
CLEARING UP MYSTERIES { THE ORIGINAL GOAL y

E. T. Jaynesz

Wayman Crow Professor of Physics
Washington University, St. Louis MO, U.S.A.

Abstract : We show how the character of a scienti�c theory depends on one's attitude toward proba-
bility. Many circumstances seem mysterious or paradoxical to one who thinks that probabilities are
real physical properties existing in Nature. But when we adopt the \Bayesian Inference" viewpoint
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INTRODUCTORY REMARKS

Our group has the honour to be among the �rst to use this splendid new Fisher building with
its 300 seat auditorium. But perhaps, at a meeting concerned with Bayesian inference, we should
clarify which Fisher inspired that name.

St. John's College was founded in the year 1511, its foundress being the Lady Margaret
Beaufort. John Fisher was then Chancellor of the University of Cambridge, and after her death he
found himself obliged to make heroic e�orts to ensure that her wishes were carried out. But for
those e�orts, made some 480 years ago, St. John's College would not exist today. Historians have
suggested that, but for the e�orts of John Fisher in holding things together through a turbulent
period, the entire University of Cambridge might not exist today.

Although the terms \Bayesian" and \Maximum Entropy" appear prominently in the announce-
ments of our meetings, our e�orts are somewhat more general. Stated broadly, we are concerned
with this: \What are the theoretically valid, and pragmatically useful, ways of applying probability
theory in science?"

The new advances of concern to us 
ow from the recognition that, in almost all respects that
matter, the correct answers were given here in St. John's College some �fty years ago, by Sir
Harold Je�reys. He stated the general philosophy of what scienti�c inference is, fully and correctly,
for the �rst time; and then proceeded to carry both the mathematical theory and its practical
implementation farther than anyone can believe today, who has not studied his works.

The ideas were subtle, and it required a long time for their merit to be appreciated; but we
can take satisfaction in knowing that Sir Harold has lived to see a younger generation of scientists
eagerly reading, and pro�ting by, his work. In September 1983 I had a long, delightful conversation
over tea with Sir Harold and Lady Je�reys, and know how pleased they both were.

Important progress is now being made in many areas of science by adopting the viewpoint
and extending the methods of Harold Je�reys. Even those of us who were long since convinced of
their theoretical merit are often astonished to discover the amount of numerical improvement over
\orthodox" statistical methods, that they can yield when programmed into computers. It is hardly
ever small except in trivial problems, and nontrivial cases have come up where they yield orders of
magnitude better sensitivity and resolution in extracting information from data.

This means that in some areas, such as magnetic resonance spectroscopy, it is now possible
to conduct quantitative study of phenomena which were not accessible to observation at all by the
previously used Fourier transform methods of data analysis; old data may have a new lease on life.
The technical details of this are to appear in the forthcoming book of G. L. Bretthorst (1988).

Even when the numerical improvement is small, the greater computational e�ciency of the
Je�reys methods, which can reduce the dimensionality of a search algorithm by eliminating unin-
teresting parameters at the start, can mean the di�erence between what is feasible and what is not,
with a given computer. As the complexity of our problems increases, so does the relative advantage
of the Je�reys methods; therefore we think that in the future they will become a practical necessity
for all workers in the quantitative sciences.

How �tting it is that this meeting is being held back where these advances started. Our thanks
to the Master and Council of St. John's College, who made it possible.

THE MOTIVATION

Probability theory is a versatile tool, which can serve many di�erent purposes. The earliest signs of
my own interest in the �eld involved not data analysis, but recognition that the Je�reys viewpoint
can clear up outstanding mysteries in theoretical physics, by raising our standards of logic. As James
Clerk Maxwell wrote over 100 years ago and Harold Je�reys quoted 50 years ago, probability theory
is itself the true logic of science.
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The recent emphasis on the data analysis aspect stems from the availability of computers
and the failure of \orthodox" statistics to keep up with the needs of science. This created many
opportunities for us, about which other speakers will have a great deal to say here. But while
pursuing these important applications we should not lose sight of the original goal, which is in a
sense even more fundamental to science. Therefore in this opening talk we want to point out a
�eld ripe for exploration by giving three examples, from widely di�erent areas, of how scienti�c
mysteries are cleared up, and paradoxes become platitudes, when we adopt the Je�reys viewpoint.
Once the logic of it is seen, it becomes evident that there are many other mysteries, in all sciences,
calling out for the same treatment.

The �rst example is a simple exercise in kinetic theory that has puzzled generations of physics
students: how does one calculate a di�usion coe�cient and not get zero? The second concerns the
currently interesting Einstein{Podolsky{Rosen paradox and Bell inequality mysteries in quantum
theory: do physical in
uences travel faster than light? The third reexamines the old mystery about
whether thermodynamics applies to biology: does the high e�ciency of our muscles violate the
second law?

DIFFUSION

Think, for de�niteness, of a solution of sugar in water, so dilute that each sugar molecule interacts
constantly with the surrounding water, but almost never encounters another sugar molecule. At
time t = 0 the sugar concentration varies with position according to a function n(x; 0). At a later
time we expect that these variations will smooth out, and eventually n(x; t) will tend to a uniform
distribution.

Since sugar molecules { or as we shall call them, \particles" { are not created or destroyed, it
seems natural to think that there must have been a di�usion current, or 
ux J(x; t) carrying them
from the high density regions to the low, so that the change in density with time is accounted for
by the conservation law:

@n

@t
+ div(J) = 0 : (1)

Phenomenologically, Fick's law relates this to the density gradient:

J = �D grad(n) (2)

In the case of sugars, the di�usion coe�cient D is easy to measure by optical rotation. In Maxwell's
great Encyclopaedia Brittanica article on di�usion he quotes the experimental result of Voit for
sucrose: D = 3:65� 10�5 square cm/sec.

Our present problem is: how do we calculate J(x; t) from �rst principles? Maxwell gave the
simple kinetic theory of di�usion in gases, based on the idea of the mean free path. But in a liquid
there is no mean free path. Maxwell, who died in 1879, never knew the general theoretical formula
for the di�usion coe�cient which we now seek, and which applies equally to gases, liquids, and
solids.

Only with the work of Einstein in the �rst decade of this Century were the beginnings made
in seeing how to deal with the problem, culminating �nally in the correct formula for the di�usion
coe�cient. But Einstein had to work at it harder than we shall, because he did not have Harold
Je�reys around to show him how to use probability theory.y

It would seem that, given where a particle is now, we should �nd its velocity v, and summing
this over all particles in a small region would give the local 
ux J(x; t). However, the instantaneous

y As far as we have been able to determine, Je�reys' view of probability theory was unknown in continental
Europe throughout Einstein's lifetime; this was a handicap to Einstein in more ways than one.
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velocity of a particle is 
uctuating wildly, with a mean{square value given by the Rayleigh{Jeans
equipartition law; and that is not the velocity we seek. Superposed on this rapidly 
uctuating
and reversing thermal velocity, of the order of 100 meters/sec, is a very much slower average drift
velocity representing di�usion, which is our present interest.

Given where a particle is now, x(t), its average velocity over a time interval 2� centered at the
present is

�v =
x(t+ �)� x(t� �)

2�
(3)

so if we make our best estimate of where the particle will be a time � in the future that is long
on the time scale of thermal 
uctuations, and where it was an equal time in the past, we have an
estimate of its average slow velocity about the present time. The probability that it will move from
x(t) to y � x(t+ �) in the future is given by some distribution P (yjx; �). Its motion is the result
of a large number of small increments (encounters with individual water molecules). Therefore the
Central Limit Theorem, interpreted with the judgment that scientists develop (but cannot always
explain to mathematicians, because it draws on extra information that a mathematician would
never use in proving the theorem) tells us that this will have a Gaussian form, and from symmetry
the mean displacement is zero:

P (yjx; I) = A exp[� (y � x)2=2�2(�)] (4)

where I stands for the general prior information stated or implied in our formulation of the problem.
All the analysis one could make of the dynamics of sugar{water interactions would, in the end, serve
only to determine the spreading function �2(�) = (�x)2, the expected square of the displacement.

But now our trouble begins; the particle is as likely to be battered to the right as to the left;
so from symmetry, the expectation of y is hyi = x. Now all the equations of motion, however
complicated, are at least time{reversal invariant. Therefore for the past position z � x(t � �),
conventional reasoning says that we should have the same probability distribution (4) which is
independent of the sign of � , and again hzi = x(t). Therefore the estimated velocity is zero.

Surely, this must be right, for our particle, interacting only with the surrounding water, has no
way of knowing that other sugar molecules are present, much less that there is any density gradient.
From the standpoint of dynamics alone (i.e., forces and equations of motion) there is nothing that
can give it any tendency to drift to regions of lower rather than higher density. Yet di�usion does
happen!

In the face of this dilemma, Einstein was forced to invent strange, roundabout arguments {
half theoretical, half phenomenological { in order to get a formula for di�usion. For example,
�rst estimate how the density n(x; t) would be changed a long time in the future by combining the
distributions (4) generated by many di�erent particles, then substitute it into the phenomenological
di�usion equation that we get by combining (1) and (2); and from that reason backwards to the
present time to see what the di�usion 
ux must have been.

This kind of indirect reasoning has been followed faithfully ever since in treatments of irre-
versible processes, because it has seemed to be the only thing that works. Attempts to calculate a

ux directly at the present time give zero from symmetry, so one resorts to \forward integration"
followed by backward reasoning. Yet this puzzles every thoughtful student, who thinks that we
ought to be able to solve the problem by direct reasoning: calculate the 
ux J(x; t) here and now,
straight out of the physics of the situation. That symmetry cannot be exactly right; but where is
the error in the reasoning?.

Furthermore, instead of our having to assume a phenomenological form, a correct analysis
ought to give it automatically; i.e., it should tell us from �rst principles why it is the density
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gradient, and not some other function of the density, that matters, and also under what conditions
this will be true. Evidently, we have a real mystery here.

Why did our �rst attempt at direct reasoning fail? Because the problem is not one of physical
prediction from the dynamics; it is a problem of inference. The question is not \How do the
equations of motion require the particles to move about on the average?" The equations of motion
do not require them to move about at all. The question is: \What is the best estimate we can make
about how the particles are in fact moving in the present instance, based on all the information we
have?" The equations of motion are symmetric in past and future; but our information about the
particles is not.

Given the present position of a particle, what can we say about its future position? The zero
movement answer above was correct; for predicting where it will be in the future, the knowledge of
where it is now makes all prior information about where it might have been in the past irrelevant.
But estimating where it was in the past is not a time{reversed mirror image of this, for we have
prior knowledge of the varying density of particles in the past. Knowledge of where it is now does
not make that prior knowledge irrelevant; and sound logic must take both into account.

Let us restate this in di�erent language. Eq. (4) expresses an average over the class of all
possible motions compatible with the dynamics, in which movements to the right and the left have,
from symmetry, equal weight. But of course, our particular particle is in fact executing only one of
those motions. Our prior information selects out of the class of all possibilities in (4) a smaller class
in which our particle is likely to be, in which movements to the right and left do not have equal
weight. It is not the dynamics, but the prior information, that breaks the symmetry and leads us
to predict a non{zero 
ux.

While P (xjz; t) is a direct probability, the same function as (4), the probability we now need
is P (zjx; t), an inverse probability which requires the use of Bayes' theorem:

P (zjx; t; I) = AP (zjI)P (xjz; I) : (5)

The prior probability P (zjI) is clearly proportional to n(z), and so from (3)

logP (zjx; I) = logn(z)� (z � x)2=2�2(�) + (const:) : (6)

Di�erentiating, the most probable value of the past position z is not x, but

ẑ = x+ �2 grad(logn) = x+ (�x)2 grad(logn) (7)

whereupon, substituting into (3) we estimate the drift velocity to be

�v = �(�x)2=2� grad(logn) (8)

and our predicted average di�usion 
ux over the time interval 2� is

J(x; t) = n�v = �(�x)2=2� grad(n) : (9)

Bayes' theorem has given us just Einstein's formula for the di�usion coe�cient:

D =
(�x)2

2�
(10)

and a good deal more. We did not assume that grad(n) was the appropriate phenomenological form;
Bayes' theorem told us that automatically. At the same time, it told us the condition for validity of
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that form; unless (�x)2 is proportional to � , there will be no unique di�usion coe�cient, but only
a sequence of apparent di�usion coe�cients D(�) for the average drift over di�erent time intervals
2� . Then the 
ux J(x; t) will depend on other properties of n(x; t) than its present gradient, and
in place of (2) a more complete Bayesian analysis will give a di�erent phenomenological relation,
involving an average of grad(n) over a short time in the past. Thus (9) is only the beginning of the
physical predictions that we can extract by Bayesian analysis.

While (8) is the best estimate of the average velocity that we could make from the assumed
information, it does not determine the velocity of any one particle very well. But what matters is
the prediction of the observable net 
ux of N particles. In principle we should have calculated the
joint posterior distribution for the velocities of N particles, and estimated their sum. But since
that distribution factors, the calculation reduces to N repetitions of the above one, and the relative
accuracy of the prediction improves like

p
N , the usual rule in probability theory.

In practice, with perhaps 0:001M sugar solutions, the relevant values of N are of the order
of 1016, and the prediction is highly reliable, in the following sense: for the great majority of the
N{particle motions consistent with the information used, the 
ux is very close to the predicted
value.

DISCUSSION

The above example may indicate the price that kinetic theory has paid for its failure to comprehend
and use the Bayesian methods that Harold Je�reys gave us 50 years ago, and how many other
puzzles need to be reexamined from that viewpoint. The only reason why the 
uxes persisted in
being zero was failure to put the obviously necessary prior information into the probabilities. But
as long as one thinks that probabilities are real physical properties of systems, it seems wrong to
modify a probability merely because our state of knowledge has changed.

The idea that probabilities can be used to represent our own information is still foreign to
\orthodox" teaching, although the above example shows what one gains by so doing. Orthodoxy
does not provide any technical means for taking prior information into account; yet that prior
information is often highly cogent, and sound reasoning requires that it be taken into account. In
other �elds this is considered a platitude; what would you think of a physician who looked only at
your present symptoms, and refused to take note of your medical history?

In the next talk, Ray Smith will survey the arguments of George P�olya and Richard Cox indi-
cating the sense in which Bayesian inference is uniquely determined by simple qualitative desiderata
of rationality and logical consistency. Here I want only to indicate something about the rationale
of their application in real problems.

Conventional training in the physical sciences concentrates attention 100% on physical predic-
tion; the word \inference" was never uttered once in all the science courses I ever took. Therefore,
the above example was chosen because its rationale is clear and the actual calculation is utterly
trivial; yet its power to yield not only results that previously required more work but also more
details about them, is apparent at once.

To appreciate the distinction between physical prediction and inference it is essential to rec-
ognize that propositions at two di�erent levels are involved. In physical prediction we are trying
to describe the real world; in inference we are describing only our state of knowledge about the
world. A philosopher would say that physical prediction operates at the ontological level, inference
at the epistemological level. Failure to see the distinction between reality and our knowledge of
reality puts us on the Royal Road to Confusion; this usually takes the form of the Mind Projection
Fallacy, discussed below.

The confusion proceeds to the following terminal phase: a Bayesian calculation like the above
one operates on the epistemological level and gives us only the best predictions that can be made
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from the information that was used in the calculation. But it is always possible that in the real
world there are extra controlling factors of which we were unaware; so our predictions may be
wrong. Then one who confuses inference with physical prediction would reject the calculation and
the method; but in so doing he would miss the point entirely.

For one who understands the di�erence between the epistemological and ontological levels,
a wrong prediction is not disconcerting; quite the opposite. For how else could we have learned
about those unknown factors? It is only when our epistemological predictions fail that we learn new
things about the real world; those are just the cases where probability theory is performing its most
valuable function. Therefore, to reject a Bayesian calculation because it has given us an incorrect
prediction is like disconnecting a �re alarm because that annoying bell keeps ringing. Probability
theory is trying to tell us something important, and it behooves us to listen.

THE MIND PROJECTION FALLACY

It is very di�cult to get this point across to those who think that in doing probability calculations
their equations are describing the real world. But that is claiming something that one could never
know to be true; we call it the Mind Projection Fallacy. The analogy is to a movie projector,
whereby things that exist only as marks on a tiny strip of �lm appear to be real objects moving
across a large screen. Similarly, we are all under an ego{driven temptation to project our private
thoughts out onto the real world, by supposing that the creations of one's own imagination are real
properties of Nature, or that one's own ignorance signi�es some kind of indecision on the part of
Nature.

The current literature of quantum theory is saturated with the Mind Projection Fallacy. Many
of us were �rst told, as undergraduates, about Bose and Fermi statistics by an argument like this:
\You and I cannot distinguish between the particles; therefore the particles behave di�erently than if
we could." Or the mysteries of the uncertainty principle were explained to us thus: \The momentum
of the particle is unknown; therefore it has a high kinetic energy." A standard of logic that would
be considered a psychiatric disorder in other �elds, is the accepted norm in quantum theory. But
this is really a form of arrogance, as if one were claiming to control Nature by psychokinesis.

In our more humble view of things, the probability distributions that we use for inference
do not describe any property of the world, only a certain state of information about the world.
This is not just a philosophical position; it gives us important technical advantages because of
the more 
exible way we can then use probability theory. In addition to giving us the means
to use prior information, it makes an analytical apparatus available for such things as eliminating
nuisance parameters, at which orthodox methods are helpless. This is a major reason for the greater
computational e�ciency of the Je�reys methods in data analysis.

In our system, a probability is a theoretical construct, on the epistemological level, which we
assign in order to represent a state of knowledge, or that we calculate from other probabilities
according to the rules of probability theory. A frequency is a property of the real world, on the
ontological level, that we measure or estimate. So for us, probability theory is not an Oracle telling
how the world must be; it is a mathematical tool for organizing, and ensuring the consistency of,
our own reasoning. But it is from this organized reasoning that we learn whether our state of
knowledge is adequate to describe the real world.

This point comes across much more strongly in our next example, where belief that probabilities
are real physical properties produces a major quandary for quantum theory, in the EPR paradox.
It is so bad that some have concluded, with the usual consistency of quantum theory, that (1) there
is no real world, after all, and (2) physical in
uences travel faster than light.

BACKGROUND OF EPR
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Quantum Mechanics (QM) is a system of mathematics that was not developed to express any
particular physical ideas, in the sense that the mathematics of relativity theory expresses the ideas
of Einstein, or that of genetics expresses the ideas of Mendel. Rather, it grew empirically, over
about four decades, through a long series of trial{and{error steps. But QM has two di�culties;
�rstly, like all empirical equations, the process by which it was found gives no clue as to its meaning.
QM has the additional di�culty that its predictions are incomplete, since in general it gives only
probabilities instead of de�nite predictions, and it does not indicate what extra information would
be required to make de�nite predictions.

Einstein and Schr�odinger saw this incompleteness as a defect calling for correction in some
future more complete theory. Niels Bohr tried instead to turn it into a merit by �tting it into
his philosophy of complementarity, according to which one can have two di�erent sets of concepts,
mutually incompatible, one set meaningful in one situation, the complementary set in another. As
several of his early acquaintances have testi�ed (Rozental, 1964), the idea of complementarity had
taken control of his mind years before he started to study quantum physics.

Bohr's \Copenhagen Theory" held that, even when the QM state vector gives only proba-
bilities, it is a complete description of reality in the sense that nothing more can ever be known;
not because of technological limitations, but as a matter of fundamental principle. It seemed to
Einstein that this completeness claim was a gratuitous addition, in no way called for by the facts;
and he tried to refute it by inventing thought experiments which would enable one to get more
information than Bohr wished us to have. Somehow, the belief has been promulgated that Bohr
successfully answered all of Einstein's objections.

But when we examine Bohr's arguments, we �nd a common logical structure; always they
start by postulating that the available measurement apparatus is subject to his \uncertainty"
limitations; and then by using only classical physics (essentially, only Liouville's theorem) they
come to the conclusion that such an apparatus could not be used for Einstein's purpose. Bohr's
foregone conclusion is always assured by his initial postulate, which simply appears out of nowhere.
In our view, then, the issue remains open and we must raise our standards of logic before there can
be any hope of resolving it.

Leslie Ballentine (1970) analyzed the Bohr and Einstein positions and showed that much of the
chanting to the e�ect that \Bohr won, Einstein lost" is sustained by quoting Einstein's views and
attributing them to Bohr. Virtually all physicists who do real quantum{mechanical calculations
interpret their results in the sense of Einstein, according to which a pure state represents an
ensemble of similarly prepared systems and is thus an incomplete description of an individual
system. Bohr's completeness claim has never played any functional role in applications, and in that
sense it is indeed gratuitous.

CONFRONTATION OR RECONCILIATION?

Put most brie
y, Einstein held that the QM formalism is incomplete and that it is the job of
theoretical physics to supply the missing parts; Bohr claimed that there are no missing parts. To
most, their positions seemed diametrically opposed; however, if we can understand better what
Bohr was trying to say, it is possible to reconcile their positions and believe them both. Each had
an important truth to tell us.

But Bohr and Einstein could never understand each other because they were thinking on
di�erent levels. When Einstein says QM is incomplete, he means it in the ontological sense; when
Bohr says QM is complete, he means it in the epistemological sense. Recognizing this, their
statements are no longer contradictory. Indeed, Bohr's vague, puzzling sentences { always groping
for the right word, never �nding it { emerge from the fog and we see their underlying sense, if we
keep in mind that Bohr's thinking is never on the ontological level traditional in physics. Always
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he is discussing not Nature, but our information about Nature. But physics did not have the
vocabulary for expressing ideas on that level, hence the groping.

Paul Dirac, who was also living here in St. John's College at the time when he and Harold
Je�reys were doing their most important work side by side, seems never to have realized what
Je�reys had to o�er him: probability theory as the vehicle for expressing epistemological notions
quantitatively. It appears to us that, had either Bohr or Dirac understood the work of Je�reys,
the recent history of theoretical physics might have been very di�erent. They would have had
the language and technical apparatus with which Bohr's ideas could be stated and worked out
precisely without mysticism. Had they done this, and explained clearly the distinction between the
ontological and epistemological levels, Einstein would have understood it and accepted it at once.

Needless to say, we consider all of Einstein's reasoning and conclusions correct on his level;
but on the other hand we think that Bohr was equally correct on his level, in saying that the act of
measurement might perturb the system being measured, placing a limitation on the information we
can acquire and therefore on the predictions we are able to make. There is nothing that one could
object to in this conjecture, although the burden of proof is on the person who makes it. But we part
company from Bohr when this metamorphoses without explanation into a claim that the limitation
on the predictions of the present QM formalism are also { in exact, minute detail { limitations on
the measurements that can be made in the laboratory!

Like Einstein, we can see no justi�cation at all for this gratuitous assumption. We need a
more orderly division of labour; it is simply not the proper business of theoretical physics to make
pronouncements about what can and what cannot be measured in the laboratory, any more than
it would be for an experimenter to issue proclamations about what can and cannot be predicted in
the theory.

The issue of what kind of limitation on measurement really exists { or indeed, whether any
limitation at all exists { is still logically an open question, that belongs to the province of the
experimenter; but we may be able to settle it soon in the quantum optics laboratory, thanks to the
spectacular recent advances in experimental techniques such as those by H. Walther and coworkers
(Rempe et al, 1987) as discussed by Knight (1987) and in the Scienti�c American (June 1987,
p. 25).

We believe that to achieve a rational picture of the world it is necessary to set up another clear
division of labour within theoretical physics; it is the job of the laws of physics to describe physical
causation at the level of ontology, and the job of probability theory to describe human inferences
at the level of epistemology. The Copenhagen theory scrambles these very di�erent functions into
a nasty omelette in which the distinction between reality and our knowledge of reality is lost.

Although we agree with Bohr that in di�erent circumstances (di�erent states of knowledge)
di�erent quantities are predictable, in our view this does not cause the concepts themselves to
fade in and out; valid concepts are not mutually incompatible. Therefore, to express precisely
the e�ect of disturbance by measurement, on our information and our ability to predict, is not a
philosophical problem calling for complementarity; it is a technical problem calling for probability
theory as expounded by Je�reys, and information theory. Indeed, we know that toward the end of
his life, Bohr showed an interest in information theory.

EPR

But to return to the historical account; somehow, many physicists became persuaded that the
success of the QM mathematical formalism proved the correctness of Bohr's private philosophy,
even though hardly any { even among his disciples { understood what that philosophy was. All the
attempts of Einstein, Schr�odinger, and others to point out the patent illogic of this were rejected
and sneered at; it is a worthy project for future psychologists to explain why.
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The Einstein{Podolsky{Rosen (EPR) article of 1935 is Einstein's major e�ort to explain his
objection to the completeness claim by an example that he thought was so forceful that nobody
could miss the point. Two systems, S1 and S2, that were in interaction in the past are now
separated, but they remain jointly in a pure state. Then EPR showed that according to QM an
experimenter can measure a quantity q1 in S1, whereupon he can predict with certainty the value
of q2 in S2. But he can equally well decide to measure a quantity p1 that does not commute with
q1; whereupon he can predict with certainty the value of p2 in S2.

The systems can be so far apart that no light signal could have traveled between them in
the time interval between the S1 and S2 measurements. Therefore, by means that could exert no
causal in
uence on S2 according to relativity theory, one can predict with certainty either of two
noncommuting quantities, q2 and p2. EPR concluded that both q2 and p2 must have had existence
as de�nite physical quantities before the measurements; but since no QM state vector is capable of
representing this, the state vector cannot be the whole story.

Since today some think that merely to verify the correlations experimentally is to refute the
EPR argument, let us stress that EPR did not question the existence of the correlations, which are
to be expected in a classical theory. Indeed, were the correlations absent, their argument against the
QM formalism would have failed. Their complaint was that, with physical causation unavailable,
only instantaneous psychokinesis (the experimenter's free{will decision which experiment to do) is
left to control distant events, the forcing of S2 into an eigenstate of either q2 or p2. Einstein called
this \a spooky kind of action at a distance".

To understand this, we must keep in mind that Einstein's thinking is always on the ontolog-
ical level; the purpose of the EPR argument was to show that the QM state vector cannot be a
representation of the \real physical situation" of a system. Bohr had never claimed that it was,
although his strange way of expressing himself often led others to think that he was claiming this.

From his reply to EPR, we �nd that Bohr's position was like this: \You may decide, of your
own free will, which experiment to do. If you do experiment E1 you will get result R1. If you
do E2 you will get R2. Since it is fundamentally impossible to do both on the same system, and
the present theory correctly predicts the results of either, how can you say that the theory is
incomplete? What more can one ask of a theory?"

While it is easy to understand and agree with this on the epistemological level, the answer that
I and many others would give is that we expect a physical theory to do more than merely predict
experimental results in the manner of an empirical equation; we want to come down to Einstein's
ontological level and understand what is happening when an atom emits light, when a spin enters a
Stern{Gerlach magnet, etc. The Copenhagen theory, having no answer to any question of the form:
\What is really happening when - - - ?", forbids us to ask such questions and tries to persuade
us that it is philosophically na��ve to want to know what is happening. But I do want to know,
and I do not think this is na��ve; and so for me QM is not a physical theory at all, only an empty
mathematical shell in which a future theory may, perhaps, be built.

THE BELL INEQUALITIES

John Bell (1964) studied a simple realization of the EPR scenario in which two spin 1/2 particles
denoted by A and B were jointly in a pure singlet state (like the ground state of the Helium atom)
in the past. This is ionized by a spin{independent interaction and they move far apart, but they
remain jointly in a pure singlet state, in which their spins are perfectly anticorrelated.

Each of two experimenters, stationed at A and B, has a Stern{Gerlach apparatus, which he
can rotate to any angle. Following Bell's notation, we denote by P (Aja) the probability that spin
A will be found up in the direction of the unit vector \a"; and likewise P (Bjb) refers to spin B
being up in the direction \b". For a singlet state, these are each equal to 1/2 from symmetry. The
spooky business appears in the joint probability, which QM gives as
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P (ABjab) = 1

2
sin2(�=2) (11)

where cos � = a � b. This does not factor in the form P (ABjab) = P (Aja)P (Bjb) as one might
expect for independent measurements. We can measure A in any direction we please; whereupon
we can predict with certainty the value of B in the same direction.

From this, EPR would naturally conclude that the results of all possible measurements on B
were predetermined by the real physical situation at B; i.e., if we �nd B up in any direction b,
then we would have found the same result whether or not the A measurement was made. Bohr
would consider this a meaningless statement, since there is no way to verify it or refute it. Also,
he would stress that we can measure B in only one direction, whereupon the perturbation of the
measurement destroys whatever might have been seen in any other direction. Note that, as always,
Bohr is epistemological; the notion of a \real physical situation" is just not in his vocabulary or his
thinking.

EPR will then require some hidden variables in addition to the QM state vector to de�ne
that \real physical situation" which is to predetermine the results of all measurements on B. Bell,
seeking to accommodate them, de�nes a class of hidden variable theories { call them Bell theories {
in which a set of variables denoted collectively by � also in
uences the outcomes A and B. It
appears to him that the intentions of EPR are expressed in the most general way by writing

P (ABjab) =
Z
P (Aja; �)P (Bjb; �) p(�)d� (12)

and he derives some inequalities that must be satis�ed by any probability expressible in this form.
But the QM probabilities easily violate these inequalities, and therefore they cannot result from
any Bell theory. Let us understand at exactly what point in Bell's reasoning the con
ict with QM
is introduced.

Of course, the fundamentally correct relation according to probability theory would be,

P (ABjab) =
Z
P (ABjab�)P (�jab) d� : (13)

But if we grant that knowledge of the experimenters' free choices (a; b) would give us no information
about �: P (�jab) = p(�) (and in this verbiage we too are being carefully epistemological), then
Bell's interpretation of the EPR intentions lies in the factorization

P (ABjab�) = P (Aja�)P (Bjb�) (14)

whereas the fundamentally correct factorization would read:

P (ABjab�) = P (AjBab�)P (Bjab�) = P (Ajab�)P (BjAab�) (15)

in which both a; b always appear as conditioning statements. However, Bell (1987) thinks that the
EPR demand for locality, in which events at A should not in
uence events at B when the interval
is spacelike, require the form (14). In his words: \It would be very remarkable if b proved to be
a causal factor for A, or a for B; i.e., if P (Aja�) depended on b or P (Bjb�) depended on a. But
according to quantum mechanics, such a dilemma can happen. Moreover, this peculiar long{range
in
uence in question seems to go faster than light".

Note, however, that merely knowing the direction of the A measurement does not change any
predictions at B, although it converts the initial pure singlet state into a mixture. It is easy to
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verify that according to QM, P (Bjab) = P (Bjb) = 1=2 for all a; b. As we would expect from (15),
it is necessary to know also the result of the A measurement before the correlation a�ects our
predictions; according to QM, P (BjAab) = (1� cos �)=2. Thus while the QM formalism disagrees
with Bell's factorization (14), it appears consistent with what we have called the \fundamentally
correct" probability relations (perhaps now it is clearer why we said that some of Bohr's ideas could
have been expressed precisely in Bayesian terms).

Equation (14) is, therefore, the point where Bell introduces a con
ict with QM. Recognizing
this, it is evident that one could produce any number of experimental tests where the predictions
of QM con
ict with various predictions of (14). The particular set of inequalities given by Bell
is only one example of this, and not even the most cogent one. We shall leave it as an exercise
for the reader to show that, at this point, application of Bayesian principles would have yielded a
signi�cance test for (14) that is more powerful than the Bell inequalities.y

Regardless, it seemed to everybody twenty years ago that the stage was set for an experimental
test of the issue; perform experiments where the predictions of quantum theory violate the Bell
inequalities, and see whether the data violate them also. If so, then all possible local theories {
whether causal or not { are demolished in a single stroke, and the Universe runs on psychokinesis.
At least, that was the reasoning.

The experiments designed to test this, of which the one of Alain Aspect (1985, 1986) is perhaps
the most cogent to date, have with only one exception ended with the verdict \quantum theory
con�rmed", and accordingly there has been quite a parade of physicists jumping on the bandwagon,
declaring publicly that they now believe in psychokinesis. Of course, they do not use that word;
but at the 1984 Santa Fe Workshop (Moore & Scully, 1986) more than one was heard to say:
\The experimental evidence now forces us to believe that atoms are not real." and nobody rose to
question this, although it made me wonder what they thought Alain's apparatus was made of.

Alain Aspect himself has remained admirably level{headed through all this, quite properly
challenging us to produce a classical explanation of his experiment; but at the same time refusing
to be stampeded into taking an obviously insane position as did some others. The dilemma is not
that the QM formalism is giving wrong predictions, but that the current attempts at interpreting
that formalism are giving us just that spooky picture of the world that Einstein anticipated and
objected to. Of course, those with a penchant for mysticism are delighted.

How do we get out of this? Just as Bell revealed hidden assumptions in von Neumann's
argument, so we need to reveal the hidden assumptions in Bell's argument. There are at least two
of them, both of which require the Je�reys viewpoint about probability to recognize:

(1) As his words above show, Bell took it for granted that a conditional probability P (X jY )
expresses a physical causal in
uence, exerted by Y on X . But we show presently that one
cannot even reason correctly in so simple a problem as drawing two balls from Bernoulli's Urn,
if he interprets probabilities in this way. Fundamentally, consistency requires that conditional
probabilities express logical inferences, just as Harold Je�reys saw. Indeed, this is also the
crucial point that Bohr made in his reply to EPR, in words that Bell quoted and which we
repeat below.

(2) The class of Bell theories does not include all local hidden variable theories; it appears to
us that it excludes just the class of theories that Einstein would have liked most. Again, we
need to learn from Je�reys the distinction between the epistemological probabilities of the
QM formalism and the ontological frequencies that we measure in our experiments. A hidden

y As we noted long ago (Jaynes, 1973), In the optical \photon correlation" experiment where according to
QM the two photons have parallel polarization, the non{existence of correlations when the polarizers are at
a 90 degree angle is a more sensitive (and experimentally simpler) test of QM than are the Bell inequalities.
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variable theory need not reproduce the mathematical form of the QM probabilities in the
manner of (12) in order to predict the same observable facts that QM does.

The spooky superluminal stu� would follow from Hidden Assumption (1); but that assumption
disappears as soon as we recognize, with Je�reys and Bohr, that what is traveling faster than light
is not a physical causal in
uence, but only a logical inference. Here is Bohr's quoted statement
(italics his):

\Of course there is in a case like that just considered no question of a mechanical disturbance of the
system under investigation during the last critical phase of the measuring procedure. But even at this
stage there is essentially the question of an in
uence on the very conditions which de�ne the possible

types of predictions regarding the future behavior of the system."

After quoting these words, Bell added: \Indeed I have very little idea what this means." And
we must admit that this is a prime example of the cryptic obscurity of Bohr's writings. So {
with the bene�t of some forty years of contemplating that statement in the context of his other
writings { here is our attempt to translate Bohr's statement into plain English:

\The measurement at A at time t does not change the real physical situation at B; but it changes
our state of knowledge about that situation, and therefore it changes the predictions we are able to
make about B at some time t0 . Since this is a matter of logic rather than physical causation, there is
no action at a distance and no di�culty with relativity [also, it does not matter whether t0 is before,
equal to, or after t]."

Again we see how Bohr's epistemological viewpoint corresponds to Bayesian inference, and could
have been expressed precisely in Bayesian terms. However, Bohr could not bring himself to say it
as we did, because for him the phrase \real physical situation" was taboo.

But it may seem paradoxical that two di�erent pure states (eigenstates of noncommuting
quantities q2 and p2) can both represent the same real physical situation; if so, then perhaps the
conclusion is that one has learned an important fact about the relation of the QM state vector
to reality. This supports the Einstein view of the meaning of a pure state as an ensemble; for in
statistical mechanics it is a platitude that the true microstate may appear in two di�erent ensembles,
representing two di�erent states of knowledge about the microstate.

BERNOULLI'S URN REVISITED

De�ne the propositions:

I � \Our urn contains N balls, identical in every respect except that M of them are red, the
remaining N �M white. We have no information about the location of particular balls in
the urn. They are drawn out blindfolded without replacement."

Ri � \Red on the i'th draw, i = 1; 2; : : :"

Successive draws from the urn are a microcosm of the EPR experiment. For the �rst draw, given
only the prior information I , we have

P (R1jI) =M=N : (16)

Now if we know that red was found on the �rst draw, then that changes the contents of the urn for
the second:

P (R2jR1; I) = (M � 1)=(N � 1) (17)

and this conditional probability expresses the causal in
uence of the �rst draw on the second, in
just the way that Bell assumed.

But suppose we are told only that red was drawn on the second draw; what is now our probabil-
ity for red on the �rst draw? Whatever happens on the second draw cannot exert any physical in
u-
ence on the condition of the urn at the �rst draw; so presumably one who believes with Bell that a
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conditional probability expresses a physical causal in
uence, would say that P (R1jR2; I) = P (R1jI).
But this is patently wrong; probability theory requires that

P (R1jR2; I) = P (R2jR1; I) : (18)

This is particularly obvious in the case M = 1; for if we know that the one red ball was taken in
the second draw, then it is certain that it could not have been taken in the �rst.

In (18) the probability on the right expresses a physical causation, that on the left only an
inference. Nevertheless, the probabilities are necessarily equal because, although a later draw
cannot physically a�ect conditions at an earlier one, information about the result of the second
draw has precisely the same e�ect on our state of knowledge about what could have been taken in
the �rst draw, as if their order were reversed.

Eq. (18) is only a special case of a much more general result. The probability of drawing any
sequence of red and white balls (the hypergeometric distribution) depends only on the number of
red and white balls, not on the order in which they appear; i.e., it is an exchangeable distribution.
From this it follows by a simple calculation that for all i and j,

P (RijI) = P (Rj jI) =M=N (19)

That is, just as in QM, merely knowing that other draws have been made does not change our
prediction for any speci�ed draw, although it changes the hypothesis space in which the prediction
is made; before there is a change in the actual prediction it is necessary to know also the results of
other draws. But the joint probability is by the product rule,

P (Ri; RjjI) = P (RijRj ; I)P (RjjI) = P (Rj jRi; I)P (RijI) (20)

and so we have for all i and j,

P (RijRj; I) = P (Rj jRi; I) (21)

and again a conditional probability which expresses only an inference is necessarily equal to one that
expresses a physical causation. This would be true not only for the hypergeometric distribution,
but for any exchangeable distribution. We see from this how far Karl Popper would have got with
his \propensity" theory of probability, had he tried to apply it to a few simple problems.

It might be thought that this phenomenon is a peculiarity of probability theory. On the
contrary, it remains true even in pure deductive logic; for if A implies B, then not{B implies not{A.
But if we tried to interpret \A implies B" as meaning \A is the physical cause of B", we could
hardly accept that \not{B is the physical cause of not{A". Because of this lack of contraposition,
we cannot in general interpret logical implication as physical causation, any more than we can
conditional probability. Elementary facts like this are well understood in economics (Simon &
Rescher, 1966; Zellner, 1984); it is high time that they were recognized in theoretical physics.

OTHER HIDDEN { VARIABLE THEORIES

Now consider Hidden Assumption (2). Bell theories make no mention of time variation of the
hidden variable �; but if it is to take over the job formerly performed by the QM state vector  ,
then � must obey some equations of motion which are to replace the Schr�odinger equation.

This is important, because one way for a causal theory to get probability into things is time
alternation; for example, in conditions where present QM yields a time independent probability p
for spin up, � would be oscillating in such a way that for a fraction p of the time the result is \up",
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etc. Indeed, Einstein would have considered this the natural way to obtain the QM probabilities
from a causal theory, for in his early papers he de�ned the \probability of a state" as the fraction
of the time in which a system is in that state. But this is a relation between QM and the causal
theory of a di�erent nature than is supposed by the form (12).

At �rst glance, one might object to this statement by saying that Bell theories do not explicitly
forbid � to vary with time. But if it did, then (12) would not reproduce the QM probabilities; it
would yield time{dependent probabilities in situations where the QM probabilities are constant.
Indeed, if the Bell theory is a truly causal local theory the probabilities given by (12) could take
on only the values 0 and 1, and the QM probabilities would be time averages of them.

That time alternation theories di�er fundamentally from QM is clear also from the fact that
they predict new e�ects not in QM, that might in principle be observed experimentally, leading to
a crucial test. For example, when two spins are perfectly anticorrelated, that would presumably
signify that their �'s are oscillating in perfect synchronism so that, for a given result of the A
measurement, the exact time interval between the A and B measurements could determine the
actual result at B, not merely its QM probability. Then we would be penetrating the fog and
observing more than Bohr thought possible. The experiments of H. Walther and coworkers on
single atom masers are already showing some resemblance to the technology that would be required
to perform such an experiment.

We have shown only that some of the conclusions that have been drawn from the Bell{Aspect
work were premature because (1) the spooky stu� was due only to the mistaken assumption that a
conditional probability must signify a physical in
uence, and (2) the Bell arguments do not consider
all possible local theories; the Bell inequalities are only limitations on what can be predicted by Bell
theories. The Aspect experiment may show that such theories are untenable, but without further
analysis it leaves open the status of other local causal theories more to Einstein's liking.

That further analysis is, in fact, already underway. An important part of it has been provided
by Steve Gull's \You can't program two independently running computers to emulate the EPR
experiment" theorem, which we learned about at this meeting. It seems, at �rst glance, to be just
what we have needed because it could lead to more cogent tests of these issues than did the Bell
argument. The suggestion is that some of the QM predictions can be duplicated by local causal
theories only by invoking teleological elements as in the Wheeler{Feynman electrodynamics. If so,
then a crucial experiment would be to verify the QM predictions in such cases. It is not obvious
whether the Aspect experiment serves this purpose.

The implication seems to be that, if the QM predictions continue to be con�rmed, we exorcise
Bell's superluminal spook only to face Gull's teleological spook. However, we shall not rush to
premature judgments. Recalling that it required some 30 years to locate von Neumann's hidden
assumptions, and then over 20 years to locate Bell's, it seems reasonable to ask for a little time to
search for Gull's, before drawing conclusions and possibly suggesting new experiments.

In this discussion we have not found any con
ict between Bohr's position and Bayesian prob-
ability theory, which are both at the epistemological level. Nevertheless, di�erences appear on
more detailed examination to be reported elsewhere. Of course, the QM formalism also contains
fundamentally important and correct ontological elements; for example, there has to be something
physically real in the eigenvalues and matrix elements of the operators from which we obtain de-
tailed predictions of spectral lines. It seems that, to unscramble the epistemological probability
statements from the ontological elements we need to �nd a di�erent formalism, isomorphic in some
sense but based on di�erent variables; it was only through some weird mathematical accident that
it was possible to �nd a variable  which scrambles them up in the present way.

There is clearly a major, fundamentally important mystery still to be cleared up here; but
unless you maintain your faith that there is a rational explanation, you will never �nd that ex-
planation. For 60 years, acceptance of the Copenhagen interpretation has prevented any further
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progress in basic understanding of physical law. Harold Je�reys (1957) put it just right: \Science
at any moment does not claim to have explanations of everything; and acceptance of an inadequate
explanation discourages search for a good one."

Now let us turn to an area that seems about as di�erent as one could imagine, yet the underlying
logic of it hangs on the same point: What happens in the real world depends on physical law and is
on the level of ontology. What we can predict depends on our state of knowledge and is necessarily
on the level of epistemology. He who confuses reality with his knowledge of reality generates needless
arti�cial mysteries.

THE SECOND LAW IN BIOLOGY

As we learn in elementary thermodynamics, Kelvin's formula for the e�ciency of a Carnot heat
engine operating between upper and lower temperatures T1; T2:

� � 1� T2=T1 ; (22)

with equality if and only if the engine is reversible, expresses a limitation imposed by the second
law of thermodynamics. But the world's most universally available source of work { the animal
muscle { presents us with a seemingly 
agrant violation of that formula.

Our muscles deliver useful work when there is no cold reservoir at hand (on a hot day the
ambient temperature is at or above body temperature) and a na��ve application of (22) would lead
us to predict zero, or even negative e�ciency. The observed e�ciency of a muscle, de�ned as

� � (work done)

(work done + heat generated)

is di�cult to measure, and it is di�cult to �nd reliable experimental values with accounts of how
the experiments were done. We shall use only the latest value we have located, (Alberts, et al.
1983). The heat generated that can be attributed to muscle activity appears to be as low as about
3/7 of the work done; which implies that observed muscle e�ciencies can be as high as 70% in
favourable conditions, although a Carnot engine would require an upper temperature T1 of about
1000 K to achieve this. Many authors have wondered how this can be.

The obvious �rst answer is, of course, that a muscle is not a heat engine. It draws its energy,
not from any heat reservoir, but from the activated molecules produced by a chemical reaction.
Only when we �rst allow that primary energy to degrade itself into heat at temperature T1 { and
then extract only that heat for our engine { does the Kelvin e�ciency formula (22) apply in its
conventional meaning. It appears that our muscles have learned how to capture the primary energy
before it has a chance to degrade; but how do we relate this to the second law?

Basic material on muscle structure and energetics of biochemical reactions is given by Squire
(1981) and Lehninger (1982), and profusely illustrated by Alberts, et al (1983). The source of
energy for muscle contraction (and indeed for almost everything a cell does that requires energy) is
believed to be hydrolysis of adenosine triphosphate (ATP), for which the reported heat of reaction
is �H = { 9.9 kcal/mol, or 0.43 ev per molecule. This energy is delivered to some kind of \engine"
in a muscle �ber, from whence emerges useful work by contraction. The heat generated is carried
o� by the blood stream, at body temperature, 273 + 37 = 310 K. Thus the data we have to account
for are:

Ambient temperature: 310 K

Source energy: 0.43 ev/molecule

E�ciency: 70%.
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We do not attempt to analyze all existing biological knowledge in this �eld about the details of
that engine, although in our conclusions we shall be able to o�er some tentative comments on it.
Our present concern is with the general physical principles that must govern conversion of chemical
energy into mechanical work in any system, equilibrium or nonequilibrium, biological or otherwise,
whatever the details of the engine. In the known facts of muscle performance we have some uniquely
cogent evidence relevant to this problem.

The status of the second law in biology has long been a mystery. Not only was there a seeming
numerical contradiction between muscle e�ciency and the second law, but also the general self-
organizing power of biological systems seemed to con
ict with the \tendency to disorder" philosophy
that had become attached to the second law (much as Bohr's philosophy of complementarity had
become attached to quantum mechanics). This led, predictably, to a reaction in the direction of
vitalism.

In our view, whatever happens in a living cell is just as much a real physical phenomenon as
what happens in a steam engine; far from violating physical laws, biological systems exhibit the
operation of those laws in their full generality and diversity, that physicists had not considered
in the historical development of thermodynamics. Therefore, if biological systems seem to violate
conventional statements of the second law, our conclusion is only that the second law needs to be
restated more carefully. Our present aim is therefore to �nd a statement of the second law that
reduces to the traditional statements of Clausius and Gibbs in the domain where they were valid,
but is general enough to include biological phenomena.

The \tendency to disorder" arguments are too vague to be of any constructive use for this
purpose; and in any event it is clear that they must be mistaken and it would be interesting to
understand why (we think that Maxwell explained why at the end of the aforementioned article on
di�usion). Muscle e�ciency will provide our test case, because here we have some quantitative data
to account for. But a muscle operates in a nonequilibrium situation, for which no de�nite second
law is to be found in the thermodynamic literature. The conventional second law presupposes
thermalisation because temperature and entropy are de�ned only for states of thermal equilibrium.
How do we circumvent this?

Some have thought that it would be a highly di�cult theoretical problem, calling for a gen-
eralised ergodic theory to include analysis of \mixing" and \chaos". Another school of thought
holds that we need a modi�cation of the microscopic equations of motion to circumvent Liouville's
theorem (conservation of phase volume in classical Hamiltonian systems, or unitarity in quantum
theory), which is thought to be in con
ict with the second law.

We suggest, on the contrary, that only very simple physical reasoning is required, and all the
clues needed to determine the answer can be found already in the writings of James Clerk Maxwell
and J. Willard Gibbs over 100 years ago. Both had perceived the epistemological nature of the
second law and we think that, had either lived a few years longer, our generalised second law would
long since have been familiar to all scientists. We give the argument in three steps: (a) reinterpret
the Kelvin formula, (b) make a more general statement of the second law, (c) test it numerically
against muscles.

The observed e�ciency of muscles may be more cogent for this purpose than one might at �rst
think. Since animals have evolved the senses of sight, sound, and smell to the limiting sensitivity
permitted by physical law, it is only to be expected that they would also have evolved muscle e�-
ciency (which must be of equal survival value) correspondingly. If so, then the maximum observed
e�ciency of muscles should be not merely a lower bound on the maximum theoretical e�ciency we
seek, but close to it numerically.

GENERALISED EFFICIENCY FORMULA
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Consider the problem �rst in the simplicity of classical physics, where the Rayleigh{Jeans equipar-
tition law holds. If in the Kelvin formula (22) we replace temperature by what it then amounts
to { energy per degree of freedom E=N = (1=2) kT , it takes the form

� � 1� (E2=N2)(N1=E1) (23)

which does not look like much progress, but by this trivial rewriting we have removed the limitation
of thermal equilibrium on our energy source and sink. For \temperature" is de�ned only for a system
in thermal equilibrium, while \energy per degree of freedom" is meaningful not only in thermal
equilibrium, but for any small part of a system { such as those activated molecules { which might
be far from thermal equilibrium with the surroundings.

One might then question whether such a nonequilibrium interpretation of (22) is valid. We
may, however, reason as follows. Although conventional thermodynamics de�nes temperature and
entropy only in equilibrium situations where all translational and vibrational degrees of freedom
(microscopic coordinates) have the same average energy, it cannot matter to an engine whether all
parts of its energy source are in equilibrium with each other.

Only those degrees of freedom with which the engine interacts can be involved in its e�ciency;
the engine has no way of knowing whether the others are or are not excited to the same average en-
ergy. Therefore, since (23) is unquestionably valid when both reservoirs are in thermal equilibrium,
it should be correct more generally, if we take E2=N2 and E1=N1 to be the average energy in those
degrees of freedom with which the engine actually interacts. But while a muscle has a small source
reservoir, it has a large sink. Therefore for E2=N2 we may take (1=2) kT2 at body temperature.

As a check on this reasoning, if the primary energy is concentrated in a single degree of freedom
and we can extract it before it spreads at all, then our engine is in e�ect a \pure mechanism" like a
lever. The generalised e�ciency (23) then reduces to 1� kT2=2E1 or, interpreting E1 as the work
delivered to the lever,

(Work out) = (Work in) � (1=2) kT2 : (24)

The last term is just the mean thermal energy of the lever itself, which cannot be extracted re-
producibly by an apparatus that is itself at temperature T2 or higher. At least, if anyone should
succeed in doing this, then he would need only to wait a short time until the lever has absorbed
another (1=2) kT2 from its surroundings, and repeat { and we would have the perpetual motion
machine that the second law holds to be impossible. Thus (24) still expresses a valid second law
limitation, and the simple generalisation (23) of Kelvin's formula appears to have a rather wide
range of application.

But although these are interesting hints, we are after something more general, which can
replace the second law for all purposes, not merely engines. To achieve this we must understand
clearly the basic physical reason why there is a second law limitation on processes. We suggest that
the fundamental keyword characterizing the second law is not \disorder", but reproducibility.

THE REASON FOR IT

The second law arises from a deep interplay between the epistemological macrostate (i.e., the
variables like pressure, volume, magnetization that an experimenter measures and which therefore
represent our knowledge about the system) and the ontological microstate (the coordinates and
momenta of individual atoms, which determine what the system will in fact do). For example, in
either a heat engine or a muscle the goal is to recapture energy that is spread in an unknown and
uncontrolled way over many microscopic degrees of freedom of the source reservoir, and concentrate
it back into a single degree of freedom, the motion of a piston or tendon. The more it has spread,
the more di�cult it will be to do this.
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The basic reason for the \second law" limitation on e�ciency is that the engine must work
reproducibly; an engine that delivered work only occasionally, by chance (whenever the initial
microstate of reservoirs and engine happened to be just right) would be unacceptable in engineering
and biology alike.

The initial microstate is unknown because it is not being controlled by any of the imposed
macroscopic conditions. The initial microstate might be anywhere in some large phase volume Wi

compatible with the initial macrostate Mi; and the engine must still work. It is then Liouville's
theorem that places the limitation on what can be done; physical law does not permit us to
concentrate the �nal microstates into a smaller phase volume than Wi and therefore we cannot go
reproducibly to any �nal macrostateMf whose phase volumeWf is smaller thanWi. The inequality
Wi � Wf is a necessary condition for any macroscopic process Mi !Mf to be reproducible for all
initial microstates in Wi.

Of course, something may happen by chance that is not reproducible. As a close analogy, we
can pump the water from a tank of volume V1 into a larger tank of volume V2 > V1, but not into
a smaller one of volume V3 < V1. Therefore any particular tagged water molecule in one tank can
be moved reproducibly into a larger tank but not into a smaller one; the probability of success
would be something like V3=V1. Here the tanks correspond to the macrostatesM , their volumes V
correspond to phase volumes W , the tagged molecule represents the unknown true microstate, and
the fact that the water 
ow is incompressible corresponds to Liouville's theorem.

Now we know that in classical thermodynamics, as was �rst noted by Boltzmann, the ther-
modynamic entropy of an equilibrium macrostate M is given to within an additive constant by
S(M) = k logW (M), where k is Boltzmann's constant. This relation was then stressed by Planck
and Einstein, who made important use of it in their research. But the above arguments make it
clear that there was no need to restrict this to equilibrium macrostatesM . Any macrostate { equi-
librium or nonequilibrium { has an entropy S(M) = k logW (M), where W (M) is the phase volume
compatible with the controlled or observed macrovariables Xi (pressure, volume, magnetization,
heat 
ux, electric current, etc.) that de�ne M . Then a generalised second law

S(initial) � S(�nal) (25)

follows immediately from Liouville's theorem, as a necessary condition for the change of state
Mi !Mf to be reproducible.

Stated more carefully, we mean \reproducible by an experimenter who can control only the
macrovariables fXig that de�ne the macrostatesM". A little thought makes it clear that this pro-
viso was needed already in the classical equilibrium theory, in order to have an air{tight statement
of the second law which could not be violated by a clever experimenter. For if Mr. A de�nes his
thermodynamic states by the n macrovariables fX1 : : :Xng that he is controlling and/or observing,
his entropy Sn is a function of those n variables. If now Mr. B, unknown to Mr. A, manipulates
a new macrovariable Xn+1 outside the set that Mr. A is controlling or observing, he can bring
about, reproducibly, a change of state for which Sn decreases spontaneously, although Sn+1 does
not. Thus he will appear to Mr. A as a magician who can produce spontaneous violations of the
second law, at will.

But now we must face an ambiguity in the de�nition and meaning ofW ; it appears to have dif-
ferent aspects. The phase volume W (X1 : : :Xn) consistent with a given set of extensive macrovari-
ables fX1 : : :Xng is a de�nite, calculable quantity which represents on the one hand the degree of
control of an experimenter over the microstate, when he can manipulate only those macrovariables;
thus W appears ontological. On the other hand, W represents equally well our degree of ignorance
about the microstate when we know only those macrovariables and nothing else; and thus it appears
epistemological. But as illustrated by the scenario of Mr. A and Mr. B above, it is a matter of
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free choice on our part which set of macrovariables we shall use to de�ne our macrostates; thus
it appears also anthropomorphic! Finally, we have been vague about just how many microscopic
degrees of freedom are to be included in W . Then what is the meaning of the second law (25)? Is
it an ontological law of physics, an epistemological human prediction, or an anthropomorphic art
form?

Part of the answer is that Eq. (25) cannot be an ontological statement (that is, a deductively
proved consequence of the laws of physics) because the mere calculation of W makes no use of
the equations of motion, which alone determine which macrostate will in fact evolve from a given
microstate in Wi. It may be that, because of properties of the equations of motion that we did
not use, our experimenter's method of realizing the macrostateMi would not, in many repetitions,
produce all microstates in the volume Wi, only a negligibly small subset of them occupying a phase
volume W 0 << Wi. Then the process Mi ! Mf might still be possible reproducibly even though
Si > Sf , if S

0 � Sf . Conversely, because of special circumstances such as unusual constants of the
motion, the process Mi !Mf might prove to be impossible even though Si < Sf . The second law
cannot be proved by deductive reasoning from the information that we actually have.

On the other hand, (25) is always epistemological because it is always true thatW (M) measures
our degree of ignorance about the microstate when we know only the macrostate M . Thus the
original second law and our generalisation (25) of it have the same logical status as Bayesian
inference; they represent the best predictions we can make from the information we have. In fact, a
re�ned form of (25) can be derived as an example of Bayesian inference. Therefore the second law
works functionally like any other Bayesian inference; the predictions are usually right, indicating
that the information used was adequate for the purpose. Only when the predictions are wrong do
we learn new things about the ontological laws of physics (such as new constants of the motion).

It is greatly to our advantage to recognize this. By getting our logic straight we not only
avoid the Mind Projection Fallacy of claiming more than has been proved, we gain an important
technical 
exibility in using the second law. Instead of committing the error of supposing that a
given physical system has one and only one \true" ontological entropy, we recognize that we could
have many di�erent states of knowledge about it, leading to many di�erent entropies referring to
the same physical system (as in the scenario of Mr. A and Mr. B above), which can serve many
di�erent purposes.

Just as the class of phenomena that an experimenter can evoke from a given system in the
laboratory depends on the kind of apparatus he has (which of its macrovariables he can manipulate),
so the class of phenomena that we can predict with thermodynamics for a given system depends
on the kind of knowledge we have about it. This is not a paradox, but a platitude; indeed, in any
scienti�c question, what we can predict depends, obviously, on what information we have. If we
fail to specify what biological information we propose to take into account, then thermodynamics
may not be able to give us any useful answer because we have not asked any well posed question.

Even when it does not lead to di�erent �nal results, taking prior information into account can
a�ect computational e�ciency in applying the second law, because it can help us to make a more
parsimonious choice of the microvariables that we shall include in W . For it to be generally valid,
the entropy in (25) must be, in principle, the total entropy of all systems that take part in the
process. But this does not, in practice, determine exactly how much of the outside world is to be
included. In a sense everything in the universe is in constant interaction with everything else, and
one must decide when to stop including things. Including more than we need is not harmful in the
sense of leading to errors, since this only adds the same quantity to both sides of (25). But it can
cost us wasted e�ort in calculating unnecessary details that cancel out of our �nal results.

At this point the aforementioned 
exibility of our methods becomes important. We have
already made use of it in the discussion following Eq. (23); now we want to apply that reasoning
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to phase volumes and to general processes. In a fast process, that happens in a time so short that
thermal equilibrium of the whole system is never reached, only the phase volume belonging to those
degrees of freedom actually involved in the interactions could be relevant; the second law may be
applied in terms of Liouville's theorem in a relatively small subspace of the full one that we use in
equilibrium theory. In the application to muscle e�ciency, this means that we need calculate only
phase volumes corresponding to degrees of freedom that are directly involved in muscle operation;
ones that are a�ected only later, after the muscle contraction is over, may be relevant for the
ultimate fate of the heat generated, but they cannot a�ect its e�ciency.

This corresponds to a familiar procedure in treatment of spin systems. Spin{spin relaxation is
often orders of magnitude faster than spin{lattice relaxation, so one can consider the microvariables
of the spin system as forming a nearly isolated dynamical system in their own right, with a \private"
second law of their own. Slichter (1980) shows that this approach enables one to predict masses of
details correctly.

In the above we have supposed the classical equipartition law; but our arguments should need
modifying only if the engine (the piston or tendon) interacts directly with degrees of freedom
for which equipartition fails. In the case of muscles, it appears that the direct interactions are
with coordinates of low{frequency vibration modes of large protein molecules. How energy gets
transferred from an excited electronic state of ATP to such a vibration mode would remain in the
province of quantum theory; but this can be virtually 100% e�cient.

QUANTITATIVE DERIVATION

Now we are ready for a speci�c calculation of muscle e�ciency using the above principles. The
phase volumes W that we calculate are, of course, functions of the macrovariables that de�ne the
macrostates. In the case of a muscle, what is happening is just that energy Q1 is being abstracted
from the source reservoir and energy Q2 is delivered to the sink, the di�erence appearing as work.
Energy is the only macrovariable being manipulated, so our phase volumes will be functions of
source and sink energies. We need not consider a phase volume for the engine, because that is the
same at the beginning and end (in cyclic operation, the engine is restored ready to run again). As in
conventional statistical mechanics, we introduce the density functions �(E), often called structure
functions, of source and sink by considering their energies known to some tolerances �E. Thus the
phase volumes for source and sink are

W1 = �1(E1) �E1 (26a)

W2 = �2(E2) �E2 (26b)

Then the initial and �nal phase volumes are

Wi = �1(E1) �2(E2) �E1 �E2 (27a)

Wf = �1(E1 � Q1) �2(E2 +Q2) �E1 �E2 (27b)

With Q1 and Q2 de�nite quantities, the tolerances �E1 and �E2 are the same at the beginning and
end, so they cancel out and their values do not matter. The necessary condition of reproducibility
Wi � Wf when we manipulate only energies now becomes:

�1(E1) �2(E2) � �1(E1 �Q1) �2(E2 + Q2) : (28)

Let us try to predict the maximum work obtainable by using only this relation (which makes no
use of such notions as temperature, equation of state, heat capacity, or reversible operation). Given
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the energy Q1 extracted from the source, the maximum work we can get reproducibly is Q1 �Q2,
where from (28), Q2 is the root of

log �1(E1) + log �2(E2) = log �1(E1 � Q1) + log �2(E2 + Q2) : (29)

Now vary Q1; the RHS of (29) remains constant, and Q1 � Q2 is a maximum when

@

@Q1

log �1(E1 � Q1) +
@

@Q2

log �2(E2 + Q2) = 0 (30)

Therefore the maximum e�ciency is

� =
Q1 �Q2

E1

(31)

where Q1; Q2 are the simultaneous roots of (29) and (30). Note that this is the \global" e�ciency
that we need for this application, in which we contemplate extracting as much of the total available
energy E1 as possible, whereas the Kelvin formula (22) is the di�erential e�ciency, holding when
the amount of energy Q1 extracted is small compared to the total energy E1 in the high temperature
reservoir, so that its temperature is not changed appreciably by the operation of the engine.

Now we need to decide on the functions �1(E1) and �2(E2). Recall some familiar examples of
such functions; for an ideal gas of n particles in volume V ,

�(E) =
V n (2�mE)3n=2 � 1

�(3n=2)
: (32)

For n classical harmonic oscillators with frequencies f!1 : : :!ng,

�(E) =
(2�)n

(�i!i) �(n)
En : (33)

In both cases, �(E) is proportional to EN=2, where N is the number of degrees of freedom of the
system. This is approximately true for most systems even in quantum statistics, where N may be
regarded as a slowly varying function of E, signifying the e�ective number of degrees of freedom
excited at energy E. So let us take

log �1(E1) =
N1

2
logE1 + const: (34a)

log �2(E2) =
N2

2
logE2 + const: (34b)

which seems quite realistic for the case of muscles. Eliminating Q2 from (29), (30),Q1 is determined
from

(N1 +N2) log

�
E1 � Q1

E1

�
= N2 log

�
N1E2

N2E1

�
(35)

and then Q2 is found from (30). But from (23) we recognize the quantity

r � N1E2

N2E1

(36)

as the analog of (T2=T1) in equilibrium theory. Then after some algebra, we �nd that (31) is
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� = 1 +
N2

N1

r �
�
N1 +N2

N1

�
r

N2
N1+N2 : (37)

In the case N1 = N2, this is (1 � p
r)2, contrasted with Kelvin's di�erential e�ciency (1 � r).

Appropriate for muscles is the limiting form as N2 ! 1, E2=N2 ! (1=2) kT2 = const: (the blood
stream is very large compared to a muscle �ber). Some care is needed in taking the limit, and (37)
then reduces to

� = 1 � r + r log r : (38)

Now everything boils down to the question: what is r for a muscle? As before, let us take for the
large sink reservoir, E2 = (1=2) N2 kT2, where T2 = 310 K. The maximum theoretical e�ciency
surely corresponds to the maximum concentration of primary energy that seems possible in a
muscle; the energy of ATP hydrolysis of one molecule is concentrated into a single vibration mode
and is captured before it spreads to others. Therefore for the source, let E1 = 0:43 n ev, the heat
of reaction of n ATP molecules, and N1 = 2n, corresponding to one vibration mode per molecule.
This gives

r =
310 � 1:36 � 10�16

0:43 � 1:6 � 10�12
= 0:062 ; (39)

from which (38) gives

� = 76:5% : (40)

Doubtless, the near agreement with the value reported by Alberts et al (1983) is fortuitous; the
existing measurements are too uncertain to draw any real conclusions. But one might have hoped
that the maximum theoretical e�ciency would come out just above the maximum observed e�-
ciency; and at least that much has been realized. It appears that the information we used was
adequate for the purpose, and there is no longer any mystery.

A CHECK

We derived the e�ciency formula (38) without assuming any slow reversible operation as conven-
tional thermodynamics does. On the other hand, neither did we assume that it is not slow, so if
our derivation is correct, the formula ought to remain valid in the limit when the process is so slow
that the conventional theory does apply. To check this, let us apply conventional theory to a small
source whose temperature T1 drops slowly as the engine runs, so we have a sequence of in�nitesimal
reversible Carnot cycles. Suppose that the sink is so large that T2 remains constant. Then drawing
heat Q1 from the source, the maximum work we can get according to classical thermodynamics is

W (Q1) =

Z Q1

0

�
1 � T2

T1(Q)

�
dQ : (41)

Now suppose, corresponding to the Rayleigh{Jeans assumptions in our �rst derivation, that the
source has a constant heat capacity C, so that T1(Q) = T1 � Q=C, where T1 is the initial source
temperature; then E1 = CT1. The engine will run only as long as T1(Q) > T2, so the maximum
obtainable work is given when the upper limit of integration is Q1 = C(T1 � T2). Making these
substitutions, the integral is easily evaluated, with the result

Wmax = C

�
T1 � T2 + T2 log

T2
T1

�
: (42)



24 24

Dividing by E1 = CT1, we recover the result (38) that we derived previously using only phase
volume considerations. This con�rms that our generalised second law reduces, as it should, to the
conventional one when the latter is applicable.

But this conventional \slow, reversible" second law is not applicable to a muscle, because if
a muscle operated slowly enough to make its assumptions valid, other degrees of freedom that we
have left out of our calculation would take over and thermalise the primary energy, making the
muscle useless. It is just to avoid thermalisation that biological processes must take place rapidly,
and thus we require a \fast" second law to analyze them.

Our generalisation of the second law not only preserves the dynamics and therefore the Liouville
theorem, it preserves the Clausius relation Si � Sf and the Boltzmann entropy formula S =
k logW ; and it even preserves the intuitive meaning of it that was recognized by Boltzmann,
Einstein, and Planck. Therefore we have not changed the basic rationale underlying the second law
and the Kelvin e�ciency rule in any way; we have only opened our eyes to their full meaning.

Far from being in con
ict with the second law, Liouville's theorem is the reason for it. Had
Liouville's theorem been discovered before the work of Carnot, it appears to us that the second
law, in the full generality we have given it, might have been anticipated theoretically without any
reference to heat engines; or indeed to the notions of temperature and thermal equilibrium.

We have made no use of the notions of order and disorder. Indeed, as Maxwell noted in the
article on di�usion, those terms are only expressions of human aesthetic judgments. But in a
well{known work on statistical mechanics (Penrose, 1970) it is stated that \� � � the letters of the
alphabet can be arranged in 26! ways, of which only one is the perfectly ordered arrangement ABC
... XYZ, all the rest having varying degrees of disorder." To suppose that Nature is in
uenced by
what you or I consider \orderly" is an egregious case of the Mind Projection Fallacy.

As a more pertinent example, Nature has decreed that water vapour has a higher entropy than
liquid water, although most of us would consider the vapour far more \orderly" in both structure
and behavior. The vapour has a higher entropy than the liquid, not because it is less \orderly",
but because the microstates compatible with the vapour macrostate occupy a larger phase volume.
Thus we cannot understand the second law, in either biology or physics, in terms of intuitive notions
of order and disorder. On the other hand, the second law limitation on macroscopic processes is
easily understood in objectively meaningful terms, in both biology and physics, as the price we pay
for reproducibility .

CONCLUSION

As those promised tentative comments on biological information, we see the above as evidence that
the energy of ATP hydrolysis is con�ned to a single vibration mode in striated muscle; if it spread
to two modes, then we would have r = 2 � 0:062 = 0:124, and (38) would predict a theoretical
maximum e�ciency of only 62%. Had the energy spread to ten vibration modes before being
recaptured, the predicted e�ciency would be only 8%. It appears that animals have indeed evolved
muscle e�ciency to the maximum that could be realized in a biochemical environment powered
by the ATP hydrolysis reaction, although a reaction with a greater �H would permit still higher
e�ciency.

Finally, what was the e�ective upper temperature T1 for the muscle? With two degrees of
freedom per ATP molecule, this is given by kT1 = 0:43 ev, or

T1 =
0:43� 1:6� 10�12

1:36� 10�16
= 5060 K : (43)

This is startling because it is about the temperature at the surface of the sun! It appears, then,
that a muscle is able to work e�ciently not because it violates any laws of thermodynamics, but
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because it is powered by tiny \hot spots" of molecular size, as hot as the sun.y

This shows how far a biological system is from thermal equilibrium in the respects that matter.
If one says that the temperature in a living cell is \uniform", he can mean only that it is uniform
as registered by a thermometer whose bulb is thousands of times coarser, and whose response is
thousands of times slower, than the units that are performing the essential biological functions.

If we examine the current literature of bioenergetics with this in mind, we are struck by the fact
that virtually all treatments begin by stating that biological systems are at uniform temperature
and the chemical reactions proceed isothermally; then virtually all the discussion is in terms of
reaction free energies �F or �G. Now the free energy change of a reaction is only a �ctitious
kind of energy, that could in principle be observed in very special circumstances. It is the work
made available when the temperature and concentrations are uniform and the reaction proceeds so
slowly that it remains at equilibrium with respect to the original temperature and concentration;
i.e., when heat can 
ow in or out of the cell rapidly enough, and the reactants and products can
di�use in and out rapidly enough, to maintain the initial uniformity.

Conditions in a biological process such as nucleotide synthesis are about as far from this as
can be imagined, in at least two respects:
(1) A cell may have very few (less than 20) molecules of a given type, and they are not free to di�use about

because of intracellular membranes; thus the uniform concentrations presupposed in the de�nition of
reaction free energies seem not only not realized, but not even meaningful. Lehninger (1982) warns
us that this might invalidate conventional thermodynamic treatments.

(2) A reaction is over { the job is done { in a time too short for the notion of \equilibrium" to be applicable.
For many reactions the \real" physical energies �U; �H that have a meaning independently of
thermal equilibrium, may be the ones most relevant for biology. Indeed, biochemical processes are
now being studied fruitfully with picosecond time resolutions. On the scale of sizes and times that
matter, a living cell is never in a state remotely like thermal equilibrium or uniform concentrations.

Recognizing this, we can understand another reason why biological thermodynamics has been
puzzling in the past. Conventional free energy thermodynamics is doubtless adequate to describe
slow, gross phenomena such as osmotic e�ects, but it may be irrelevant for biological functions
like muscle contraction and protein synthesis, which necessarily, to avoid thermalisation from the
surroundings, take place rapidly and on the molecular scale of size.

As our analysis shows, the small scale does not in itself preclude the application of thermody-
namics, but attempts to do this could not have succeeded until the above points were recognized
and we had a quite di�erent, \fast" statement of the second law. Of course, muscle performance
is only a special case of the general problem, but seeing how to apply the second law to muscle
behaviour should give a useful clue for other cases.

In these �rst crude estimates to illustrate the principle, our reasoning was so general { concern-
ing only phase volumes { that we did not need to invoke any particular details of the mechanism
of muscle action. Therefore the analysis should apply as well to striated muscle, smooth muscle,

agella, or any other motile structures, and it would be of great interest to have experimental values
of their e�ciency; have they all managed to evolve down to a single vibration mode to transfer the
energy?

However, the myosin bridge mechanism proposed by Sir A. F. Huxley (1957) for striated muscle
and described by Squire (1981) and Alberts, et al. (1983) appears not only consistent with our

y This suggests some fascinating speculations; from the beginning all life on the earth has been running on
the temperature di�erence between the sun and the earth. Presumably, the �rst life was powered directly
from the sun, instead of using the indirect route of ATP. Then perhaps biological evolution chose ATP
as its energy carrier just because its reaction energy duplicated the e�ects of the original source; and the
memory of this has been retained ever since. If so, then a planet with a hotter sun would evolve life with
a still higher muscle e�ciency.



26 26

speculations; it �ts in very nicely with them. The bending of that bridge is a degree of freedom
that corresponds to a low{frequency vibration mode for which the classical equipartition law would
hold, and the relative sti�ness and massiveness of the myosin head makes it seem well adapted to
resisting rapid thermalisation while transferring its energy into the macroscopic sliding of the actin
�ber. We could hardly have asked for a better candidate for our one vibrational mode to receive
the ATP hydrolysis energy.

Presumably, our argument could be re�ned by taking further information of this kind into
account, although the observed facts suggest that the �nal conclusion cannot be very di�erent; i.e.,
most of that information will be irrelevant for predicting the net e�ciency, although it is highly
relevant for predicting other details such as force{velocity curves, fatigue, etc.

Having seen this biological mechanism, it is easy to believe that synthesized or extracted
macromolecules could do similar things in vitro. Indeed, the �rst step in this direction has been
taken already. In the fascinating \myosin motor" of Shimizu (1979) we have a molecular engine
operating in vitro; not very e�ciently, but nevertheless con�rming the idea. In time the design
of useful anti{Carnot molecular engines (arti�cial muscles) might become about as systematic and
well understood as the design of dyes, drugs, and antibiotics is now.
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