of messages
that are negative, and the net processor util ization.
Much of that data we do not yet have.

All of the measurements we present here were taken
on the Mark III hypercube in the July of 1987. In each
case TWOS was set to save the state of each process after
every event, i.e. to take snapshots maximal ly often to
ensure minimal rol lback cost. Processes that had
events rarely had there states saved correspondingly
rarely. We do not know yet if this setting is optimal; it
could well be that the cost of taking addi t ional snap-
shots is not wor th the savings in cost per rollback. Al-
so, we set the interval between GVT calculations at 5
seconds, except that toward the end of a run it was re-
duced to 1 second. GVT calculation is a significant
source of overhead, and we do not wish to do it any
more often than is necessary to keep from running out
of storage, but since termination can only be detected
when GVT is upda ted , if we retained the 5 second in-
terval to the end of a run our uncer ta inty in the t ime of
terminat ion wou ld be as much as 5 seconds, which
wou ld bias our t imings.

Since we do not have dynamic process migrat ion in
TWOS we have had to try many different assignments
of processes to processors, and in each case we are data
from those runs that ran fastest. In the few cases where
we show more than one data poin t for a given number

of processors, they are for different configurations of the
same s imulat ion.

The overhead per event message in TWOS is current ly
at least 3 mil l iseconds for messages sent within one
processor, and 4.5 mill iseconds when the messages are
sent off-processor. These numbers were measured by
running a trivial appl icat ion that does nothing, and is
basical ly "all overhead". The overhead per event in-
cludes (a) the copying of the event message from the
sender 's memory to TWOS, (b) packet ing and depack-
eting, (c) creation of an ant imessage copy retained by
sender, (d) lazy-cancellation search to see if it is a l ready
present in the ou tpu t queue, (e) lookup of the destinat-
ion process in the rout ing table, (f) memory manage-
ment, and queueing t ime on both ends, (g) transmis-
sion delay, (h) schedul ing and interrupt handl ing at the
receiver, (i) saving state between events, and (k) occa-
sional calculation of GVT. Not included are costs for
f low control, and rollback, since neither occurred in the
trivial appl ica t ion used in these measurements .

In all cases the performance was measured wi thout
output . Including I / O made measurements unrel iable
because the low bandwid th communicat ion out of the
Hypercube could not keep up with the speed of the
computat ion. However , all of software overhead to
per form ou tpu t except the physical t ransmission of the
data is included, e.g. the rout ing of output requests to
the stdout object on Node 0, the queueing of that out-
put , and the commitment protocol.

We used two benchmark s imulat ions in the initial
evaluat ion of TWOS. One is a version of the Game of
Life, des igned to test Time Warp on a regular ly struc-
tured model . The other is a f ragment of a mil i tary
command and control model that represents i r regular ly
s t ruc tured models .

8.1 The Life Benchmark

The Game of Life is a s imple two-dimensional deter-
minist ic a r ray au tomaton in which each cell has a 1-bit
state whose value at t ime t+l depends on its value and
those of its 8 neighbors at t ime t. We p r o g r a m m e d a
toroidal ly-connected 256 x 256-cell version of the game,
decomposed into processes in three different granular i-
ties:

(a) 1024 processes, each represent ing an 8 x 8 region;

(b) 256 processes, each represent ing a 16 x 16 region;

(c) and 64 processes, each represent ing a 32 x 32 re-
gion.

The reason for the different versions is to vary the ratio
of computa t ion to communicat ion to test the effect of
granular i ty on TWOS performance. The game was
p r o g r a m m e d in a 'dumb' way, so that each process re-
computes the state of the cells in its jurisdict ion at each
time step, wi th no opt imizat ion. At each t ime step a

88

process receives a message from each of its neighbors,
indicat ing their old states, and then sends a message to
each of them with its new state. In most cases our
measurements were made on a subcube of the hyper-
cube so that the load in the simulat ion was balanced.

The Life Game, of course, has a t remendous amount of
natural paral lel ism, and one can get good speedup from
executing it concurrently in a synchronous manner
wi thout resort ing to Time Warp. But Life is a good test
for a d is t r ibuted s imulat ion mechanism for several
reasons. First, it has an enormous amount of internal
feedback, with every process being involved in many
message communicat ion cycles of every even length.
Second, every object receives eight messages at every
vir tual time, so this is an oppor tun i ty to test the abil i ty
of TWOS to treat them as parts of a single message.

The results are summar ized in Figure 6 where we plot
t ime-to-complet ion of s imulat ions up to time 10. In
these cases the speedup is slightly sublinear. This
seems reasonable considering that the special structure
of the Life Game and its synchronous, t ime-stepped
nature are not taken advantage of by Time Warp.

In this graph it is clear, as we would expect, that the
f ine-grained decomposi t ions do not perform nearly as
well as the more coarse-grained ones. In a s imulat ion
as regular as this the total TWOS t ime-overhead is pro-
por t ional to the number of processes, and thus one
would expect 16 times the overhead for the f ine-grained
decomposi t ion as in the coarse-grained one. Further-
more, the f ine-grained decomposi t ion requires 16 t imes
the memory overhead as the coarsest decomposi t ion,
because there are 16 times as many processes, and 16
times as many messages to be buffered. As a result we
were unable to run the f ine-grained decomposi t ion
(with 1024 processes) on fewer than four processors.

8.2 The C O M M O * B e n c h m a r k

Our major benchmark, COMMO*, is designed to repre-
sent i rregular , mi l i tary- type simulations. It is der ived
from a piece of the FOURCE wargame built by the U.S.
A r m y in White Sands, New Mexico. It was designed
two years ago by a one of the authors (FPW), with little
considerat ion of the behavior of Time Warp. We be-
lieve that TWOS can speed up models designed with-
out knowledge its structure, and example corroborates
this.

COMMO* consists of 130 processes represent ing divi-
sion, br igade, and batall ion staffs that send orders, in-
telligence reports , status reports, and other commun-
ications up and down the chain of command dur ing a
convent ional battle. The var ious command staffs have
17 different message classes handled in different ways
with different priorit ies and staff delays. Further
complicat ions arise because of compet i t ion for t ime on
the var ious war communicat ions med ia (radio links,
telephone, courier, e tc .) , and because messages are
sometimes lost in staff processing. The model contains
a mixture of high- and low-frequency feedback loops. It
has a long r amp-up t ime before its behavior stabilizes,
and another long r amp-down time as it heads toward
termination. The r a mp-up and r amp-down time is in-
c luded in our t imings even though there is less con-
currency available dur ing those parts of its execution.

Each execution involved 21,045 events. There were
88,241 event messages commit ted (i.e. not including
those that were annihilated). Hence, the average event
involved 4.2 event messages. There were also 14,110
queries (and the same number of replies). Thus there
were always at least 116,461 messages t ransmit ted
(events, queries, and replies), not including addi t ional
messages that were annihi la ted by antimessages.

T i m e
(secs)

280

2 4 0

2 0 0 '

160 '

120 ,

80,

40,

0

271
0

•167

0

190

0 •

• 0
• e

I

t o •

Life Life Life
[256;32] [256;16] [256;8]

• • • • 32.7

8 0 0 O 0 O 108 •
m m m m m m 8.18 9

0 4 8 12 16 20 24 28 32

P r o c e s s o r s
Figure 6: T i m e to c o m p l e t i o n of a 256 x 256 cel l Life g a m e , d i v i d e d into processes of s i ze 32 x 32, 16 x 16, and 8 x 8 ce l l s
respect ive ly .

89

During the in termedia te stable per iod of COMMO*'s
execution events happen at each integral s imulat ion
time, and at each such epoch there are approximate ly
75-85 processes with events scheduled (mostly, but not
exactly, the same processes each time). These events
vary over an order of magni tude in the real t ime it
takes to s imulate them, so the model is not very well
balanced. We regard this as typical of the kinds of
s imulat ions people will actually write. The 15 most
computa t iona l ly intensive processes (of 130) account
for about 3.0% each of all cycles when COMMO* is exe-
cuted sequentially. Since that 3% mus t be executed
sequent ia l ly under TWOS as well, we know a priori
that there can be no more than a factor of 33 speedup
possible in this application, even if all processes were
independen t of one another. Since they are not at all
i ndependen t there is surely considerably less than 33-
fold concurrency available, but it is difficult to est imate
how much less. The impor tan t thing is that COMMO*
is exceedingly i rregular in its behavior. It is in tended to
be as realistic and complex as possible for its size. Fur-
ther details are available on request from the authors.

The graph in Figure 7 shows the t ime-to-complet ion of
COMMO* under TWOS as a function of the number of
processors. The m i n i m u m t ime of 166 seconds was
with 24 nodes. After 16 processors with a t ime of 201
seconds (when the 15 cycle-hogs could all be by them-
selves on different processors) there is little addi t ional
i m p r o v e m e n t .

1 8 0 0

1 6 0 0

1 4 0 0

1 2 0 0

T i m e 1 0 0 0

(s e c) 8 0 0

6 0 0

4 0 0

2 0 0

0

In Figure 8 the same t iming data is plot ted as speedup.
There are two curves, one calculated using as a basis the
t ime to execute COMMO* under TWOS on one node,
and the other, propor t ional to the first, using as a basis
the time it took to execute COMMO* using a sequential
event-l ist s imulator on one node of the Hypercube. As
the graph shows, we obtained a max imum speedup
(relative to TWOS on one node) of 10.66 using 24 pro-
cessors. At 16 nodes the speedup was a l ready 8.62. For
regu la r ly -shaped computa t ions one can usual ly sustain
l inear speedups until some critical point where the
performance abrupt ly flattens out. For i r regular com-
puta t ions one expects a smoother decline in efficiency,
which is exactly wha t we observe here. Notice that the
speedup in Figure 8 is near ly l inear for small numbers
of processor, but that d iminishing returns sets in after
about seven nodes. This is to be expected with a small
s imulat ion that has only a modes t amount of concur-
rency available; for larger models the near- l ineari ty
should be sustainable much longer. After 24 nodes the
speedup declines sl ightly and rather erratically. We do
not know as of this wri t ing whether that is because of
characteristics in the model , or (more likely) because we
have not yet found the best assignments of processes to
processors for the largest numbers of nodes.

0

• 1767 sec

j 1364 sec

i
TW 1.05
Commo 15
130 Objects
Seq Time 1364 secs
5 August 87 DD

166 sec /
I I I I I I I

4 8 1 2 1 6 2 0 2 4 2 8
I

3 2

P r o c e s s o r s

Figure 7: T ime to completion of the irregular model COMMO*

90

1 0 . 6 6 , ~
11 .0

10 .0 • •

9 . 0 • • • • •

8.0 • • o o O

7 .0 o o o o o

• - 'V '-' v = " e e a u " 6 . 0 • • o
• O

5.0 • o TW 1.05 J
4.0 0 o o °

I
Commo 15

3 .0 • o 130 Objects = o
2 .0 i o 5 August 87 DD

O 1 . 0 8

0.0 t t J t t t J t

0 4 8 12 16 20 24 2 8 32

P r o c e s s o r s

• Relative to 1-node Time Warp execution

o Relative to sequential execution

Figure 8: Speedup of COMMO*

R o l l b a c k s

(Thousands)

22

20

18

16

14

12

10

8

6

4

2

0

0 4 8 12

A

16 20

P r o c e s s o r s

TW 1.05
Commo 15
130 Objects
5 August 87

2 4 28 32

DD

Figure 9: Number of rollbacks in runs of COMMO*

91

30

2 5

A n t i - 20
messages

(Thousands) 15

Events +
queries + 1 0
rep l i es

5 •

0
0 4 8 1 2 1 6 2 0 2 4

P r o c e s s o r s

Q

TW 1.05
Commo 15
130 Objects
5 August 87 DD

|

28 3 2

Figure 10: Number of antimessages sent during runs of COMMO*

The total number of rollbacks experienced during exec-
ution is shown in Figure 9. We count only those roll-
backs that cause recomputation of events or queries; we
do not count "technical rollbacks" that involve setting
back a virtual clock without any recomputation, e.g. a
rollback from ~ to a finite time. The latter numbered
from about 39,000 to 51,000. As can be readily seen, the
number of rollbacks generally increases with the num-
ber of processors used. Combining this with the results
of Figure 8 indicates that achieving more speedup re-
quires m o r e rollbacks, contrary to what one might ex-
pect at first thought. This is consistent with the theo-
retical observation that rollbacks generally do not occur
in those portions of the execution that are the current
bottleneck, i.e. are farthest behind in simulation time.
The single fastest run (24 processors) did not have an
unusual ly low number of rollbacks.

One of the early performance questions about Time
Warp was the amount of overhead caused by negative
messages. Figure 10 shows that across all of the runs of
COMMO* the maximum number of antimessages
transmitted was slightly more than 29,272 (in the run
with 26 processors). Each annihilated a positive mess-
age. Since 116,461 messages of all kinds were transmit-
ted but were not annihilated, the total message traffic in
that run was 175,005 messages. Thus, a maximum of
58,544 out of the 175,005 messages were synchronization
overhead, or about 33.4% of the total.

9. C o n c l u s i o n s :

The Time Warp Operating System now runs reliably on
the JPL Mark III Hypercube, and is capable of extracting
at least an order of magnitude of speedup in at least one
relatively small and irregular simulation. We have
every reason to believe that much more speedup is
available in larger models, and that we will be able to
demonstrate that when we have access to more than 32
processors.

Much more empirical work, particularly with addition-
al and larger benchmarks being built now, is necessary
before we will fully understand the dynamics of the
Time Warp mechanism. Among the important
questions not yet addressed are:

(a) How does Time Warp's performance degrade as
memory gets tight?

(b) H o w much additional performance gain is pos-
sible from dynamic load management?

(c) H o w should the key tuning parameters
(frequency of state saving, frequency of GVT
calculation, etc.) be set?

(d) Where are there opportunities for hardware
support to reduce overhead and allow for reduced
granulari ty?

92

(e) How should Time Warp be reimplemented to
take full advantage of shared memory architectures?

(f) What tools and environments should be built to
support distributed simulation?

These are questions we will be investigating in the next
years.

Acknowledgments

This work was funded by the U.S. Army Model Im-
provement Program (AMIP) Management Office
(AMMO), NASA contract NAS7-918, Task Order
RE-182, Amendment No. 239, ATZL-CAN-DO.

The authors would like to thank Jack Fanselow and
Dave Curkendall of JPL and Geoffrey Fox of Caltech for
their longstanding cooperation with this project, and
for lending Mark III time for making the measure-
ments reported here. We thank Col. Kenneth Wier-
sema and the Army Model Improvement Program for
consistent sponsorship over three years. We also wish
to acknowledge the contributions of Orna Berry, Anat
Gafni, and Andrej Witkowski to the theory of Time
Warp, and of Henry Sowizral as the co-inventor of the
Time Warp mechanism.

References

[Berry 86] Berry, Orna, "Performance Evaluation of the
Time Warp Distributed Simulation Mechan-
ism", Ph.D. Dissertation, Dept. of Computer
Science, University of Southern California, May
1986

[Chandy 81] Chandy, K.M., and Misra, Jayadev,
"Asynchronous distributed simulation via a se-
quence of parallel computations", Communica-
tions of the ACM, Vol. 24, No. 4, April 1981

[Fox, 85] Fox, Geoffrey, "Use of the Caltech Hypercube",
IEEE Software, Vol. 2, p. 73, July 1985

[Gafni 85] Gafni, Anat, "Space Management and Can-
cellation Mechanisms for Time Warp", Ph.D.
Dissertation, Dept. of Computer Science,
University of Southern California, TR-85-341,
December 1985

[Jefferson 85] Jefferson, David, "Virtual Time", ACM
Transactions on Programming Languages and
Systems, Vol. 7, No. 3, July 1985

[Jefferson 82] Jefferson, David and Sowizral, Henry,
"Fast Concurrent Simulation Using the Time
Warp Mechanism, Part I: Local Control", Rand
Note N-1906AF, the Rand Corporation, Santa
Monica, California, Dec. 1982

[Joyce 87] Joyce, J., Lomow, G.A., Slind, K., Unger, B.W.,
"Monitoring Distributed Systems", ACM
Transactions on Computer Systems, Vol. 5, No.
2, May 1987

[Lamport 78] Lamport, Leslie, "Time, clocks and the or-
dering of events in a distributed system",
Communications of the ACM, Vol. 21, No. 7,
July 1978

[Li 87] Li, X., Unger, B. W., "Languages for Distributed
Simulation", Proceedings of the Conference on
Simulation and AI, Simulation Series, Vol 18,
No. 3, January 1987

[Misra 86] Misra, Jayadev, "Distributed Discrete Event
Simulation", Computing Surveys, Vol 18, No. 1,
March 1986

[Peterson 85] Peterson, J.C., J. Tuazon, D. Lieberman, M.
Pinel, "Caltech/JPL Hypercube Concurrent Pro-
cessor", Proceedings of 1985 International Con-
ference on Parallel Processing, St. Charles, Ill.,
Aug. 1985

[Reynolds 82] Reynolds, Paul, "A Shared Resource Al-
gorithm for Distributed Simulation", Proceed-
ings of the 9th International Symposium on
Computer Architecture, Austin, Texas, IEEE,
New York

[West 87] West, D., Lomow, G., Unger, B.W., "Optim-
izing Time Warp Using the Semantics of Ab-
stract Data Types", Proceedings of the Conference
on Simulation and AI ,Simulation Series, Vol 18,
No. 3, January 1987

[Xiao 86] Xiao, Z., Unger, B.W., Cleary, J., Lomow, G., Li,
X., Slind, K., "Jade Virtual Time Implementation
Manual", Research Report No. 86/242/16, Dept.
of Computer Science, University of Calgary, Cal-
gary, Alberta

93

