
A Personal View of APL
--b 3 K. E. Iverson

Toronto, Ontario

Copyright © 1991 by International Business Machines
Corporation. Reprinted with the permission of the IBM
Systems Journal, Vol. 30, No. 4.

Tkis essay portrays a personal view of the development of
several influential dialects of APL: APL2 and J. The
discussion traces the evolution of the treatment of arrays,
functions, and operators, as well as function definition,
grammar, terminology, and spelling.

I
T I8 NOW 35 YEARS since Professor H o w a r d Aiken ins t i tu ted

a computer science program at Harvard, a program that he
called Automatic Data Processing. It is almost that long

since I began to develop, for use in writing and teaching in that
program, the programming language that has come to be known
as APL.

Although I have consulted original papers and compared my
recollections with those of colleagues, this remains a personal
essay that traces the development of my own thinking about
notation. In particular, my citation of the work of others does not
imply that they agree with my present interpretation of their
contributions. In speaking of design decisions I use the word we
to refer to the small group associated with the early implementa-
tion, a group that included Adin Falkoff, Larry Breed, and Dick
Lathwell, and is identified in "The Design of APL ''1 and "The
Evolution of APL. ''2 These papers contain full treatments of
various aspects of the development of APL that are given scant
attention here.

Because my formal education was in mathematics, the funda-
mental notions in APL have been drawn largely from mathemat-
ics. In particular, the notions ofarrays, fixncfions, and operators
were adopted at the outset, as illustrated by the following excerpt
from A Programming Language. 3

An operation (such as summation) which is applied to all
components of a vector is called reduction Thus, + / x
is tim sum, × i x is the product, and v / x is the logical
sun~ of the components of a vector x.

The phrase + /xa lone illustrates the three aspects: a function
• • 4

+, an operator / (so named from the term used by Heavtslde for
an entity that applies to a function to produce a related derived
function), and an array x.

The present discussion is organized by topic, tracing the
evolution of the treatments of arrays, functions, and operators; as
well as that of other matters such as function definition, grammar,
terminology, and spelling (that is, the representation ofprimi-
fives).

As stated at the outset, the initial motive for developing APL
was to provide a tool for writing and teaching. Although APL has
been exploited mostly in commercial programming, I continue
to believe that its most important use remains to be exploited: as
a simple, precise, executable notation for the teaching of a wide
range of subjects.

When I retired from paid employment, I turned my attention
back to this matter and soon concluded that the essential tool
required was a dialect of APL that:

• Is available as "shareware," and is inexpensive enough to
be acquired by students as well as by schools

• Can be printed on standard printers
• Runs on a wide variety of computers
• Provides the simplicity and generality of the latest think-

ing in APL

The result has been.J, first reported in Reference 5.
Work began in the summer of 1989 when I first discussed my

desires with Arthur Whitney. He proposed the use of C for
implementation, and produced (on one page and in one after-
noon) a working fragment that provided only one function (+),
one operator (/) , one-letter names, and arrays limited to ranks 0
and 1, but did provide for boxed arrays and for the use of the
copula for assigning names to any entity.

I showed this fragment to others in the hope of interesting
someone competent in both C and APL to take up the work, and
soon recruited Roger Hui, who was attracted in part by the
unusual style of C programming used by Arthur, a style that
made heavy use of preprocessing facilities to permit writing
further C in a distinctly APL style.

Roger and I then began a collaboration on the design and
implementation of a dialect of APL (later namedJ by Roger), first

• - g ~ - - , ¢ 6 - decxding to roughly follow A Dlcaonary of APL and to Lm-
pose no requirement of compafihillty with any existing dialect.
We were assisted by suggestions from many sources, particularly
in the design of the spelling scheme (E. B. Iverson and A. T.
Whitney) and in the treatment of cells, items, and formatting (A.
T. Whitney, based on his work on SHARP/HP 7 and on the
dialect A reported at the APL89 conference in New York).

E. E. McDonnell of Reuters provided C programs for the
mathematical functions (which apply to complex numbers as well
as to real), D. L. Orth of IBM ported the system to the IBM
RISC System/6000* in time for the APL90 conference, and L.
J. Dickey of the University of Waterloo provided ass/stance in
porting the system to a number of other computers.

The features of J that distinguish it from most other APL
dialects include:

4 APL O~ote

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360487.360477&domain=pdf&date_stamp=2000-01-01

l. A spelling scheme that uses ASCII characters in one- or
two-letter words

2. Convenient international use, provided by facilities for
alternative spellings for the national use characters of
ASCII, and by facilities to produce the error messages in
any desired Language

3. Emphasis on major cells or items; for example, reduction
(f /) applies f between items, and application o f f be-
tween cells of lesser rank is obtained by using the rank
operator

4. The function argument to scan (\) is, like all functions,
ambivalent. Scan applies the monadic case of the function
rather than the dyadic. Thus, the traditional sum scan is
given by + / ~ a rather than by + \ a, and < \ a boxes the
partitions provided by the scan.

5. A number of other partitioning adverbs are provided,
including suffix scan (\ .) , windows ofwidth k (as in k
f \ a) , and oblique (/ .) .

6. Use of the hook and fork (discussed later) and various
new operators together with the use of the copula to
assign names to functions. These facilities permit the
extensive use of tacit programming in which the argu-
ments of a function are not explicitly referred to in its
definition, a form of programming that requires no
reparsing of the function on execution, and therefore
provides some of the efficiency of compilation. (See
Reference 8.)

7. An immediate and highly readable display of the defini-
tion of a function f obtained by simply entering f

Significant use of J in teaching will, of course, require the
development of textual material using it. Three steps have been,
taken toward this goal:

1. The dictionary of J includes 45 frames oftutorialmaterial
(suitable for slides) that are brief treatments inJ of topics
from a dozen different areas.

2. At the urging ofL. B. Moore ofI. P. Sharp Associates, I
prepared for distribution at APL89 a booklet called
Tangible Math, designed for independent study of ele-
mentary mathematics. It was based on the use of Sharp 9
shareware for the IBM PC, and required no reference to
an APL manual. I have since produced a J version of
Tangible Math. l°

3. At a four-hour hands-on workshop for teachers ofmathe-
matics organized by Anthony Camacho of I-APL n and
funded by the British APL Association, Anthony and I
used Tangible Math to expose the participants to the
advantages of executable mathematical notation. The
teachers left with a copy of J and with enough experience
to continue the use of J on their own. Such workshops
could be used to bring teachers to a point where they

could develop their o w n treatments of isolated topics, and
eventually of complete subjects, on their own.

In the three decades of APL development, many different
ideas have been proposed and explored, and many have been
abandoned. Those that survived have done so through incorpo-
ration in one or more implementations that define the many
dialects of APL.

These dialects fall into several families, two of which have
been partictdarly influential. I refer to them by the names oftheir
most recent exemplars--APL212 on the one hand, andJ on the
other--and sketch the development of these families in a later
section.

In the remainder of the essay 1 largely confine my remarks to
those dialects that have influenced, and been influenced by, my
own thinking. This emphasis is intended not to denigrate the
dialects not mentioned, but to keep the discussion focused and
to leave their exposition to others more conversant with them.

Although my motive for producing a new dialect was for use
in teaching, this dialect has led to much greater emphasis on a

13 style of programming calledfunctionalby Backus, and defined
inJ as tacit programming (because arguments are not referred to
explicitly). These matters are addressed in the section on tacit
programming.

Terminology
Although terminology was not among the matters given serious
attention at the outset, it will be helpful to adopt some of the later
terminology immediately. Because of our common mathematical
background, we initially chose mathematical terms. For example,
the sentence

b~(+\a)-.xa~2 3 5 7

illustrates certain parts of speech, for which we adopted the
mathematical terms shown on the left as follows:

Functions or operators + x - Verbs
Constant (vector) 2 3 S 7 Noun (fist)
Variables a b Pronouns
Operator \ Adverb
Operator Conjunction

() Punctuation
Copula

I now prefer terms drawn from natural Language, as illustrated
by the terms shown on the right. Not only are they familiar to a
broader audience, but they clarify the purposes of the parts of
speech and of certain relations among them:

M A n C H 2 0 0 o - - V O L t r ~ E 3 0 , N t n a e s a ~ 3 5

1. A verb specifies an "action" upon a noun or nouns.
2. An adverb applies to a verb to produce a rda ted verb;

thus + \ is the verb "partial sums."
3. A conjunction applies to two verbs, in the manner of the

copulative conjunction and in the phrase "run and hide."
4. A name such as a or./9 behaves like a pronoun, serving as

a surrogate for any referent linked to it by a copula. The
mathematical term variable applied to a name x in the
identity (x + 3 _) x (x + 3) equals xY+4x+3 serves to
emphasize that the relation holds for any value of x, but
the term is often inappropriate for pronouns used in
programming.

5. Although numeric lists and tables are commonly used to
represent the vectors and matrices of mathematics, the
terms list and table are much broader and simpler, and
suggest the essential notions better than do the mathemat-
ical terms.

6. To avoid ambiguity due to the two uses of the term opera-
tor in mathematics (for both a function and a Heaviside
operator) I usually use only the terms adverb and conjunc-
tion, but continue to use either function or verb, list or
vector, and table or matrix, as seems appropriate.

Spelling
In natural languages the many words used are commonly
represented (or spelled) in an alphabet of a small number of
characters. In programming languages the words or primitives of
the languages (such as sin and = :) are commonly represented by
an expanded alphabet that includes a number of graphic symbols
such as + and =.

When we came to implement APL, the alphabet then widely
available on computers was extremely limited, and we decided to
exploit a feature of our company's newly-developed Selectric*
typewriter, whose changeable typing element allowed us to
design our own alphabet of 88 characters. By limiting the English
alphabet to one case (majuscules), and by using the backspace
key to produce composite characters, we were able to design a
spelling scheme that used only one-character words for primi-
tives.

Moreover, the spelling scheme was quite mnemonic in an
international sense, relying on the appearance of the symbols
rather than on names of the functions in any national language.
Thus the phrase k1"x takes k elements from x, and ,~ denotes
drop.

Because the use of the APL alphabet was relatively limited, it
was not included in the standard ASCII alphabet now widely
adopted. As a consequence, it was not available on most printers,
and the printing and publication of APL material became
onerous. Nevertheless, in spite of some experiments with
"reserved words" in the manner of other programming lan-
guages, the original APL alphabet has remained the standard for
APL systems.

The set of graphics in ASCII is much richer than the meager
set available when the APL alphabet was designed, and it can be
used in spelling schemes for APL primitives that still avoid the
adoption of reserved words. Such a scheme usingvariable-length
words was presented in Reference 6, and received limited use for
communicating APL programs using standard printers, but was
never adopted in any commercial implementation. A much
simpler scheme using words of one or two letters was adopted in
J, in a manner that largely retains, and sometimes enhances, the
international mnemonic character of APL words.

In a natural language such as English, the process of word
formation is clearly distinguished from parsing. In particular,
word formation is static, the rhematic rules applying to an entire
text quite independently of the meanings or grammatical classes
of the words produced. Parsing, on the other hand, is dynamic,
and proceeds according to the grammatical classes of phrases as
they evolve. This is reflected in the use of such terms as noun
phrase and verb phrase.

In programming languages this distinction is commonly
blurred by combining word formation and parsing in a single
process characterized as "syntax." In J, the word formation and
parsing are distinct. In its implementations, each process is
tabledriven; the parsing table being presented expficifly in the
dictionary of J, and the rhematic rules being discussed only
informally.

It is interesting to note that the words of early APL included
"composite characters" represented by two elements of the
underlying alphabet; these were mechanically superposed,
whereas inJ they appear side-by-side.

Functions
Functions were first adopted in the forms found in elementary
mathematics, having one argument (as in I bl and-b) o r two (as in
a +b and a-b). In particular, each had an explicit result, so that
functions could be articulated to form sentences, as in la-bl+(a
+b).

In mathematics, the symbol - is used to denote both the
dyadic function subtraction (as in a-b) and the monadic function
negation (as in -b). This ambivalent use of symbols was ex-
ploited systematically (as in ÷ for both division and reciprocal,
and * for both power and exponential) to provide mnemonic
links between related functions, and to economize on symbols.

The same motivations led us to adopt E. E. McDonnell's
proposal to treat the monadic trigonometric (or circular)
functions and related hyperbolic and pythagorean functions as a
single family of dyadic functions, denoted by a cirde. Thus sine
y and eosiney are denoted by lo .y and 2oy , the numeric left
argument being chosen so that its parity (even or odd) agrees
with the parity of the function denoted, and so that a negative
integer denotes the function inverse to that denoted by the
corresponding positive integer. This scheme was a matter of
following (with rather lessjustitication) the important inathemati-

6 APL Quote Quad

cal notion of treating the monadic functions square, cube, square
root, etc. as special cases of the single dyadic power function.

When the language was formalized and lineafized in APL\
360, t4 anomalies such. as x ~ for power, x 3 for product, [Yl for
magnitude, and 21¢j for indexing were replaced by x * y and xx3r
and I Y and/~ [i ; j] . At the same time, function definition was
formalized, usinghead~rs of the form Z~-X F ~Y and Z÷F Y to
indicate the definition of a dyadic or a monadic function. This
form of header permitted the definition of functions having no
explicit result (as in X F Y), and so-called niladie functions (as
in Z~-F and F) having no explicit arguments. These forms were
adopted for their supposed convenience, but this adoption
introduced functions whose articulation in sentences was limited.

In most later dialects such niladic and resuldess functions
were also adopted as primitives. I n J they have been debarred
completely, to avoid the problem of articulation, to avoid
complications in the application of adverbs and conjunctions to
them, and to avoid the following problem with the copula: i f g is
a niladic function that yields the noun n, and if f~-g, then is f a
niladic function equivalent to g, or is it the noun n ?

In conventional mathematical notation, an expression such as
f(x,y,z) can be interpreted either as a function of three arguments,
or as a function of one argument, that is, of the vector formed by
the catenafion of x, 3, and z. Therefore the limitation of APL
functions to at most two formal arguments does not limit the
number of scalar arguments to which a function may apply.

Difficulties with nonscalar arguments first arose in indexing,
and the forms such as A [I ; J ; K] and A [I ; ; g] that were
adopted to deal with it introduced a "nonlocality" into the
language: a phrase within brackets had to he treated as a whole
rather than as the application of a sequence of functions whose
results could each be assigned a name or otherwise treated as a
normal result. Moreover, an index expression for an array A
could not be written without knowing the rank of A.

The introduction of a function to produce an atomic represen-
tation of a noun (known as enclose in NARS 1s'16 and APL2 as
box in SAX t7 and J, and discussed in the section on atomic
representations) makes it possible to box arguments of any rank
and assemble them into a single argument for any function. In
particular, it makes possible the use of such a boxed array as the
argument to an indexing function, adopted in SAX and J and
called from.

18
As may be seen, the functmn rotate was mmally defined so

that the fight argument specified the amount of rotation. The
roles of the arguments were later reversed to accord with a
general mnemonic scheme in which a left argument a together
with a dyadic function f (denoted inJ by a& f) would produce
a "meaningful" monadic function. Exceptions were, of course,
made for established functions such as divided by. The scheme
retains some mnemonic value, although the commute adverb (-)
provided inJ and in SAX makes either order convenient to use.
For example, 5 96- 3 would be read as 5 into 3.

In APL\360 it was impossible to define a new function within
a program. This was rectified in APLSV 19 by defining a canoni-
cal representation of a function (a matrix M whose first row was
a header, and whose succeeding rows were the sentences of the
definition); a fix function DFX such that DFX M yielded the
name of the function as an explicit result, and established the
function as a side effect; and an inverse function DCR, which
when applied to the name of a function produced its canonical
representation as an explicit result. Th e ability to define ambiva-
lent fimctions was added in a University of Massachusetts
system, 20 and was soon widely adopted.

Th e function DFX established a function only as a side effect,
but the scheme has been adapted toJ by providing a conjunction
(:) such that ra : d produces an unnamed function that may
be applied directly, as in x m : d 3r, or may be assigned a
name, as in f = . rn : d. See the section on name assignment.

Following an idea that Larry Breed picked up at a lecture by
the late Professor A. Perlis of Yale, we adopted a scheme of dy-
namic localization in which names localized in a function defini-
tion were known to further functions invoked within it.

This decision made it possible to pass any number of
parameters to subordinate fimcfions, and therefore circumvented
the limitation of at most two explicit arguments, but it did lead to
a sometimes confusing profusion of names localized at various
levels. Th e introduction of atomic representation (box and en-
close) has made it convenient to pass any number of parameters
as explicit arguments; in J this has been exploited to allow a
return to a simpler localization scheme in which any name is
either strictly local or strictly global.

Arrays
Perhaps because of the influence of a course in tensor analysis
taken as an undergraduate, I adopted the notion that every
function argument is an array, and that arrays may be classified
by their rank; a scalar is rank 0, a vector rank 1, a matrix rank 2,
a r i d s o o n .

T h e application of arithmetic (or scalar) function such as +
and x also followed tensor analysis; in particular the scalar
extension, which allowed two arguments to differ in rank if one
were a scalar. In defining other functions (such as reshape and
rotate), we attemp ted to make the behavior on higher-rank arrays
as systematic as possible, but failed to find a satisfying uniform
scheme. Such a uniform scheme (based on the notion of cells) is
defined in "A Dictionary of APL, ''6 and adopted in SAX and in

J.

MARCH ~.000 - - VOLUME 30 , NUMBER 3 7

A rank-k cell of A is a subarray of A along k contiguous final
axes. For example, if'.

A
abcd
efgh
ijkl

mnop
qrst
uvwx

then the list a b c d is a 1-cell of A~ the table from m to x is a 2-cell
of A, the atom g is a 0-cell of A, and A itself is a 3-cell of A.

Each primitive function has intrinsic ranks, and applies to
arrays as a collection of cells of the appropriate rank. For
example, matrix inverse has rank 2, and applies to an array of
shape 5 Lt 3 as a collection of five 4 by 3 matrices to produce
aresultofshape 5 3 4, acollectionoffive 5 by 4 inverses of the
4 by 3 cells.

Moreover, the rank conjunction (denoted inJ by ") produces
a function of specified rank. For example, the intrinsic rank of
ravel is unbounded and (using the shape 2 3 tt array A shown
above):

,A

abcdefghij klmnopqrstuvwx

• "2 A

abcde f ghi j kl
mnopqr s t uvwx

Further discussion of cells and rank may be found in the section
on tacit programming, and in Reference 21.

The central idea behind the use of cells and a rank operator
was suggested to me at the 1982 APL conference in Heidelberg
by Arthur Whitney. In particular, Arthur showed that a reduc-
tion along any particular axis (+ / [/] A) could be neatly handled
by a rank operator, as in + / " Z g. By further adopting the idea
that every primitive possessed intrinsic ranks (monadic, left, and
right) I was able, in Reference 6, to greatly simplify the definition
of primitives: each function need be defined only for cells having
the intrinsic ranks, and the extension to higher-rank arguments
is uniform for all functions.

Adverbs and conjunctions
Even after tasting the fruits of generalizing the ~ notation of
mathematics to the form f / that permitted the use of functions
other than addition, it took some time before I recognized the
advantages of a corresponding generalization of the inner or
matr ix product to allow the use of functions other than addition
and multiplication. Moreover, I thought primarily ofthe derived

functions provided by these generalizations, and neither exam-
ined the nature of the slash itself nor recognized that it behaved
like a Heaviside operator.

However, when we came to linearize the notation in the
implementation of APL\360, the lineafizafion of the inner
product (which had been written as one function on top of the
other) forced the adoption of a symbol for the conjunction (as in
M +. x N). This focused attention on the adverbs and conjunc-
tions themselves, leading to a recognition of their role and to the
adoption of the term o,pergtors to refer to them.

In reviewing the syntax of operators we were disturbed to
realize that the slash used for reduction applied to the (function)
argument to its /eft, and even considered the possibility of
reversing the order to agree with the behavior of monadic
functions. However, Adin Falkoffsoon espoused the advantages
of the established scheme, pointing out that the adoption of a
"longleft scope" for operators would allow the writing of phrases
such as + . x / t o denote the function"inner product reduction,"
which might be applied to a rank-5 array.

We also realized that the use of the slash to denote compres-
sion (as in 1 0 1 0 1 / ' a b c d e ' to yield ' a c e ') seemed
to imply that the slash was ambiguous, sometimes denoting an
operator, and sometimes a function. This view was adopted in
NARS and in the precursor to APL2. Alternatively, adverbs and
conjunctions could he assumed to apply to both nouns and
verbs, giving different classes of derived verbs in the different
cases. In this view, compression was not a dyadic function
denoted by the slash, but was rather the derived function
resulting from the application of the adverb / to a noun.

The application of adverbs and conjunctions to nouns was
adoptedin SHARP, 22 SHARP/HP, SAX, andJ, butwas resisted
in other dialects, in spite of the fact that the phrase qb [B] for
applying reversal on axis 3 furnished an example of such usage
in early APL, and in spite of the implied use of nouns in
Heaviside's notation D 2 f for the second derivative of f .

In calculus, the expression f + g is used to denote the sum of
functions f and g, thatis, (f + g) xisdeffinedas (f x) +
(g x) . The utility ofsuch constructs as f + g and f x g was
clear, and I realized that they could be handled by operators
corresponding to the functions + and x . What appeared to be
needed was an adverb that would apply to a function to produce
a conjunction. However, I was reluctant to complicate the
grammar by introducing results other than functions from
adverbs, and I began by suggesting, in Reference 23, a limited
solution using composite symbols such as + overstruck by an
overbar.

Somewhat later I discussed this matter with Arthur Whitney,
and he qnicldy suggested an operator that we modified slightly
and presented as the til operator in Reference 24, using the
definition x (f t i 1 g) y is (g y) f x. T h e fork
discussed in the section on graxnxnar and order of execution now
provides a more convenient solution, using expressions such as
f+g and f×g.

8 ~PL trot, Cb~Z

In mathematics, the notions of inner product and outer
product are used in rather limited areas. In APL systems, opera-
tors provide generalizations of them that not only broaden their
uses, but make them more readily comprehensible to non-
mathematicians. Much the same is true of"duals" in mathemat-
ics, but because the generalization of APL is not so widely known
or used, it merits some attention here.

It is useful to view almost any task as performed in three
phases: preparation, the main task, and undoing the preparation.
In programming terms this would appear as i n v e r s e p m a i n
p a r g u m e n t . In other words, the main function is performed
under the preparation t3.

InJ the under conjunction is denoted by &. and is defined as
follows:

m&.p y is inversep m p y

x m&.p y is inversep (p x) m (p y)

For example, since ^ . denotes the natural logarithm inJ, the
expression a +&. ^ b yields the product of a and b. The
under conjunction is commonly used with the function open
(whose inverse is box) discussed in the section on atomic repre-
sentations.

Name assignment
In mathematics, the symbol = is used to denote both a relation
and the copula in name assignment (as in "let x=3"). In APL, the
arrow was first used for the copula in Reference 18, and has been
used in all dialects until the adoption of =. and = : i n J Y

The use of the copula was initially restricted to nouns, and
names were assigned to user-defined functions by a different
mechanism in which the name of the function was incorporated
in the representation to which the function DEX was applied, as
discussed in the previous section on fimcfions. The use of the
copula for this purpose was proposed in Reference 23, imple-
mented in SHARP/HP, and later adopted in Dialog 25 and inJ.
These implementations provided for adverbs and conjunctions
in the same manner. However, this use of the copula has not
been adopted in other implementations, perhaps because the
representations used for fimctions make its adoption difficult.

Indirect assignment was first proposed in Reference 26, and
is implemented inJ and defined in Reference 21. Two copulas
are used in J, one for local assignment (= .) , and one for global
(= :) assignment.

Grammar and order of execution
Grammatical rules determine the order of execution of a sen-
tence, that is, the order in which the phrases are interpreted. In
Reference 3, the use of parentheses was adopted as in mathemat-
ics, together with the rule (Reference 5, page 8) that "The need
for parentheses will be reduced by assuming that compound

statements are, except for intervening parentheses, executed
from right to left."

In particular, this rule implies that there is no hierarchy
among functions (such as the rules in mathematics that power is
executed before multiplication before addition). Long familiarity
with this hierarchy occasioned a few lapses in my book, 3 but the
new rule was strictly adopted in the APL\360 implementation.
APL\360 also introduced a hierarchy, giving operators prece-
dence over functions.

The result was a simple grammar, complicated only by the
bracket-semicolon notation used for indexing. This was later
complicated by the adoption, in most systems, of the statement
separator (denoted by a diamond). The utility of the statement
separator was later vitiated in some systems (including SHARP,
SAX, and J) by the adoption of dyadic functions/ev and dex,
which yielded their left and right arguments, respectively.

The grammatical rules left certain phrases (such as a se-
quence of nouns) invalid. In NARS and in APL2 meanings were
assigned to a sequence of nouns: f fa and]3 are the nouns "hold"
and "on," then the phrase a b yields the two-element list of
enclosed vectors. The adoption of such "strands" led to a
modification of the grammatical rules based upon left and right
"binding strengths" assigned to various parts of speech, as
discussed in References 27 and 28. In particular these rules
required that the phrase 2 3 5 [1] be replaced by
(2 3 5)[I].

Other changes in grammar were adopted in J: the bracket-
semicolon indexing was replaced by a normal dyadic verbfiom;
and any isolated sequence of verbs was assigned a meaning based
upon the hook and fork, first proposed in Reference 29 and
briefly explained next. The result is a strict grammar in which
each phrase for execution is chosen from the first four elements
of the execution stack, and eligibility for execution is determined
by comparison with a 14 by 4 parsing table as shown in Refer-
ence 21.

Because the hook and fork (as well as several other previously
invalid phrases) play a significant role in the tacit programming
discussed in a later section, they are further elaborated here.
Briefly, ff

mean=.+/%#

then

mean x

is equivalent to

(+/x) % (#x)

The dyadic case is defined analogously. If

diffsq=. +*-

MA~C~ ~ooo - - VOLt~E.~O, NUMBER 3 9

then

a diffsq b

is

(a+b) * (a-b)

The hook and the fork may be expressed graphically as
follows:

F O ~ HOOK
g g g g

/ \ / \ / \ / \
f h f h y h x h
I I / \ / \ I I
y y x y x y y y

Two further points should be noted:

.

.

A longer train of verbs will resolve into a sequence of
forks andhooks. For exarnple, t a u t = . < : =<+. = is
equivalent to two forks, as in t a u t =. < : = (< +. =),
and expresses the tautology that less than or equal (< :)
e q ~ (=) loss than (<) or (+ .) eq~ l (=).
In the expression (+ / % #) 2 3 4 S to produce
the mean of the list 2 3 4 5, the parentheses are
clearly essential, since + / % # 2 3 4 5 would yield
0 . 2 5, the sum of the reciprocal of the number of items.
However, it must be emphasized that the parentheses
perform their normal function of grouping, and are not
needed to explicitly produce forks, as may be seen from
the earlier examples.

Atomic representations
It is commonplace that complex cons tructs may be conveniently
represented by arrays of simpler constructs: a word by a list of
letters, a sentence by a list of words, a complex number by a list
of two real mmabers, and the parameter of a rotation function by
a table of numbers, and so on.

However, it is much more convenient to use atomic represen-
tations, which have rank 0 and are therefore convenient to
combine into, and select from, arrays. For example, the represen-
tation 3 j 4 used for a complex number in APL systems is an
atom or scalar.

In Reference 30, Trenchard More proposed a representation
scheme in which an enclose function applied to an array pro-
duced a scalar representation of the argument. This notion was
adopted or adapted in a number of APL systems, beginning with
NAB.S, and soon followed by APL2.

A somewhat simpler scheme was adopted in SHARP in
1982, was presented in "A Dictionary ofAPL ''6 in 1987, and
later adopted in SAX and J: a function called box (and denoted

by <) applied to any noun produces an atomic representation of
the noun that can be "decoded" by the inverse function open
(denoted by >) to yield the original argument.

A desire for similar convenience in handling collections of
functions led Bemecky and others to propose (in References 31
and 32) the notion offiznction arra3s. These have been imple-
mented as gerunds in J by adopting atomic representations for
functions.

Implementations
Because of a healthy emphasis on standardization, many distinct
implementations differed slightly, fiat all, in the language features
implemented. For example, the IBM publication APLSV User's
Manual TM written originally for APLSV applied equally to VS
APL and the IBM 5100 computer.

Despite the present emphasis on the evolution of the lan-
guage itself, certain implementations merit mention:

1. The IBM 5100 mentioned above is noteworthy as one of
the early desktop computers, and as an implementation
based on an emulator of the IBM System/360* and a
read-only memory copy of APLSV.

2- The I-APL implementation provided the first shareware
version of APL, aimed at making APL widely available in
schools.

Implementations representing the two main lines of develop-
ment mentioned in the introduction are now discussed briefly.
The first is the nested array system NARS conceived and imple-
mented by Bob Smith of STSC and incorporating ideas due to
Trenchard More 3° andJ. A. Brown (Doctoral thesis, University
of Syracuse). In addition to the enclose and related facilities that
provide the nested arrays themselves, this implementation greatly
expanded the applicability of operators. In the APL2 implemen-
tation, Brown has followed this same line of development of
n e s t e d arrays.

Somewhat after the advent of NARS, the SHARP APL
system was extended to provide boxed elements in arrays, as
reported in Reference 22. New operators (such as the rank) were
also added, but their utility was severely limited by the fact that
operators were not (as in NARS) extended to apply to user-
defined functions and derived functions. In the succeeding SAX
and J implementations such constraints have been removed.

Tacit programming
A tacit definition is one in which no explicit mention is made of
the arguments of the function being defined. For example:

sum=. +/

mean=, sum % #

listmean =. mean"l

[a=. i. 5

0 1 2 3 4

sum a

10

mean a

2

[table=. i.

0 1 2 3 4

5 6 7 8 9

10 Ii 121314

35

mean table

5 6 7 8 9

listmean table

2712

By contrast, definition in most APL dialects makes explicit
mention of the argument(s):

DFX 27p'Z~SUM X Z*+/X'

SUM

Tacit programming offers several advantages, including the
following:

1. It is concise.
2. It allows significant formal manipulation of definitions.
3. It greatly simplifies the introduction of programming into

any topic.

Since the phrase + / p r o d u c e s a function, the potential for
tacit programming existed in the earliest APL; but the restric-
tions on the copula prevented assignment of a name to the
definition, and therefore prohibited tacit programming.

In any case, the paucity of operators and the restrictions that
permitted their application to (a subclass of) primitive functions
only, made serious use of tacit programming impossible. In later
dialects these restrictions have been removed, and the number of
operators has been increased.

I now provide a few examples of tacit programming in J, first
listing the main facilities to be exploited. The reader may wish to
compare such facilities in J with similar facilities defined by

33) . Baekus 13 and by Curry. For example, Curry s combmators W
(elementary duplicator) and C (commutator) are both repre-
sented by the adverb - in J, according to the following examples:

/ : -b is b/: b (that is , a sort of b)
a %-b is b%a (thatis, aintob)

The facilities to be used in the examples include the hook,
fork, and - already defined, as we].[as the following which,
although defined in terms of specific verbs, apply generally. It
may be necessary to consult Reference 21 for the meanings of
certain verbs, such as *: (square), %: (square root), and ^
(log). Five examples follow.

1. 2 &^ y is 2 ^ y (Called currying)
2. ^ & 2 y is y ^ 2 (Called currylng)
3. - & ̂ . y is - ^ y Composition
4. x -& ^ . y is (^ . x) - (^ . y) Composition
5. x -@ ^ y is - x ^ y Atop

Some examples from statistics are s h o w n next.

sum=. +/

mean=, sum % #

norm=. - mean

std=.%: & sum & * : & norm

Entry of a function alone causes a display of its definition, a
display that can be captured and manipulated as a straight-
foxwaard boxed array. Thus:

std

I %: & sum

& norm
& *:

In fimcfion tables, the f outer product of APL is in J the
dyadic case of f / . For example:

[a=. b=. i. 5

0 1 2 3 4

a+/b

0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

a*/b

000 0 0

012 3 4

024 6 8

036 912

0481216

MARCH ~000 -- VOLUm ~0, N~REa ~ I I

a!/b

l l l l l

0 1 2 3 4

0 0 1 3 6

0 0 0 1 4

0 0 0 0 1

Suclh a table can be made easier to interpret by displaying it
with appended arguments, using the following tacit definitions:

over=. ({., .@;].)&" :8.

by=. (,-"_i ' '&;&, .)-

a by b over a !/ b

0 1 2 3 4

0 1 1 1 1 1

1 0 1 2 3 4

2 0 0 1 3 6
3 0 0 0 1 4

4 0 0 0 0 1

Adverbs may be defined tacitly in a number of ways, as
follows:

sum \ a

0 " 3610

scan=. / \
+ scan a

0 1 3 6 1 0

- scan a

0 _1 1 _2 2

table=. /(['by'] 'over')\

23 5 *table 1 2 3 4 5

1 2 3 4 5

22 4 6 810

33 6 91215
55 i0152025

a <table b

0 1 2 3 4

0 0 1 1 1 1

i 0 0 1 1 1

2 0 0 0 1 1

3 0 0 0 0 1

4 0 0 0 0 0

Cited references and note

1. A.D. Falkoff and ICE. Iverson, "The Design of APL," IBM
JournalofResearck andDe~elop~wnt 17, No. 4, 324-334 (1973)

2. A.D. Falkoffand K. E. Iverson, "The Evolution ofAPL," ACM
SIGPLdN.N'otices 15, No. 8, 47 57 (1978)

3. K.E. Iverson, A Programming Language, John Wiley &: Sons,
Inc., New York (1962), p. 16

4. See the 1971 Chelsea edition of Heaviside's Electromagnetic
Theory and the article by P. Nahin in the June 1990 issue of
Sci~tific American

5. R. K. W. Hui, K. E. Iverson, E. E. McDonndl, and A. T.
Whitney, "APL/?," APLgO Conference Proceedings, APL Quote
Quad 20, No. 4, ACM, New York (1990)

6. K. E. Iverson, "A Dictionary of APL," APL87 Conference
Proceedings, APL Quote Quad 18, No. 1,202-211, ACM, New
York (1987)

7. R_ Hodgkinson, "APL Procedures,"APL86 Conference Proceed-
lugs, APL Quote Quad 16, No. 4, ACM, New York (1986)

8. R. IC W. Hui, ICE. Iverson, and E. E. McDonnell, "Tacit
Programming," APL91 Conference Proceedings, ~4PL Quote Quad
21, No. 4, ACM, New York (1991)

9. P.C. Berry, Sharp APL Reference Manual, I. P. Sharp Associates,
Toronto, Canada (1979)

10. K.E. Iverson, Tangible Math, Iverson Software Inc., Toronto,
Canada (1990)

11. A. Camacho, "I-APL Status Report," Vector: The Journal of the
British APL Association 4, No. 3, 8-9 (1988)

12. APL2Programming:SystemServicesReference, SH20-9218,IBM
Corporation (1988); availahle through IBM branch offices

13. j. Backus, "Can Programming Be Liberated from the Von
Neumann Style? A Functional Style and Its Algebra of Programs,"
Communications of the ACM 21, No. 8, 613-641, (1978)

14. A.D. Falkoffand K. E. Iverson, APL\360 User's Manual, IBM
Corporation (1966)

15. R. Smith, "Nested Arrays, Operators, and Functions," APL81
Conference Proceedings, APL Quote Quad 12, No. 1, ACM, New
York (1981)

1 2 aPL ¢,~0~ O,aa

16. C. M. Cheney, .Nested Arrays Reference Manual, STSC Inc.,
Rockville, MD (1981)

17. SAXReference, 0982 8809 El, I. P. Sharp Associates, Toronto,
Canada (1986)

18. K. E. Iverson, "The Description of Finite Sequential Processes,"
Proceedings of a Conference on Information Tkeory, C. Cherry and
W.Jackson, Editors, Imperial College, London (August 1960)

19. APLSV User's Manual, GC26-3847-3, IBM Corporation (1973)

20. C. Weidmann, APLUM Reference Manual, University of Massa-
chusetts (1975)

21. K. E. Iverson, The I81 Dictionary ofJ, Iverson Software Inc.,
Toronto, Canada (1991)

22. IL Bernecky and K. E. Iverson, "Operators and Enclosed Arrays,"
XPL User's Meeting, I. P. Sharp Associates, Toronto, Canada
(198o)

23. K. E. Iverson, Operators and Functions, Research Report 7091,
IBM ThomasJ. Watson Research Center, Yorktown Heights, NY
10598 (1978)

24. A.T. Whitney and IC E. Iverson, "Practical Uses of a Model of
APL," APL8£ Conference Proceedings, APL Quote Quad 13, No.
1, ACM, New York (1982)

25. D3alog APL Reference Manual, Dyadic Systems Ltd., Alton,
Hants, England (1982)

26- ICE. Iverson, "APL Syntax and Semantics," APL83 Conference
Proceedings, APL Quote Quad 15, No. 3,223-231, ACM, New
York (1983)

27. J. P. Benkard, "Valence and Precedence in A_PL Extensions," in
APL 8 5 Conference Proceedings,APL Quote Quad 13, No. 3, ACM,
New York (1983)

28. J.D. Bunch andJ. A. Gerth, "APL Two by Two-Syntax Analysis
by Pairwise Reduction," APL84 Conference Proceedings, APL
Quote Quad 14, No. 4, ACM, New York (1984)

29. ICE. Iverson and E. E. McDonnell, "Phrasal Forms," APL89
Conference Proceedings, APL Quote Quad 19, No. 4, ACM, New
York (1989)

50. T. More, Jr., "Axioms and Theorems for a Theory of Arrays,"
IBM Journal of P~searck and Development 17, No. 2, 135-157
(1973)

31.

32.

33.

IL Bernecky, "Function Arrays,"APL84 Conference Proceedings,
XPL Quote Quad 14, No. 4, ACM, New York (1984)

J. A. Brown, "Function Assignment and Arrays of Functions,"
APL 84 Conferenee Proceedings,dPL Quote Quad 14,No. 4,ACM,
New York (1984)

H. B. Curry and R. Feys, Combinatory Logic, Vol. 1, North
Holland Publishers, Amsterdam, Netherlands (1968)

Kenneth E. Iverson, 44 Cllarle~ St. West, Xo. 4709, Toronto, Ontario
M4Y 1R8, Canada. Dr. Iverson received a B.A. in mathematics and
physics from Queen's University, Kingston, Canada in 1950, an M.A.
in mathematics in 1951, and a Ph.D. in applied mathematics from
Harvard University. He was an assistant professor at Harvard from
1955 to 1960. From 1960 to 1980 he was employed by IBM Corpora-
tion's Research Division where he became an IBM Fellow in 1970.
After leaving IBM in 1980, Dr. Iverson was employed by I. P. Sharp
Associates until 1987. He has received many honors, in addition to
becoming an IBM Fellow, including the AFIPS Harry Goode Award
in 1975, the ACM Turing Award in 1979, and the IEEE Computer
Pioneer Award in 1982. He is a member of the National Academy of
Engineering in the United States. Currently he is working onJ and the
use of J in teaching.

Copyright © 1991 by International Business Machines Corporation.
Reprinted with the permission of the IBM Systems Tournal, Vol. 30,
No. 4.

Back issues of APL Quote Quad
Back issues of many of the issues of APL Quote Quad
are available; the single-copy price is $8 for members
and $12 for non-members for the non-Proceedings
issues. The Proceedings ofsoine APL conferences are
also available, with a discount for members. Request a
Publications Catalog or Order Form, or mail your order
with payment or purchase order, to:

ACM Order Department
P. O. Box 12114
Church Street S ration
New York, NY 10257 USA

Credit-card orders canbe processed by calling the ACM
Order Department at 1-800-342-6626 (or from outside
the U.S., call +1-212-626-0500). •

 cu ooo-vo o, N=m 1 3

