
How to Kill the Internet

Van Jacobson
Lawrence Berkeley Laboratory

Berkeley, CA 94720

SIGCOMM ’95 Middleware Workshop
Cambridge, MA
28 August 1995



The Internet was designed to survive

a nuclear war.

It lives up to its design.

How might you kill it?

vj–Middleware WS–2



Easy — Invent the Web.

vj–Middleware WS–3



Web traffic is destroying the Internet.

Not because it’s popular — there are

benign popular protocols — but because the

application-level protocols are abysmal.

With a lot of effort and cooperation, we may

be able to fix the Web without changing its

user interface.

But it would be nice if application designers

didn’t make this painful set of mistakes

again.

vj–Middleware WS–4



With 25 years of Internet experience, we’ve

learned exactly one way to deal with

exponential growth:

Caching.

Data has to find ‘local’ sources near

consumers rather than always coming from

the place it was originally produced.

But the number of caches has to grow as

fast as the Internet, exponentially.

How do we architect for lots of caches?

vj–Middleware WS–5



Configuration is a major problem.

Experience shows that anything that must

be configured will be misconfigured.

Web clients need hostname of their local

cache.

Client rendezvous with local cache

should be automatic.

I.e., use multicast.

vj–Middleware WS–6



For any source of popular data, want a

cache distribution tree rooted at that source

with leaves near everyone who wants the

data.

But nothing in the Internet is static:

sources, receivers and distribution topology

all change continuously.

Cache hierarchy should be

self-configuring and adaptive.

I.e., use multicast.

vj–Middleware WS–7



Near root of distribution tree, it’s very likely

data requested by one cache will soon be

needed by another.

1

2

3

R isp

Should use efficient, multi-point

distribution for data.

I.e., use multicast.

vj–Middleware WS–8



Using multicast implies that we stop thinking

of communication as ‘conversations’:

Instead of asking X to send you Y,

simply ask for Y.

(This is a profound change at the protocol

level — Dave Clark’s ALF).

vj–Middleware WS–9



Applications and data (data naming) have to

be designed with scalable caching in mind.

This implies either explicit lifetimes or

generation numbers otherwise bottlenecks

re-appear due to cache-coherency protocol.

(The average transaction is small so

a validity check a data xfer.)

vj–Middleware WS–10



The Internet has grown because IP’s default

behavior is transitive and a site has to do

extra work to limit transitivity.

CBA

Need the same attitude in application

design.

I.e., every reader is a cache (becomes a

source of the data read) and users have to

work to turn this off.

vj–Middleware WS–11



Large-scale caching makes it much more

likely that data is corrupted or subverted.

Need cheap, universal, data integrity

and authentication machinery.

Item size vs. packet size mismatch

might require machinery with

some new properties.

vj–Middleware WS–12



Need a billing architecture that encourages

rather than discourages caching.

1

2

3

R isp

Receiver-pays, not sender-pays.

vj–Middleware WS–13


