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1. INTRODUCTION

The �rst reaction of nearly everybody, on hearing of a mysterious principle called \maximum
entropy" with a seemingly magical power of extracting more information from incomplete data
than they contain, is disbelief.

The second reaction, on sensing that there does seem to be something in it, is puzzlement.
How is it possible that a quantity belonging to thermodynamics could escape from that setting and
metamorphose itself into a principle of reasoning, able to resolve logical ambiguities in situations
that have nothing to do with thermodynamics?

Newcomers to this �eld usually start by asking, not how to apply the method, or even what
numerical results it gives; but \I don't see what this has to do with the entropy of thermodynamics {
is there a connection?" Therefore it might be useful, before seeing details of present applications,
to explain that connection.

We are taught to think of the First Law of Thermodynamics as a basic law of physics, true
of necessity in every case. But attempts to see the Second Law in this way (Kelvin, Clausius,
Planck, Boltzmann and many others) never quite succeeded; and Gibbs (1875) recognized that
its logic is di�erent. He concluded that \the impossibility of an uncompensated decrease seems
reduced to improbability", a remark that Boltzmann quoted 20 years later in the Introduction to
his Gastheorie.

Clausius saw the second law as a law of physics, but only a qualitative one { a kind of arrow to
tell us in which general direction a process will go. Gibbs, while depriving it of that logical certainty,
extended its practical application to serve the stronger purpose of quantitative prediction; to �ll
the logical void left by the great incompleteness of thermodynamic data. Out of all the di�erent
macroscopic behaviors permitted by the macroscopic data and the microscopic laws of physics,
which should we choose as, not what must happen, but only what will most likely happen?

Since Gibbs' Heterogeneous Equilibrium (1875{78) the second law has been used in practice,
not as a \law of physics", but as a principle of human inference; a criterion for resolving the
ambiguities of incomplete data. In this service it does indeed extract more information than could
have been obtained from the data alone; not by magic but by combining the evidence of the data
with the additional information contained in the entropy function.

In other words, Gibbs' use of the second law to predict equilibrium states was virtually iden-
tical in rationale with our present maximum{entropy inference. The experimental con�rmation
of Gibbs' thermodynamic predictions, and the success of maximum{entropy predictions outside
thermodynamics, are just two illustrations of the power of that rationale.

The above summarizes our general philosophical viewpoint; now we must justify it by exam-
ining those mysterious technical details, to show that there is not just a similarity of philosophy,
but an identity of mathematical method.

But we must be prepared for the same disappointment that James Clerk Maxwell felt in 1878
when he examined that mysterious new invention called a \telephone", and found that it had no
ultra�ne machinery and ran on principles readily understood by every schoolboy. He reported that
his disappointment at its simplicity \was only partially relieved on �nding that it actually did
work".

We hope that the disappointment of some at the simplicity of the maximum entropy principle,
will be partially relieved on �nding that it actually does work; and perhaps even fully compensated
on seeing the connection with thermodynamics, and the logical unity of these seemingly di�erent
�elds. This may be hoped for particularly in a lecture given in Paris; for the general viewpoint and
the speci�c principle, from which it all follows, were given by Laplace and Carnot, not far from
where we are now. After more than 150 years, we are beginning to understand them.
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In the following we survey the reasoning that follows from Carnot's principle, not in the
confusion of the actual historical development, but as today's hindsight shows us it could have
been done. Of course, if our object were merely to explain maximum{entropy inference, that can
be done by much shorter arguments without reference to thermodynamics, as will doubtless be
shown by other speakers here. Indeed, we think that in the future thermodynamics itself will be
approached by that shorter route and will be seen as only one particular application of maximum{
entropy inference. But our present object is to make the logical connection to what is familiar to
scientists today; the historical approach to thermodynamics.

Part 2 recalls the background of Carnot's work. Parts 3{6 o�er a short course in \Classical
Thermodynamics Made Easy". All the results will be familiar from textbooks, but the reasoning
is simpler; even in the initial period when it was considered a new physical law, we can now see
that Carnot's principle was actually used only to resolve ambiguities. Then in Part 7 the \new"
maximum entropy methods will be seen as just one more step in the natural development of the
subject.

Since entropy maximizers are sometimes accused of trying to \get something for nothing", we
note that the method expresses, and has evolved from, an explicit statement of the opposite; that
you cannot get something for nothing.

2. CARNOT'S PRINCIPLE

In the revolutionary years 1791{1797 an army engineer named Lazare Carnot found himself sud-
denly catapulted into the ruling bodies of France. As a member of the Legislative Assembly, the
Committee of Public Safety, and the Directoire, he participated in voting for the execution of Louis
XVI, the appointment of Napoleon to his Italian command; and in so many other things that his
biography (Reinhard, 1950) �lls two volumes.

But before and after that period, Lazare Carnot published articles (Gillispie, 1971) on his true
lifelong interest, the most general statement of the principles of mechanics and inferring from them
the impossibility of a perpetual motion machine. His son Sadi then turned that idea neatly around,
inferring a new principle from the assumed impossibility of a perpetual motion machine. (It was
Lazare's grandson, another Sadi Carnot, the nephew of our Sadi, who later became President of
the French Republic).

An important technical problem of the time was the design of steam engines. How much work
can be extracted from a kilo of coal? Can the e�ciency be improved by di�erent temperatures
or pressures, a di�erent working substance than water; or some di�erent mode of operation than
pistons and cylinders?

In the absence of any sound understanding of the nature of heat, misconceptions ourished. In
1818 Petit suggested that an air engine would be far more e�cient than a steam engine, because no
heat of vaporization need be supplied; an erroneous argument that must have inspired much wasted
e�ort. Sadi Carnot (1824) resolved this confusion by enunciating a single, intuitively compelling
principle that answered all these questions, and a hundred others not yet asked. He envisaged a
generalized heat engine (and the quali�cation \heat" is essential { see Appendix B) which operates
by drawing heat q1 from a source which is at thermal equilibrium at temperature t1, and delivering
useful work W . He saw that, in order to operate continuously, the engine requires also a cold
reservoir, t2 < t1, to which some heat q2 can be discharged. The temperature scale t was any
convenient thermometer calibration.

Now Carnot had the happy idea of a reversible engine; one can turn the shaft backwards,
delivering the same work W back to the engine, which then delivers the same heat q1 back to the
high{temperature reservoir. One does not think about this very long before perceiving:
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Carnot's Principle: No heat engine E can be more e�cient than a reversible
one Er operating between the same temperatures.

For suppose that some engine E, given heat q1, can deliver a greater amount of workW > Wr than
does Er. Then we need only connect them mechanically so that E runs Er backwards, delivering
the work Wr to it, and thus pumping the heat q1 back into the source reservoir, ready for re{use.
The excess W �Wr can then be used to drive our ships, locomotives, and factories. Once started,
this would run forever, delivering an in�nite amount of useful work without any further expenditure
of fuel. We would have a new kind of perpetual motion machine.

We can imagine the economic impact that invention of such a machine would have today. As
Max Planck put it, \we expect to make a most serviceable application" of any physical phenomenon
that is found to deviate from Carnot's principle, or from any other principle that can be deduced
from it. But an astonishing number of things can be deduced from Carnot's principle, as we shall
now see.

For example, it follows at once that all reversible heat engines have the same e�ciency, inde-
pendent of the working substance or mode of operation; i.e., the reversible e�ciency is a universal
function e(t1; t2) of the two temperatures. This answered in one stroke all those questions about
improvements in steam engines; already Carnot's principle had resolved a mass of ambiguities.

Carnot's reasoning is outstandingly beautiful, because it deduces so much from so little { and
with such a sweeping generality that rises above all tedious details { but at the same time with such
a compelling logical force. In this respect, I think that Carnot's principle ranks with Einstein's
principle of relativity.

But Carnot solved the problem only implicitly; while he made it clear that one should strive
to make an engine more nearly reversible, he did not �nd the explicit formula for the reversible
e�ciency that would result.

3. FIRST METAMORPHOSIS: KELVIN

Wm. Thomson (later Lord Kelvin) was collaborating with James Prescott Joule, who in a private
laboratory in Manchester was doing the quantitative measurements that established the validity of
the First Law. This gave him the essential fact that Carnot had lacked. Recognizing a universal
\mechanical equivalent of heat" h, we can express heat Q = hq and work W in the same units;
then we have the relation

W = Q1 � Q0

2
(1)

and deduction of the quantitative consequences of Carnot's principle can begin (the prime will be
explained presently).

Consider two reversible engines connected in series; engine A receives the heat Q1 at temper-
ature t1, delivers work WA, and discharges heat Q0

2
. Engine B receives the heat Q0

2
, delivers work

WB , and discharges heat Q3 to a reservoir at temperature t3 < t2. Their e�ciencies are

e(t1; t2) = WA=Q1;

e(t2; t3) = WB=Q
0

2

(2)

But by a simple mechanical linkage, A and B can be combined into a single reversible engine C,
which receives heat Q1 and delivers work WC = WA +WB . So we must have also

e(t1; t3) = (WA +WB)=Q1 (3)

From (1), (2), (3) we �nd that Carnot's principle requires that [using the abbreviation e13 �
e(t1; t3), etc.], the reversible e�ciency must satisfy the functional equation

e13 = e12 + e23 � e12 e23; t1 > t2 > t3: (4)
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This is a condition of consistency, and it reminds us of a relation of probability theory. The change
of variables x = log(1� e) makes the general solution obvious: the reversible e�ciency must have
the functional form

e12 � er(t1; t2) = 1� f(t2)=f(t1): (5)

From (2a) and (3), f(t) is a monotonic increasing function. By Carnot's principle the ratio
f(t1)=f(t2) must be the same function of t1, t2 for all reversible engines.

Now the temperature scale t was basically arbitrary (uniformly spaced marks on a mercury
thermometer and on a gas thermometer do not agree), long a troublesome problem. Turning
the argument around, Kelvin perceived that Carnot's principle resolves another ambiguity; if the
reversible e�ciency is a universal function of the temperatures, then it in e�ect de�nes a universal
temperature scale that is independent of the properties of any particular substance like mercury.

We de�ne the Kelvin temperature scale by

T (t) = Cf(t) (6)

and now only one free choice is left to us; we may choose the arbitrary multiplicative factor C, as
a convention, to indicate the size of the units in which we measure temperature.

Carnot's reversible e�ciency is then

er = 1� T2=T1 (7)

from which one readily determines the measurements by which one can calibrate his thermometer
to read T . All such thermometers, however constructed, and independently calibrated, will then
agree in their readings at all points, if the units are chosen so that they agree at one point (at
least, if a thermometer is ever found that fails to do this, then we shall have the means to realize
Carnot's perpetual motion machine after all).

With this, Carnot's principle starts its metamorphosis. It now says that the e�ciency e of a
real heat engine must satisfy the inequality e � er ; or from (1), (2), (7),

e = 1�Q0

2
=Q1 � 1� T2=T1: (8)

Writing now Q2 = �Q0

2
so that Q1, Q2 are both quantities of heat delivered from a heat reservoir

to the engine, it takes the more suggestive form

Q1=T1 +Q2=T2 � 0 (9)

with equality if and only if the engine is reversible.

A simple generalization is then obvious; we may consider a more complicated heat engine that
runs cyclically, making contact successively with n reservoirs at temperatures (T1 � � �Tn). Then the
�rst law is W = �Qi, and Carnot's principle becomes

�Qi=Ti � 0: (10)

This is the form that Kelvin used in his work of 1854 on the thermocouple, in which the Seebeck
potential and the Peltier, Joule, and Thomson heat e�ects were all analyzed correctly, leading to
the thermoelectric equations still in use.

Equation (10) is pivotal for all further developments, forming the starting point for two very
di�erent extensions. Some comments on its meaning and generality are given in Appendix A. In
Appendix B we note some important limitations on the applicability of the reversible e�ciency
formula (7), and speculate about further generalizations.
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4. SECOND METAMORPHOSIS: CLAUSIUS

It is curious that, having perceived such an important consequence of Carnot's principle as the
temperature scale (6), Kelvin does not seem to have perceived the still more important fact that
was now staring him in the face in (10). This was left for Rudolph Clausius. Imagine (10) extended
to arbitrarily large n, the sum going into a cyclic integral:

I
dQ=T � 0: (11)

In the limit of a reversible process, where the equality applies, T is also the temperature of the
system. But then (11), holding for any cycle, is the condition that the line integral over any part
of a cycle is independent of the path.

Thus was discovered a new function S of the thermodynamic state of the system, de�ned to
within an additive constant by the di�erence

SA � SB =

Z A

B

dQ=T (12)

where we integrate over a reversible path R; i.e., a locus of equilibrium states. As we know, in
1865 Clausius coined the name \entropy" for this quantity.

The integral (12) is over a reversible path, but only part of a cycle. Then complete the cycle
by adding to it a return from state A to state B over any path P, reversible or irreversible. With
this choice of cycle, (11) becomes Z B

A

dQ=T � SB � SA (13)

with equality if and only if the process A! B is reversible (the meaning of the word \reversible"
may now be extended beyond what Carnot had in mind, as explained in Appendix C).

Note, from its origin in (10), that in (13) T denotes the temperature of a heat bath with
which the system is momentarily in contact. This may or may not be the temperature of the
system. Therefore, in all cases, reversible or irreversible, the negative of the left{hand side of
(13) is the entropy gained by the heat{reservoirs which constitute, for the system, the \rest of the
universe". So Carnot's principle has now become: in the change from one thermal equilibrium state
to another, the total entropy of all bodies involved cannot decrease; if it increases, the process is
therefore irreversible:

S(final) � S(initial) : (14)

Note also that (14) describes only the net result of a process that begins and ends in thermal
equilibrium. Carnot's principle does not permit us to draw any conclusion about time dependence,
such as dS=dt � 0 at intermediate times. Indeed, entropy has been de�ned only for equilibrium
states, in which there is no time dependence.

We shall take (14) as the fundamental Clausius statement of the second law. Other statements
have been proposed, but (14) is logically simpler and it has stood the test of time, remaining valid
in situations such as negative spin temperatures where some others failed. However, from the
standpoint of logic (14) only restates Carnot's principle in a more useful form; it adds nothing to
its actual content. In particular, Clausius could still see it as a law of physics.
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5. THIRD METAMORPHOSIS: GIBBS

The above statements of the Second Law are the ones traditionally taught to physicists, although
they have severe limitations. Equation (14) gives us one piece of information about the general
direction in which an irreversible process will go; but it does not tell us how fast it will go, how
far, or along what speci�c path. And it refers only to a closed system (no particles enter or leave).

Gibbs showed how to remove two of those limitations. He generalized the de�nition of entropy
to open systems, as needed for many applications. More important for our purposes, he perceived
the correct logical status of Carnot's principle, which enabled him to extend its application to
quantitative prediction, thus answering the question: \How far?".

Instead of Clausius' weak statement that the total entropy of all bodies involved \tends" to
increase, Gibbs made the strong prediction that it will increase, up to the maximum value permitted
by whatever constraints (conservation of energy, volume, mole numbers, etc.) are imposed by the
experimental arrangement and the known laws of physics. Furthermore, the systems for which this
is predicted can be more complicated than those envisaged by Clausius; they may consist of many
di�erent chemical components, free to distribute themselves over many phases.

Gibbs' variational principle resolved the ambiguity noted above: \Given the initial macroscopic
data de�ning a nonequilibrium state, there are millions of conceivable �nal equilibrium macrostates
to which our system might go, all permitted by the conservation laws. Which shall we choose as
the most likely to be realized?"

Although he gave a de�nite answer to this question, Gibbs noted that his answer was not found
by deductive reasoning. Indeed, the problem had no deductive solution because it was ill{posed.
There are initial microstates, allowed by the data and the laws of physics, for which the system
will not go to the macrostate of maximum entropy. There may be additional constraints, unknown
to us, which make it impossible for the system to go to that state; for example new \constants of
the motion". So on what grounds could he justify making that choice in preference to all others?

At this point thermodynamics takes on a fundamentally new character. We have to recognize
the distinction between two di�erent kinds of reasoning; deduction and inference. Instead of asking,
\What do the laws of physics require the system to do?", which cannot be answered without
knowledge of the exact microstate, Gibbs asked a more modest question, which can be answered:
\What is the best guess we can make, from the partial information that we have?" Of course, this
implies some statement of what we mean by \best".

At �rst glance, this does not seem a very radical move. It must be clear to every child that
virtually all human reasoning, in or out of science, is of necessity inference based on the information
at hand, rather than logical deduction { which almost always would require far more information
than we possess. Yet to sophisticated scientists this change of thinking has been very di�cult
conceptually, and it can arouse bitter controversy. To recognize \o�cially" that we are only doing
inference rather than deduction, is very foreign to the attitude that scientists are taught.

The conventional attitude is exhibited by those who would object to Gibbs' answer on the
grounds that there may be unknown constraints that prevent the system from getting to the state
of maximum entropy; and so Gibbs' answer might be wrong. But the same kind of objection would
apply whatever answer he gave. If such an objection were sustained, Gibbs would be prohibited
from giving any answer at all. Science does not advance on that kind of timidity; let us note how
much more realistic and constructive is the opposite attitude. To one who raised that objection,
Gibbs might reply as follows:

\Of course, my answer might be wrong. You seem to think that would be a calamity that
we must avoid; but you are like a chess player who thinks only one move ahead. If you will think
ahead two moves, you will see that, on the contrary, getting a wrong answer would be even more
valuable than getting a right one. As you note, at present we do not know whether there may exist
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unknown constraints that would prevent the system from getting to the maximum entropy state.
But I choose to ignore that warning, go ahead with my calculation, and then ask an experimentalist
to compare my prediction with observation. What conclusions will we be able to draw from his
verdict?

\Suppose my prediction turns out to be right. That does not prove that no unknown constraints
exist; but it does prove that there are none which prevent the system from getting to the macrostate
of maximum entropy. So the calculation has served a useful predictive purpose, and its success gives
us more con�dence in future predictions.

\But suppose my prediction turns out to be wrong; the experiment repeatedly gives a di�erent
result. Then we have learned far more; we know that there is some new (i.e., previously unknown)
constraint a�ecting the macroscopic behavior, and the nature of the error gives us a clue as to
what that new constraint is. We would have a start toward learning a fundamental new physical
fact, perhaps a new law of physics. I do not see this as a calamity; how else can we advance to a
new state of knowledge about physical law, but by having the courage to go ahead with the best
inferences we can make from our present state of knowledge?"

The words we have just put into Gibbs' mouth are not fanciful. Gibbs' classical statistical
mechanics did make incorrect predictions of speci�c heats and vapor pressures. These were the
�rst clues, indicating the new constraints of discrete energy levels, pointing to the quantum theory.
Nobody would have realized that such things were relevant to the question, had Gibbs lacked the
courage to make an inference because he might be wrong.

After development of the Schr�odinger equation, the Gibbs formalism based on maximizing
the new quantum expression for entropy has yielded so many thousands of quantitatively correct
equilibrium predictions that there seems to be almost no chance that it will ever fail in that problem.
Whenever it did seem to fail { as in the case of ortho and para hydrogen { it was seen quickly that
it was only performing its second function, revealing an unexpected constraint.

Today, we are only in the initial stages of extensions to predict the details of nonequilibrium
behavior; these put our entropy expressions to a more severe test. We can by no means rule out
the possibility that nonequilibrium statistical mechanics may lead to incorrect predictions, which
would then point the way to the next higher level of understanding of physical law, beyond our
present quantum theory. We may be seeing the incipient beginnings of this in the lore of \strange
attractors".

We think that this scenario will be repeated many times in the future outside thermodynamics,
particularly as the method moves into biology. Most maximum entropy inferences will be correct,
serving a useful predictive purpose. But some of the predictions will be wrong; those instances, far
from being calamities, will open the doors to new basic knowledge.

Another of the curiosities of this �eld is that, having done so much with entropy and demon-
strated such a deep understanding of the logic underlying the second law, giving thermodynamics
an entirely di�erent character, Gibbs said almost nothing about what entropy really means. He
showed, far more than anyone else, how much we can accomplish by maximizing entropy. Yet we
cannot learn from Gibbs: \What are we actually doing when we maximize entropy?" For this we
must turn to Boltzmann.

6. FOURTH METAMORPHOSIS: BOLTZMANN

Entropy �rst appeared, unanticipated and without warning, merely as a mathematical construct
in equation (12). Even after its fundamental nature and usefulness were recognized and exploited,
the question: \What is it?" continued to mystify and confuse. It appears that the answer was �rst
revealed to Ludwig Boltzmann, when he calculated the phase volume of an ideal gas of N atoms
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in volume V , for which the energy lies in (E;E+ dE):

W =

Z
R

d3x1 � � �d
3xN d3p1 � � �d

3pN = C V N E3N=2�1 dE (15)

where the region R of integration is those points for which all coordinates are within a volume V ,
and the momenta satisfy

E < �p2=2m < E + dE: (16)

The constant C is independent of V and E.

Now from elementary thermodynamics it was known that the entropy of any system which
obeys the equation of state PV = RT with a heat capacity Cv = const:, has the form S(V; T) =
Cv log T + R logV + const:, where the const: is independent of T and V . But with the heat
capacity for Boltzmann's monoatomic gas, Cv = (3=2)R and the resulting internal energy function
E = (3=2)RT , it was evident that log W has the same volume and energy dependence as the
entropy of that gas, calculated from (12). That is, to within an additive constant independent of
T and V , it was true that

S = k logW: (17)

This is such a strikingly simple relation that one can hardly avoid jumping to the conclusion that it
must be true in general; i.e., the entropy of any macroscopic thermodynamic state A is a measure
of the phase volume WA occupied by all microstates compatible with A.

It is convenient verbally to say that S measures the \number of ways" in which the macrostate
A can be realized. This is justi�ed in quantum theory, where we learn that a classical phase
volume W does correspond to a number of global quantum states n = W=h3N . So if we agree, as
a convention, that we shall measure classical phase volume in units of h3N , then this manner of
speaking will be appropriate in either classical or quantum theory.

We feel quickly that the conjectured generalization of (17) must be correct, because of the
light that this throws on our problem. Suddenly, the mysteries evaporate; the meaning of Carnot's
principle, the reason for the second law, and the justi�cation for Gibbs' variational principle, all
become obvious. Let us survey quickly the many things that we can learn from this remarkable
discovery.

Given a \choice" between going into two macrostates A and B, if SA < SB , a system will
appear to show an overwhelmingly strong preference for B, not because it prefers any particular
microstate in B, but only because there are so many more of them. As noted in Appendix C,
an entropy di�erence (SB � SA) corresponding to one microcalorie at room temperature indicates
a ratio WB=WA > exp(1015). Thus violations are so improbable that Carnot's principle, or
the equivalent Clausius statement (14), appear in the laboratory as absolutely rigid \stone wall"
constraints suggesting a law of physics rather than a matter of probability.

Let us see the light that this casts on Gibbs' method, by examining a simple application. We
have two systems of one degree of freedom (i.e., their energy and temperature can vary when in
contact with other systems). Then their entropy functions are

S1(E1) = k logW1(E1); S2(E2) = k logW2(E2); (18)

The systems start out in thermal equilibrium with arbitrary initial energies E1i; E2i. Then they
are placed in contact so they can exchange energy in such a way that the total amount is conserved:

E = E1 +E2 = const:; E1 > 0; E2 > 0: (19)
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Required: to predict the �nal energies E1f ; E2f that they will reach when they come into equilib-
rium with each other.

This is manifestly an ill{posed problem; for the �nal energies must depend on the initial
microstates which are unknown; and all values compatible with (19) are possible without violating
any known laws of physics. We are thus obliged to use inference rather than deduction. Gibbs'
algorithm was: predict that energy distribution that maximizes the total entropy S1 + S2 subject
to the constraint (19). At �rst this seems arbitrary; but now if (17) is correct we can see why this
guess is \best". We are maximizing the product

M(E1) = W1(E1)W2(E �E1) (20)

with respect to E1; but that product is just the multiplicity, or number of ways in which the energy
distribution (E1; E2) can be realized. So in the light of (17) Gibbs' rule now says, merely: \Predict
that energy distribution that can happen in the greatest number of ways, subject to the information
you have". An eminently sensible criterion!

Experimentally, one says that equilibrium is reached when the systems have equal temperature.
Di�erentiating (20), we �nd that the maximum is reached when d logW1=dE1 = d logW2=dE2.
But the general thermodynamic relation T�1 = dS=dE that follows from (12) becomes, in the light
of (17)

1

kT
=
d logW

dE
: (21)

So the general interpretation of entropy by (17) not only predicts equal temperature as the condition
for equilibrium; it gives a simple explanation of why this is true.

The above explains why Gibbs' method gives, in a sense, the best guess one could have made
in view of our great ignorance as to the microstate; but does not explain why it is so uniformly
successful. If the multiplicity (20) had a broad maximum, or many local maxima, one would
not expect Gibbs' rule to be very reliable in practice. This raises the question: How sharp is the
maximum in the multiplicity (20)? Note that di�erentiating (21) once more gives the heat capacity:

d2 logW

dE2
= �

1

kT 2Cv
: (22)

But, as (15) shows for an ideal gas and is true in general, Cv may be interpreted as Cv = nk=2, where
n is the e�ective number of degrees of freedom of the system (in quantum theory, the number excited
at the temperature T ), of the order of Avogadro's number for a macroscopic system. Therefore,
expanding logM(E1) about its peak at E0 we have

M(E1) =M(E0) exp

�
�
(E1 � E0)2

2�2

�
(23)

with the RMS deviation

� = kT

�
n1n2

(n1 + n2)

�1=2
: (24)

which is of the order of kTn1=2 = E0=n1=2 = 10�12E0. Therefore, not only is E0 the value of E1

that can happen in the greatest number of ways for given total energy E; the vast majority of all
possible microstates with total energy E have E1 very close to E0. Less than 1 in 108 of all possible
states have E1 outside the interval (E

0�6�), far too narrow to measure experimentally. From (17),
then, we understand also why Gibbs' method succeeds.
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But there is still more to be learned from Boltzmann's discovery (17). Imagine n2 to become
very large; then we may expand using (21):

logW2(E �E1) = logW2(E)�
E1

kT
+ � � � (25)

and from (22) the next term is negligible. But then the fraction of the multiplicity (23) in the
interval (E1; E1 + dE1) becomes

f(E1)dE1 = Z�1W1(E1) exp(�E1=kT ) dE1 (26)

which is the distribution of Gibbs' \Canonical Ensemble", the basis of his later work on Statistical
Mechanics. The normalization constant

Z(�) =

Z
W1(E) exp

��E1 dE ; � = 1=kT (27)

is Gibbs' partition function, and if we re�ne the inference procedure by taking as our prediction
the mean value over the distribution (26) instead of the peak E0, our prediction reduces to

hE1i = �
d logZ

d�
; (28)

the basic predictive rule of statistical mechanics.

All these relations generalize e�ortlessly to systems with more macroscopic degrees of freedom
(volume, magnetization, angular momentum, mole numbers, etc.) corresponding to Gibbs' grand
canonical ensemble and its generalizations. So the interpretation (17) of entropy has given us the
key to essentially everything that has happened since in the �eld of equilibrium thermodynamics
and statistical mechanics. This was recognized, and exploited in their own fundamental research,
by both Planck and Einstein.

In our opinion, (17) represents by far the greatest of all of Boltzmann's achievements, just
because of its fundamental, timeless character. One hundred years from now, his transport equation
will be a nearly forgotten detail of the history of science; but a thousand years from now, the relation
S = k logW will still be the foundation stone of this subject. A more appropriate inscription for
his gravestone can hardly be imagined.

7. CONCLUSION

We have followed the evolution of Carnot's principle, via Kelvin's perception that it de�nes a
universal temperature scale, Clausius' discovery that it implied the existence of the entropy function,
Gibbs' perception of its logical status, and Boltzmann's interpretation of entropy in terms of phase
volume, into the general formalism of statistical mechanics. But now, we can see how utterly simple
it all is, and that the reasoning had nothing fundamentally to do with thermodynamics.

From our present vantage point, everything we have done could have been found as a trivial
consequence of (20). But, as a principle of reasoning, that had been given in far greater generality by
James Bernoulli (1713) and Laplace (1812). Had their works been better understood and applied,
we might have passed directly from �rst principles of inference to the canonical ensemble, with
the second law as a straightforward predicted consequence rather than a puzzling empirical fact.
The genius of Carnot was to have seen the one case where that fact is not puzzling, but intuitively
compelling.

In our comments on Gibbs' work we have noted two fundamentally di�erent attitudes, epit-
omized by the words deduction and inference. But the inference attitude that Gibbs introduced
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into thermodynamics is just what Bernoulli had recognized and expounded, much earlier. With an
accuracy and honesty almost unique in probability theory, Bernoulli called his work, simply, Ars
Conjectandi, the \Art of Conjecture". Seeing correctly that a major intellectual problem of both
science and everyday life is the necessity of reasoning somehow from incomplete information, he
asked whether there are any general principles, of consistency and rationality, which would help us
in this.

A single desideratum of consistency; that propositions about which we are in the same state
of ignorance should be given equal weight in our reasoning, implies all else. This desideratum led
Bernoulli to write down the general equations of probability theory.

In the hands of Bernoulli those equations were seen, not merely as rules for calculating fre-
quencies; but the consistent rules for conducting inference; a probability distribution is used as a
means of describing our state of incomplete knowledge, and the equations show how probabilities
of di�erent propositions must be related for consistency. Laplace adopted this viewpoint and ap-
plied it with great success to a mass of problems of scienti�c inference. In the course of this, he
developed the analytical theory relevant to applications to a level that is not often surpassed today.
The history is recounted in more detail in Jaynes (1983).

Now by Bernoulli's principle the multiplicity function M(E1) in (20) expresses just the relative
probabilities that we should assign to di�erent values of E1 to represent a state of knowledge about
E1. \Whose state of knowledge?" everyone asks. Answer : a person whose relevant information
consists of the phase volume functions W1, W2, the total energy E; and nothing else. These
equations represent the \best" inferences that can be made by a person in that state of knowledge.
Aware of the microstates and their relative numbers but, having no grounds for preferring any
particular microstate consistent with our knowledge to any other, an honest description of what we
know requires us to assign equal probabilities to them, resulting in (20).

A person with greater knowledge would have a smaller set of possible states, and would be
able to make better predictions of some things. But he would seldom do better in prediction of
reproducible phenomena, because those are the same for virtually all microstates in an enormously
large class C; and therefore also in virtually any subset of C. Indeed, as Gibbs showed, in almost
every case the knowledge supposed above is already su�cient to predict equilibrium states correctly.
Still greater knowledge (such as, perhaps, that the real system stays in some complicated fractal
subset of C) might be very interesting and important for future purposes; but it would not have
helped for the predictions that Gibbs was making.

Knowledge of the \data" E alone would not enable us to choose among the di�erent values
of E1 allowed by (19); the additional information contained in the entropy functions, nevertheless
leads us to make one de�nite choice as far more likely than any other, on the information supposed.

On the other hand, we need not know the entropy functions in advance; nothing prohibits us
from trying out some guess, as a working hypothesis, to see what predictions it would make. Good
predictions give us con�dence that our guess was right; bad predictions can, from the particular
way they fail, give us clues to a better guess. We expect that many applications will take this form.

The sharpness of the thermodynamic predictions, and the resulting \stone wall" character of
the second law, arise from the extremely high dimensionality of the space of microstates, with the
result that W (E) is an enormously rapidly increasing function, of the order of EN , where N is
Avogadro's number.

The same reasoning will apply to many situations outside thermodynamics, in which we can
enumerate a set C of conceivable situations (corresponding to the global quantum states in thermo-
dynamics), and have some data that, although incomplete, restricts them to some subset of C. In
thermodynamics we are generally trying to predict only a few quantities, seldom more than three
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or four; but in image reconstruction it is not unheard of to estimate over a million pixel intensities.
This is not a di�erence of principle, although it is a major di�erence to a computer programmer.

Our numerical values will not in general be as extravagant as in thermodynamics, but may
still be enormous by ordinary standards. The preferred choice may be indicated over others by a
factor of only a million, instead of the fantastic numbers of statistical mechanics. But the general
conclusions and usefulness of the reasoning will be the same; there will still appear to be a \second
law" favoring situations of high entropy, because they can be realized in more ways.

In the above we have tried to show the basic unity of thermodynamics and the \new" maxi-
mum entropy methods, by expounding a general philosophy and rationale that pertains equally to
both. But it may not yet be clear where the mathematical connection lies. The mathematical ap-
pearance of our solution depends on how we choose the basic \hypothesis space" that corresponds
to enumerating the global quantum states of thermodynamics.

As a highly oversimpli�ed example, if in thermodynamics our system consisted of N molecules
with r possible energy levels each, there would be rN . possible global states, each one de�ned by
specifying the state of each molecule. If we wanted to predict the number nk of molecules in the
k'th energy level, subject to some incomplete data D that partially restricts the possibilities, we
would want to maximize the number of ways a certain set fn1 � � �nrg of occupation numbers could
be realized:

W (n1 � � �nr) (29)

But when these numbers become large we may use the Stirling approximation, and the entropy
corresponding to W is given by

(1=N) logW ! ��fi log fi (30)

where fi = ni=N is the fraction of molecules in the i'th energy level. Maximization of the expression
(30) gives the familiar mathematical form of the principle [the right{hand side of (30) is often
called the \Shannon entropy" nowadays, although of course it was given by Boltzmann long before
Shannon was born].

Now there are many other applications where enumeration of the possibilities leads us to write
the same combinatorial factor (29); and therefore the solution will proceed in the same mathematical
way. For example, we may think of an image created by strewing N little \elements of luminance"
over r pixels, the k'th one receiving nk = Nf(k) of them. The set of proportions ff(k)g constitutes
the \true" image, and to estimate the f(k) from incomplete data we would maximize (30) subject
to the constraints of the data. This would give us the reconstructed image that is \most likely" on
the supposed information; i.e., it is the one that can be realized in more ways than any other that
agrees with the data. The situation is logically equivalent to that of thermodynamics.

But suppose we are dubious as to whether our image has been formed by anything like this
strewing process. Is there now any reason for using the same maximum entropy algorithm? It
appears that there may be several.

One is the argument that we put, rather presumptuously, into Gibbs' mouth above: if there
is anything seriously wrong with this hypothesis space, then reconstructions based on it ought to
show systematic deviations from the true scene. If such deviations are found, then they give us a
clue to a better hypothesis space; if not, there is no need for a di�erent one. Therefore, if those
doubts are not speci�c enough to suggest a de�nite alternative hypothesis space, we have nothing
to lose and something to gain by continuing to use the above one.

But the maximum{entropy procedure may be supported by more than one rationale. There
are other arguments, based on logical consistency or on information theory, rather than multiplicity,
which also point uniquely to the maximum entropy rule.
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Finally, we may invoke entropy not as an element in a probabilistic argument, but as a value
judgment; out of all reconstructions that agree with the data, the maximum entropy one is preferred,
simply because it is cleaner, free of artifacts, and therefore more informative and safer to use. This
comes about because entropy is not only a measure of multiplicity; the expression (30) is also a
measure of smoothness.

Any change in the direction of equalizing any two elements fi and fj , increases the entropy
(30). When we maximize (30), fi and fj will therefore be equalized unless this is prevented by
some constraints coming from the data; the variational principle that generates it guarantees that
the maximum entropy reconstruction cannot show any detail for which there is no evidence in the
data. To the best of our knowledge, no other algorithm that has been proposed for this problem
has this safety feature.

Indeed a procedure is something that exists in its own right, and is not tied down to any
particular theoretical rationale. In the last analysis, the methods of science are determined by their
pragmatic success; a procedure that yields useful results will be used even if it has no theoretical
basis at all. If it does not yield useful results, it will not be used however strong the theoretical
arguments for it. So, now let us hear from others how the method is working on some real,
important, and highly nontrivial problems.

APPENDIX A. COMMENTS ON KELVIN'S RELATION

Some have thought it inelegant to base a scienti�c theory on such vulgar things as heat engines;
but in Kelvin's form (10) of Carnot's principle:

�Qi=Ti � 0 (A1)

the vulgarity and inelegance are gone. (A1) refers to any cyclic process involving coupling a system
of interest to n heat reservoirs, whether or not any work is actually done. The engines are only, so
to speak, held in abeyance. We infer a number of general inequalities which make no reference to
any engine; but if ever we �nd a physical phenomenon that violates one of these inequalities, then
some marvelous engines can be built.

Equation (A1) is more general in another respect. With engines in mind we have been making
the tacit assumption that contacts with the di�erent heat reservoirs are to be made successively in
time. But (A1) makes no explicit reference to time either, and a moment's thought persuades us
that this assumption was not necessary for our argument. Kelvin applied (A1) to the continuous
ow of electric current around his thermocouple, which was in continuous contact with the heat
reservoirs.

In using (A1), Kelvin launched another new �eld by introducing a new assumption; that we
may apply Carnot's principle in the form (A1) with the equality sign, to the reversible Peltier and
Thomson heat e�ects, even though irreversible heat conduction is also present.

But a heat current presumably \drags" some electric current with it; i.e. conduction electrons
ought to be carried along a little by a stream of phonons, like sand grains carried downstream by
the current of a river. Conversely, a stream of moving electrons ought to drag along some phonons,
generating a heat current. The reversible e�ects cannot be physically independent of the irreversible
ones; and this should have introduced an error into Kelvin's analysis.

The fact that Kelvin's equations were nevertheless veri�ed means that these two errors must
have cancelled each other. This was recognized later as implying a proportionality relation be-
tween the two dragging coe�cients; the �rst example of an \Onsager Reciprocal Relation". Thus
both the Clausius{Gibbs entropy developments in equilibrium theory, and Onsager's irreversible
thermodynamics (1931), had their origins in Kelvin's use of (A1).
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APPENDIX B: ANTI{CARNOT ENGINES

It is important that we understand some limitations on the applicability of the reversible e�ciency
formula (7):

er = 1� T2=T1: (B1)

This applies, not to every type of energy converter but only to heat engines { i.e., engines which
operate by extracting heat from one reservoir which is at thermal equilibrium at some temperature
T1 and delivering heat to a similar reservoir at a lower temperature T2. But there is no reason why
(B1) should apply to engines that deliver work by a di�erent mode of operation.

Indeed, the world's most universally available source of work { the animal muscle { presents us
with a seemingly agrant violation of that formula. Our muscles deliver useful work when there is
no cold reservoir at hand (on a hot day the ambient temperature is at or above body temperature)
and a naive application of (B1) would lead us to predict zero, or even negative, e�ciency. But
according to Alberts et al. (1983), under favorable conditions the observed e�ciency of a muscle
can be as high as 70%, although a Carnot engine would require an upper temperature of about
(273 + 37)=:30 = 1000K to achieve this.

The answer, of course, is that a muscle is not a heat engine. It draws its energy, not from any
heat reservoir, but from the activated molecules produced by a chemical reaction. This is why we
stressed the word \heat" when we introduced Carnot's principle.

Only when we �rst allow that activation energy to degrade itself entirely into heat { and then
extract only that heat for our engine { does Kelvin's formula apply. If we can learn how to capture
the activation energy before it has a chance to degrade, as our muscles have already learned how to
do, then we shall be able to achieve higher e�ciency than (B1) in an engine. Such an anti{Carnot
engine will, of course, not violate the second law. Rather, to achieve it will require a very clear
understanding of what the second law really says.

What e�ciency might one hope for in such an engine? There is no reason to doubt that, with
proper understanding of these matters, the performance of our muscles could be at least equalled
in vitro. Now, whatever the theoretical maximum e�ciency, it can always be written in the Kelvin
form (B1) if we wish to do so; the question then becomes: \What are the e�ective upper and lower
temperatures?"

As a partial answer we imagine that our engine will, like our muscles, eventually discharge some
heat to the outside world; then let us take T2 as the ambient temperature; for our muscles, body
temperature. What is the e�ective upper temperature? It appears to us that this was answered
already by Gibbs; it is the highest temperature to which the activated molecules could deliver heat,
which would make the maximum e�ciency close to 100%.

To see this more speci�cally, note that at body temperature, 273 + 37 = 310K, the average
thermal energy (kT=2) per degree of freedom is about 0.013 ev. It appears that the source of
energy for muscle contraction is hydrolysis of adenosine triphosphate (ATP), which has a reaction
energy �H = 9.9 kcal/mole = 0.43 ev/molecule. The reaction might leave a product molecule
in an excited state with that activation energy. If this is concentrated in only N = 2 degrees of
freedom (one vibration mode), it thus represents a tiny \hot spot" with an e�ective temperature
Teff = 2Ea=Nk, of the order of 16 times body temperature.

If we can convert that little bubble of concentrated energy into useful work before it has a
chance to thermalize by spreading out over many vibrational degrees of freedom, we should in
principle be able to achieve a conversion e�ciency approaching 15/16. Thus there is no reason to
think that muscle performance is in violation of the second law.
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APPENDIX C: REVERSIBILITY

Thermodynamics is notoriously a �eld which encourages confusion and illogic by a terminology
which may use a common technical term with several di�erent meanings, and fails to distinguish
between them. We have noted before (Jaynes, 1980) some of the many di�erent, mutually inconsis-
tent meanings that have been attached to the word \entropy". An equally serious confusion arises
from the fact that the word \reversible" is used with di�erent meanings; and few writers since
Gibbs and Planck have taken su�cient note of this.

Let A and B stand for two di�erent macrostates, de�ned by specifying (i.e., controlling or
observing) a few macroscopic quantities like temperature, volume, pressure, magnetization, such
that the change A ! B can be carried out in the laboratory. What do we mean by saying that it
is reversible? In the literature, we �nd three di�erent meanings:

(1) Mechanical Reversibility. Reversing all molecular velocities in B, the equations of
motion carry the system back along exactly its previous path to A. In the end this would
restore each individual molecule to its original position.

But this is manifestly not what Carnot had in mind. In his reversible engines he is considering
instead:

(2) Carnot Reversibility. The macroscopic physical process can be made to proceed
in the opposite direction B ! A, restoring the original macrostate.

This is an enormously weaker condition than mechanical reversibility. But it was noted by Clausius,
Gibbs, and Planck that thermodynamic reversibility is a still weaker condition (one that Carnot
could have used without invalidating his argument):

(3) Thermodynamic Reversibility. Even if the backward process B ! A cannot be
made to take place reversibly (for example, because of supercooling at a phase transition),
if by any means such as B ! C ! D ! A the original macrostate can be recovered
without external change, then all entropies are unchanged and the process A ! B is
thermodynamically reversible.

From this we see that the common phrase \ { the paradox of how to reconcile the irreversibility of
the second law with the reversibility of the equations of motion { " does not de�ne any real problem
at all; it is a nonsense utterance, using the term \reversible" in the totally di�erent meanings (1)
and (3) in the same sentence.

These observations are hardly new. The distinction between mechanical and thermodynamic
reversibility was stressed by Gibbs (1875) in his discussion of gas di�usion. Confusion of thermo-
dynamic reversibility with Carnot reversibility was called by Planck (1949), \ { an error against
which I have fought untiringly all my life, but which seems impossible to eradicate."

Despite the e�orts of Gibbs and Planck, these distinctions have been nearly lost today. We have
found no recognition of them in current thermodynamics textbooks, or in the current literature
of statistical mechanics. Indeed, both Maxwell and Gibbs are still under attack in the current
literature, from authors who still do not comprehend their messages. See, for example, Atkins
(1986). In our opinion, recent e�orts to \explain irreversibility" by tampering with the equations
of motion or the de�nition of entropy, address themselves to a non{problem, for reasons that Gibbs
explained cogently over 100 years ago.

It should not have required the labors of Carnot, Kelvin, and Clausius to convince us that one
cannot reverse all molecular velocities with the technology (pistons, stoves, magnets, etc.) available
to experimenters. Thermodynamics is concerned with macrostates, for the pragmatic reason that
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those are the things the experimenter can control and observe. And thermodynamics, like (we
hope) all of physics, is concerned with reproducible phenomena.

By experimental means of macroscopic coarseness one can generate a class of initial states from
which a macroscopic process A ! B takes place reproducibly; but in general the reversed process
B ! A cannot be achieved reproducibly by macroscopic means. That the microscopic equations
of motion may nevertheless be \reversible" in the mechanical sense, is quite irrelevant to what the
experimenter can actually do.

If the experimenter's apparatus is able to put his system only in some uncontrolled point in
WA, then because of Liouville's theorem (conservation of phase volume) the process A! B cannot
be reproducible unless WB � WA, or SB � SA. If the inequality holds, then the reverse process
is, as Gibbs noted, not impossible, but only improbable; i.e., not reproducible. The probability of
success is something like p = WA=WB = exp(�(SB�SA)=k). If the entropy di�erence corresponds
to one microcalorie at room temperature, p < exp(�1015). We do not see why any more than
this is needed to understand and explain the observed phenomenological facts associated with the
second law.
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