
, Back to the Future
The Story of Squeak,

A’Practical Smalltalk Written in Itself

Dan Ingalls Ted Kaehlei John Maloney Scott Wallace Alan Kay

-. at Apple Computer while doing this work,

’ I now at Walt Disney Imagineering
1401 Plower Street, P.O. Box 25020, Glendale CA 91221

dani@wdi.disney.com

:,
Abstract ,,
Squeak is an open, highly-portable Smalltalk implementation
whose virtual machine is written entirely in Smalltalk, making
it easy to. debug, analyze, and change. To achieve practical
performance, a translator produces an equivalent C .program
whose performance is comparable to commercial Smalltalks.

Other noteworthy aspects of Squeak include: a compact object
format that typically requires only a single word of overhead
per object; a simple yet efficient incremental garbage collector
for 32-bit direct pointers; efficient bulk-mutation of objects;
extensions of BitBlt to handle color of any depth and anti-
aliased image rotation and scaling; and real-time sound and
music synthesis written entirely,@ Smalltalk.

Overview
Squeak is a modem implementation of Smalltalk-89 that is
available for free via the Internet, at “”

http://wwur.research.apple.com/research/
proj/learning-concepts/squeak/

and other sites.

It includes platform-independent support for color, sound, and
image processing. Originally developed on the Macintosh,
members of its user community have since ported it to
numerous platforms including Windows 95 and NT, Windows
CE, all common flavors of UNIX, and the Acorn.

Squeak stands alone as a practical Smalltalk in which a
researcher, professor, or motivated student can examine source
code for every part of the system, including graphics
primitives and the virtual machine ‘itself, and make changes
immediately and without needing, to see or deal with any
language other than Smalltalk. It also runs bit-identical
images across its wide portability base.

Three strands weave through this paper: (1) the design of the
Squeak virtual machine, which differs in several interesting
ways from the implementation presented in the Smalltalk “Blue
Book” [Gold831 and explored in the “Green Book” [Kras83];
(2) an implementation strategy based on writing the Squeak
virtual machine in Smalltalk and translating it into C, using an
existing Smalltalk for bootstrapping until Squeak was able to

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or cdmmercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA ‘97 10197 GA. USA
0 1997 ACM 0-89791-908-4/97/0010...$3.50

debug and generate its own virtual machine; and (3) the
incremental development process through which Squeak was
created and evolved over the course of a y.ear.

Background
In December of 1995, the authors found themselves wanting a
development environment in which to build educational
software that could be used-and even programmed-by non-
technical people, and by children. We wanted our software to be
effective in mass-access media such as PDAs and the Internet,
where download times and power considerations make
compactness essential, and where hardware is diverse, and
operating systems may change or be completely absent.
Therefore our ideal system would be a small, portable kernel of
simple and uniform design that could be adapted rapidly to new
delivery vehicles. We considered using Java but, despite its
promise, Java was not yet mature: its libraries were in a state of
flux, few commercial implementations were available, and
those that were available lacked the hooks required to create the
kind of dynamic change that we envisioned.

While Smalltalk met the technical desiderata, none of the
availab& implementations gave us the kind of control WC
wanted over graphics, ‘sound, and the Smalltalk engine itself,
nor the freedom to port and distribute the resulting work,
including’ its host environment, freely over the Internet,
Moreover; we felt that we were not alone, that many others in
the research community shared our desire for an open, portable,
malleable, and yet practical object-oriented programming
environment. It became clear that the best way to get what we
all wanted was to build a new Smalltalk with these goals and to
share it with this wider community.

Project Plan
Wedid not have to start from scratchi as we had access to the
existing Apple Smalltalk- implementation, which was a
gold mine of useful software. This system consisted of an
image, or object memory, containing the Smalltalk- class
library, and a separate interpreter, or VM (virtual machine), for
running on the Macintosh. However, the Apple image format
was limited by its use of indirect pointers and an object table
Worse yet, the original interpreter consisted of 120 pages of
sparsely’ commented 68020 assembly code that had passed
through the hands of seven authors. Portable it was not,

‘I I
We determined that implementation in C would be key to
portability but none of us, wanted to write in C, However, two
of us had once adapted the Smalltalk formatter (pretty-printer)
to convert a body of code to BCPL. Based on that experience,
we determined to write and debug the virtual machine in

318

Smalltalk. Then, in parallel, we would write (also in Smalltalk)
a translator from Smalltalk to C, and thus let Smalltalk build its
own production interpreter. Out of this decision grew the
following plan for building a new Smalltalk system in the
shortest possible time:

.
Produce a new image:

l Design a new Object Memory and image file format.
l Alter the ST-80 System Tracer to write an image in the

new format.
l Eliminate uses of Mac Toolbox calls to restore

Smalltalk- portability.
l Write a new file system with a simple, portable

interface.

Produce a new interpreter written in Smalltalk:
l Type in the Blue Book descriptions for the Interpreter

and BitBlt.
l Write a completely new Object Memory class.
l Debug the new Object Memory, Interpreter and BitBlt.

Compile the interpreter to make it practical:
l Design a translator from a subset of Smalhalk-80 to C.
l Implement this translator.
l Translate the virtual machine to C and compile it.
l Write a small C interface to the Mac OS.
. Run the compiled interpreter with the new image.

By following this plan, facilities became available just as they
were needed. For example, the interpreter and object memory
were debugged using a temporary memory allocator that had no
way to reclaim garbage. However, since the system only
executed a few byte codes, it never got far enough to run out of
memory, Likewise, while the translator was being prepared,
most of the bugs in the interpreter and object memory were
found and fixed by running them in Smalltalk.

It was easy to stay motivated, because the virtual machine.
running inside Apple Smalltalk, was actually simulating the
byte codes of the transformed image just five weeks into the
project, A week later, we could type “3 + 4” on the screen,
compile it, and print the result, and the week after that the
entire user interface was working, albeit in slow motion. We
were writing the C translator in parallel on a commercial
Smalltalk, and by the eighth week, the first translated
interpreter displayed a window on the screen. Ten weeks into
the project, we “crossed the bridge” and were able to use Squeak
to evolve itself, no longer needing to port images forward from
Apple Smalltalk. About six weeks later, Squeak’s performance
had improved to the point that it could simulate its own
interpreter and run the C translator, and Squeak became entirely
self-supporting.

We attribute the speed with which this initial work was
accomplished to the Squeak philosophy: do everything in
Smalltalk so that each improvement makes everything smaller,
faster, and better. It has been a pleasant revelation to work on
such low-level system facilities as real-time garbage collection
and FM music synthesis from within the comfort and
convenience of the Smalltalk- language and environment.

Once we had a stable, usable interpreter, the focus shifted from
creation to evolution. Performance improved steadily and
support for color, image transforms, sound synthesis, and
networking were added. These improvements were made
incrementally, as the need arose, and in parallel with other
projects that relied on the stability of the virtual machine. Yet
despite the apparent risk of frequent changes to the VM, Squeak

319

has proven as dependable as most commercial Smalltalks we
have used. We attribute this success partly to our passion for
design simplicity but mostly to the strategy of implementing
the virtual machine in Smalltalk.

The remainder of the paper discusses various aspects of the
Squeak implementation, its memory footprint and
performance, the evolution of its user community, and plans
for its future.

The Interpreter
Weknew that the published Blue Book interpreter description
would suffice to get us started. Moreover, -we were spared from
the tedium of transcription by Mario Wolczko, who had already
keyed in the code for use as an on-line reference source for a
Smalltalk implementation project at the University of
Manchester.

The interpreter is structured as a single class that gets translated
to C along with the Object Memory and BitBlt classes. In
addition, a subclass (Interpreter Simulator) runs all the same
code from within a Smalltalk environment by supporting basic
mouse, file, and display operations. This subclass was the
basis for debugging the Squeak system into existence. All of
this code is included in the Squeak release and it can run its own
image, albeit at a snail’s pace (every memory access, even in
BitBIt, runs a Smalltalk method). Having an interpreter that
runs within Smalltalk is invaluable for studying the virtual
machine. Any operation can be stopped and inspected, or it
can be instrumented to gather timing profiles, exact method
counts, and other statistics.

Although we have constantly amended the interpreter to
achieve increasing performance, we have stayed pretty close to
the Blue Book message interface between the Interpreter and
the Object Memory. It is a testament to the original design of
that interface that completely changing the Object Memory
implementation had almost no impact on the Interpreter.

The Object Memory
The design of an object memory that is general and yet compact
is not simple. We &ll agreed immediately on a number of
parameters, though. For efficiency and scalability to large
projects, we wanted a 32-bit address space with direct pointers
(i.e., a system in which an object reference is just the address of
that object in memory). The design had to support all object
formats of our existing Smalltalk. It must be amenable to
incremental garbage collection and compaction. Finally, it
must be able to support the “become” operation (exchange
identity of two objects) to the degree required in normal
Smalltalk system operation.

While anyone would. agree that objects should be stored
compactly, every object in Smalltalk requires the following
“overhead” information:

l Size of the object in bytes: 24 bits or more,
l Class of the object: a full 32-bit object pointer,
l Hash code for indexing objects: at least 12 bits,
l Format of the object, specifying pointer-or bits,

indexable or not, etc.: 4 bits at least,
l . ..and. of course, a few extra bits for storage

management needs.

A simple approach would be to allocate three fir11 32-bit words
as the header to every object. However, in a system of 40k
objects, this cavalier expenditure of 5OOk bytes of memory
could make the difference between an undeployable prototype

and a practical application. Therefore, we designed a varlable-
length header format which seldom requires more than a single
32-bit word of header information uer object. The format is
given in Tables 1 and 2.

. -

offset
-8

-4

0

contents occurrence
size in words (30 bits), header 1%
type (2 bits)
full class pointer (30 bits), 18%
header type (2 bits)
base header, as follows... 100%

storage management (3 bits)
object hash (12 bits)
compact class index (5 bits)
object format field (4 bits, see below)
size in words (6 bits)
header type (2 bits)

Table 1: Format of a Squeak object header

0
1
2
3
4
5
6
7
8-11

no fields
fixed pointer fields
indexable pointer fields
both fixed and indexable pointer fields
unused
unused
indexable word fields (no pointers)
unused

12-15

indexable byte fields (no pointers):
low 2 bits are low 2 bits of size in bytes
compiled methods:
low 2 bits are low 2 bits of size in bytes.
The number of literals is specified in
method header, followed by the indexable .
bytes that store byte codes.

Table 2: Encoding of the object format field
in a Squeak object header

Our design is based on the fact that most objects in a typical
Smalltalk image are small instances of a relatively small

. number of classes. The 5-bit compact class index field, if non-
zero, is an index into a table of up to 31 classes that are
designated as having compact instances; the programmer can
change which classes these are. The 6-bit size field, if non-
zero, specifies the size of the object in words, accommodating
sizes up to 256 bytes (i.e., 64 words, with the additional 2 bits
needed to resolve the length of byte-indexable objects encoded
in the format field). With only 12 classes designated as,
compact in the 1.18 Squeak release, around 81% of the objects
have only this single word of overhead. Most of the rest need
one additional word to store a full class pointer. Only a few
remaining objects (I%)‘are large enough to require a third
header word to encode their size, and this extra word of
overhead is a tiny fraction of their size. j

Storage Management
Apple Smalltalk had achieved good garbage collection
behavior with a simple two-generation approach similar to
[Unga84]. At startup, and after any full garbage collection (a
mark and sweep of the entire image), all surviving objects were
considered to be old, and all objects created subsequently (until
the next full collection) to be new. All pointer stores were
checked and a table maintained of “root” objects-old objects
that might contain pointers to new objects. In this way, an
incremental mark phase could be achieved by marking all new
objects reachable from these roots and sweeping the new object

area; unmarked new objects were garbage. Compaction was
simple.in that system, owing to its use of an object table, Full
garbage collection was triggered either by an ovefflow of tho
roots table, or by failure of; an incremental collection to
reclaim a significant amount of space. That system was known
to run acceptably with less than 500k of free space and to
perform incremental reclamations in under 250 milliseconds on
hardware of the 80’s (16MHz 68020).

For Squeak, we determined to apply the same approach to our
new system of 32-bit direct pointers. We were faced
immediately with a number of challenges, First, we had to write
an in-place mark phase capable of dealing with our variable-
length headers, including those that did not have an actual class
pointer in them. Then there was the need to produce a structure
for remapping object pointers during compaction, since WC did
not have the convenient indirection of an object table. Finally
there was the challenge of rectifying all the object pointors in
memory within an acceptable time.

The remapping of object. pointers was accomplished by
building a number of relocation blocks down from tho unused
end of memory. A thousand such blocks are reserved outsido tho
object heap, ensuring that at least one thousand objects can bo
moved even when there is very little free space. However, if tho
object heap ends with a free block, that space is also used for
relocation blocks. If there is not enough room for the numbor
ofrelocation blocks needed told0 compaction in a single’ pass
(almost never), then the compaction may be done in multiplo
passes. Each pass generates free space at the ond of the object
heap which can then be used to create additional relocation
blockslfor the next pass.

One more issue remained to be dealt with, and that was support
of the become operation without an object table. (Tho
Smalltalk become primitive atomically exchanges tho
identity of two objects; to Smalltalk code, each object appoars
to turn into, or “become,” the other.) With an object tablo, tho
become primitive simply exchanges the contents of two
object table entries. ‘Without an object table, it requires a full
scan of memory to replace every pointer to one object with a
pointer to the other. Since full memory scans arc relatively
costly, we made two changes. First, we eliminated most uses of
become in the Squeak image by changing certain collectlon
classes to store their elements in separate Array objects instead
of indexed fields. However, become operations are essential
when adding an instance variable to a class with extant
instances, as each instance.must mutate into a larger object to
accommodate the new variable. So, our second change was to
restructure the primitive to one that exchanges the identity of
many objects at once. This allows all the instances of a class to
be mutated in a single pass through memory. The code for this
operation uses the same technique and, in fact, the very samo
code, as that used to rectify pointers after compaction.

We originally sought to minimize compaction frequency,
owing to the overhead associated with rectifying direct
addresses. Our strategy was to do a fast mark and sweop,
returning objects to a number of free lists, depending on size,
Only when memory became overly fragmented would we do a
consolidating compaction.

As we studied and optimized the Squeak garbage collector,
however, we were able to simplify this approach greatly, Slnco
an incremental reclamation only compacts the new object
space, it is only necessary to rectify the surviving new objects
and any old objects that point to them. The latter are exactly

320

those objects marked as root objects. Since there are typically
just a few root objects and not many survivors (most objects
die young), we discovered that compaction after an incremental
reclamation could be done quickly. In fact, due to the overhead
of managing free lists, it turned out to be more efficient to
compact after every incremental reclamation and eliminate free
lists altogether. This was especially gratifying since issues of
fragmentation and coalescing had been a burden in design,
analysis, and coding strategy.

Two policy refinements reduced the incremental garbage
collection pauses to the point where Squeak became usable for
real-time applications such as music and animation. First, a
counter is incremented each time an object is allocated. When
this counter reaches a threshold such as 4000 objects, an
incremental collection is done even if there is plenty of free
space left. This reduces the number of new objects that must be
scanned in the sweep phase, and also limits the number of
surviving objects. By doing a little work often, each
incremental collection completes quickly, typically in 5-8
milliseconds. This is within the timing tolerance of even a
fairly demanding musician or animator.

The second refinement is to tenure all surviving objects when
the number of survivors exceeds a threshold such as 2000
objects, a simplified version of Ungar and Jackson’s feedback-
mediated tenuring policy [UnJa88]. Tenuring is done as
follows. After the incremental garbage collection and
compaction, the boundary between the old and new object
spaces is moved up to encompass all surviving new objects, as
if a full garbage collection had just been done. This “clears the
decks” so that future incremental compactions have fewer
objects to process. Although in theory this approach could
hasten the onset of the next full garbage collection, such full
collections are rare in practice. In any case, Squeak’s relatively
lean image makes full garbage collections less daunting than
they might be in a larger system; a full collection typically
takes only 250 milliseconds in Squeak.

We have been using this storage manager in support of real-
time graphics and music for over a year now with extremely
satisfactory results. In our experience, 10 milliseconds is an
important threshold for latency in interactive systems, because
most of the other critical functions such as mouse polling,
sound buffer output and display refresh take place at a
commensurate rate.

BitBlt
For BitBlt as well, we began with the Blue Book source code.
However, the Blue Book code was written as a simulation in
Smalltalk, not as virtual machine code to run on top of the
Object Memory. We transformed the code into the latter form,
made a few optimizations, and this sufficed to get the first
Squeak running. The special cases ,we optimized are:

l the case when there is no source (store constant),
. the case when there is no halftone (store unmasked),
l the horizontal inner loop (no partial word stores).

Once Squeak became operational, we immediately wanted to
give it command over color. We chose to support a wide range
of color depths, namely: l-, 2-, 4, and 8-bit table-based color,
as well as 16- and 32-bit direct RGB color (with 5 and 8 bits per
color component respectively).

It was relatively simple to extend the internal logic of BitBlt to
handle multiple pixel sizes as long as source and destination
bit maps are of the’same depth. To handle operations between

images of different depth, we provided a default conversion, and
added an optional color map parameter to BitBlt to provide
more control when appropriate. The default behavior is simply
to extend smaller source pixels to a larger destination size by
padding with zeros, and to truncate larger source pixels to a
smaller destination pixel size. This approach works very well
among the table-based colors because the color set for each
depth includes the next smaller depth’s color set as a subset. In
the case of RGB colors, BitBlt performs the zero-fill or
truncation independently on each color component.

The real challenge, however, involves operations between
RGB and table-based color depths. In such cases, or when
wanting more control over the color conversion, the client can
supply BitBlt with a color map. This map is sized so that there ’
is one entry for each of the source colors, and each entry
contains a pixel in the format expected by the destination. It is
obvious how to work with this for source pixel sizes of 8 bits
or less (map sizes of 256 or less). But it would seem to require a
map of 65536 entries for 16 bits or 4294967296 entries for
32-bit color! However, for these cases, Squeak’s BitBlt accepts
color maps of 512, 4096, or 32768 entries, corresponding to
3,4, and 5 bits per color component, and BitBlt truncates the
source pixel’s color components to the appropriate number of
bits before looking up the pixel in the color map.

Smalltalk to C Translation
We have alluded to the Squeak philosophy of writing
everything in Smalltalk. While the Blue Book contains a
Smalltalk description of the virtual machine that’ was actually
executed at Ieast once to verify its accuracy, this description
was meant to be used only as an explanatory model, not as the
source code of a working implementation. In contrast, we
needed source code that could be translated into C to produce a
reliable and efficient virtual machine.

Gur bootstrapping strategy also depended on being able to
debug the Smalltalk code for the Squeak virtual machine by
running it under an existing Smalltalk implementation, and
this approach was highly successful. Being able to use the
powerful tools of the Smalltalk environment saved us weeks of
tedious debugging with a C debugger. However, useful as it is
for debugging, the Squeak virtual machine running on top of
Smalltalk is orders of magnitude too slow for useful work:
running in Squeak itself, the Smalltalk version of the Squeak
virtual machine is roughly 450 times slower than the C
version. Even running in the fastest available commercial
Smalltalk, tbe Squeak virtual machine running in Smalltalk
would still be sluggish.

The key to both practical performance and portability is to
translate the Smalltalk description of the virtual machine into
C. To be able to do this translation without having to emulate
all of Smalltalk in the C runtime system, the virtual machine
was written in a subset of Smalltalk that maps directly onto C
constructs. This subset excludes blocks (except to describe a
few control structures), message sending, and even objects!
Methods of the interpreter classes are mapped to C functions
and instance variables are mapped to global variables. For byte
code and primitive dispatches, the special message
dispatchOn:in: is mapped to a C switch statement. (When
running in Smalltalk, this construct works by perform:-ing
the message selector at the specified index in a case array; since
a method invocation is much less efficient than a branch
operation, this dispatch is one of the main reasons that the
interpreter runs so much faster when translated to C).

321

The translator first translates Smalltalk into parse trees, then
uses a simple table-lookup scheme to generate C code from
these parse trees. There are only 42 transformation rules, as
shown in Table 3. Four of these are for integer operations that
more closely match those of the underlying hardware, such as
unsigned shifts, and the last three are macros for operations so
heavily used that they should always be inlined. All translated
code accesses memory through six C macros that read and write
individual bytes, Cbyte words, and S-byte floats. In the early
stages of development, every such reference was checked
against the bounds of object memory.

& I and: or: not
+ - * /I \\ min: max:
bitAnd: bitOr: bitXor: bitshift: -8
< <= = > >z -= =
isNil notNil
whileTrue: whileFalse: to:do: to:by:do:
iffrue: ifFalse: ifTrue:itFalse: ifFalse:iffrue:
at: at:put:
<< >> bitInvert preIncrement
integerValueOf: integerGbjectOE isIntegerGbject:

Table 3: Operations of primitive Smalltalk

Our first translator yielded a two orders of magnitude speedup
relative to the Smalltalk simulation, producing a system that
was immediately usable. However, one further refinement to
the translator yielded a significant additional speedup:
inlining. Inlining allows the source code of the virtual
machine to be factored into many small, precisely defined
methods-thus increasing code-sharing and simplifying
debugging-without paying the penalty in extra procedure
calls. Inlining is also used to move the byte code service
routines into the interpreter byte code dispatch loop, which
both reduces byte code dispatch overhead and allows the most
critical VM state to be kept in fast, register-based local
variables. All told, inlining increases VM performance by a
factor of 3.4 while increasing the overall code size of the
virtual machine by only 13%.

Sound
Several of us were involved in eady experiments with computer
music editing and synthesis [Saun77], and it was a
disappointment to us that the original Smalltalk- release
failed to incorporate this vital aspect of any lively computing
environment. We determined to right this wrong in the Squeak
release.

Early on, we implemented access to the Macintosh sound
driver. As the performance of the Squeak system improved, we
were delighted to find that we could actually synthesize and mix
several voices of music in real time using simple wave table
and FM algorithms written entirely in Smalltalk.

Nonetheless, these algorithms are compute-intensive, and we
used this application as an opportunity to experiment with
using C translation to improve the performance of isolated,
time-critical methods. Sound synthesis is an ideal application
for this, since nearly all the work is done by small loops with
simple arithmetic and array manipulation. The sound
generation methods were written so that they could be run
directly in Smalltalk or, without changing a’line of code,
translated into C and linked into the virtual machine as an
optional primitive. Since the sound generation code had
already been running for weeks in .Smalltalk, the translated
primitives worked perfectly the first time they ran.

Furthermore, we observed nearly a 40-fold increase In
performance: from 3 voices sampled at 8 KHz, we jumped to
over 20 voices sampled at 44 KHz.

WarpBlt ”
As we began doing more with general rotation and scaling of
images, we found ourselves dissatisfied with the slow speed of
non-integer scaling and image rotations by angles other than
multiples of 90 degrees. To address this problem in a simple
manner, we added a “warp drive” to BitBlt. WarpBIt takes as
input a quadrilateral specifying the traversal of the source
image corresponding to BitBlt’s normal rectangular
destination. If the quadrilateral is larger than the destination
rectangle, sampling occurs and the image is reduced. If the
quadrilateral is smaller than the destination, then interpolation
occurs and the image is expanded. If the quadrilateral is a’
rotated rectangle, then the image is correspondingly rotated. If
the source quadrilateral is not rectangular, then the
transformation will be correspondingly distorted.

Once we started playing with arbitrarily rotated and scaled
images, we began to wish that the results of this crude warp

were not so jagged. This led to support for over sampling and
smoothing in the warp drive, which does a reasonable job of
anti-aliasing in many cases. The approach is to average a
number of pixels around a given source coordinate. Averaging
colors is not a simple matter with the table-based colors of 8
bits or less. The approach we used is to map from the source
color space to RGB colors, average the samples in RGB space,
and map the final result back to the nearest indexed color via
the normal depth-reducing color map.

As with the sound synthesis work, WarpBlt is completely
described in Smalltalk, then translated into C to deliver
performance appropriate to interactive graphics.

Code Size and Memory Footprint
Table 4 gives the approximate size of the main components of
Squeak in lines of code, based on version 1.18 of December,
1996. Our measurement includes all comments, but excludes all
blank lines. We present these statistics not as rigorous
measurement, but more as an order-of-magnitude gauge. For
instance, the entire virtual machine is approximately 100
pages. Of that, 6547 lines are in Smalltalk (translator not
included) versus 1681 lines of OS interface in C that may need
to be altered for porting.

Smalltalk Lines C Lines
Interpreter 3951 OS interface 168 1
Object Memory 1283
BitBlt with Warp 13 13

Table 4: Lines of code in Squeak VM

The size of the 1.18 Squeak release image, with all
development support, including browsers, inspectors,
performance analyzers, color graphics, and music support is
968K bytes on the Macintosh. The code for the virtual
machine, simulator, and Smalltalk-to-C translator, which arc
only needed by those engaged in virtual machine development,
adds 290K to this figure. The interpreter, when running,
requires 300K on a Power PC Macintosh, and the entire
Smalltalk environment runs satisfactorily with as little as
200K of free space available. In monochrome, the system runs
comfortably in 1.8 MB. We distribute a 650K image with the
complete development environment that runs in. less than 1MB
on the Cassiopeia hand held computer.

322

Performance and Optimization
Thanks to today’s fast processors, Squeak’s performance was
satisfactory from the moment the translator produced its first C
translation of the virtual machine. Since this debut, Squeak’s
performance has improved steadily, and the current version,
1.18, executes about four million byte codes or 173 thousand
message sends per second on a 110 MHz Power PC Mac 8100.
Table 5 shows the improvement in Squeak’s performance over*
its first year. Two simple benchmarks from the release were
used to track the approximate byte code execution rate (“10
benchmark”) and the cost of full method activation and return
(“26 benchFib”). Note that the latter benchmark measures the
worst case; not all message sends require a full activation.

Date && codeslsec sendslsec
Apr. 14 458K 22,928
May 20 1,lllK 60,287
May 23 1,522K 69,319
July 9 2,802K 134,717
Aug. 1 2,726K 130,945
Sept. 23 3,528K 141,155
Nov. 12 3,156K 133,164
Dec. 12 3,410K 169,617
Jan. 21 4,108K 173,360

Table 5: Squeak performance over time

The rapid early leaps in performance were due partly to removal
of scaffolding-such as ,assertion checks and range checks on
memory references-and partly to improving the runtime
model of the translator. For example, object references were
originally represented as offsets relative to the base of the
object memory rather than as true direct pointers. After May,
however, the easy changes had all been ‘made and
improvements came in smaller increments, sometimes only a
few percent at a time. The most significant of these
optimizations include:

l recycling method contexts (this cut the allocation rate
by a factor of 10)

l managing the frequency of checks for user and timer
interrupts

l keeping the instruction and stack pointers (IP and SP)
in registers

l making the IP and SP be direct pointers, rather than
offsets into their base object

l patching the dispatch loop to eliminate an unneeded
compiler-generated range check

l eliminating store-checks when storing into the active
and home contexts

l comparing small integers as oops rather than
converting them into integers first

l peeking for and doing a jump-if-false byte code that
follows a compare

Table 6 compares Squeak’s current performance over a small
suite of benchmarks with that of several commercial Smalltalk
implementations that cover a cross-section of implementation
technologies, including a bytecode interpreter similar to the
original Smalltalk- virtual machine (Apple Smalltalk); an
aggressively optimized interpreter (STN Mac l.l), and two
implementations using dynamic translation to native code
(ParcPIace SmalItaIk 2.3 and 2.5). In order to draw meaningful
comparisons between Squeak and these 68K-based virtual
machines, all timings except those in the last column were
taken on a Duo 230 (33Mhz 68030). Since Squeak runs
significantly better on modem processors with instruction
caches and a generous supply of registers, the final column of

the table, SqueakPPC,, shows Squeak’s performance relative to
C on a Power PC-based Macintosh.

AppleST STN PP2.3 PP2.5 Squeak Sqz&PfC

IntegerSum 185.00 32.00 7.58 6.92 62.34 72.56
VectorSum 99.00 30.00 10.30 11.50 61.70 41.01
PrimeSieve 53.00 40.00 16.07 12.10 70.53 51.57
BubbleSort 88.23 35.29 21.35 13.98 80.29 63.12
TreeSort 43.90 5.00 20.29 1.98 16.33 7.31
MatrixMult 40.79 6.00 22.80 2.94 18.00 36.74
Recur-se 28.26 9.47 3.73 2.08 50.26 35.19

Table 6: Virtual machine performance relative
to optimized, platform-native C for various benchmarks.
Smaller numbers are better. A result of 1.0 would
indicate that a benchmark ran exactly as fast as
optimized C.

So far in the design of Squeak, we have emphasized simplicity,
portability, and small memory footprint over high
performance. Much better performance is possible. The PP2.3
and PP2.5 columns of Table 6 are examples of Deutsch-
Schiffman-style dynamic translation (or “JIT”) virtual
machines [Deut84]. Dynamic translation avoids the overhead

‘of byte code dispatch by translating methods into native
instructions kept in a size-bounded cache. The Self project
[ChUn91] [Holz94] broke new ground in high performance by
investing more compilation time in heavily used methods,
using inlining to eliminate expensive calls and enable further
optimizations. This work, which was later extended to
Smalltalk and Java [Anim96], shows that one can obtain
performance approaching half the speed of optimized C without
compromising the semantics of a clean language.
Unfortunately both of these approaches have resulted in virtual
machine implementations that ‘are, by Squeak standards,
unapproachable and difficult to port.

We believe that Squeak can enjoy the same performance as
commercial Smalltalk implementations without compromising
malleability and portabibty. In our experience the byte code
basis of the Smalltalk- standard pInga is hard to beat for
compactness and simplicity, and for the programming tools
that have grown around it. Therefore dynamic translation is a
natural avenue to high performance. The Squeak philosophy
implies that both the dynamic translator and its target code
sequences should be written and debugged in Smalltalk, then
automatically translated into C to build the production virtual
machine. By representing translated methods as ordinary
Smalltalk objects, experiments with Self-style inlining and
other optimizations could be done at the Smalltalk level., This
approach is currently being explored as a way to improve
Squeak’s performance without adversely affecting its
portability.

The Squeak Community
As exciting as the day the interpreter first ran, .was the day we
released Squeak to the Internet community. In. the back of our
minds, we all felt that we were finally doing, in September of
1996,, what we had failed to do in 1980. However, the code we
released ran only on the Macintosh and, although we had
worked hard to make it. portable, we did not know if we had
succeeded.

Three weeks later, we received a message announcing Ian
Piumarta’s first UNIX port of Squeak. He had ported it to seven
additional UNIX platforms two weeks later. At the same time,
Andreas Raab announced ports of Squeak for Windows 95 and

323

Windows NT. Neither of these people had even contacted us
before starting their porting efforts! A mere five weeks after it
was released, Squeak was available on all the major computing
platforms except Windows 3.1, and had an active and-rapidly
growing mailing list. Since that time, Squeak ports have been
done for Linux, the Acorn RISC, and Windows CE, and several
other ports are underway. 1

The Squeak release, including the source code for the virtual
machine, C translator and everything else described in this
paper, as well’ as all the ports ’ mentioned above, is available,
through the following sites:’ \ ’

http://www.research.apple.com/research/
pro j /learning-concepts/squeak/

ftp://ftp.create.ucsb.edu
ftp://alix.inria.fr
ftp://ftp.cs.uni-magdeburg.de/pub/

Smalltalk/free/squealc

The Squeak license agreement explicitly grants the right to use
Squeak in commercial applications royalty-free. The only
requirement in return is that any ports of Squeak or changes to
the base class library must be made available for free on the
Internet. New applications and facilities built on Squeak do not
need to be shared. We believe that this licensing agreement
encourages the continued development and sharing of Squeak
by its user community.

Related Work
For the Smalltalk devotee, nothing is more natural than the
desire to attack all programming problems with Smalltalk.
Thus, there has long been a tradition of using Smalltalk to
describe and debug a low-level system before its final
implementation. As mentioned earlier, the Blue Book used
Smalltalk as a high-level description of a Smalltalk virtual
machine, and this description was actually checked for accuracy
by rum-ring it. In LOOM [KaehS6], the kernel of a virtual
object memory was written and executed in a separate,
simplified Smalltalk virtual machine whenever an “object
fault” occurred. For better performance, this kernel was later
translated into BCPL semi-automatically,’ then fixed up by
hand. This experience planted the seed for the approach taken
in Squeak two decades later.

A number of recent systems translate complete Smalltalk
programs into lower-level languages to gain speed,
portability, or application packaging advantages. Smalltalk/X
[Gitt95] and SPiCE [YaDo95] generate C code from programs
using the full range of Smalltalk semantics, including blocks.
Babel [MWH94] translates Smalltalk applications into CLOS,
and includes a facility for automatically winnowing out unused
classes and methods.

Producer [Cox87] translated Smalltalk programs into Objective
C, but required the programmer to supply type declarations and
rules for mapping dynamically allocated objects such as Points
into Objective C record structures. Producer only supported a
subset of Smalltalk semantics because it depended on the
Objective C runtime and thus did not support blocks as first-
class objects. Squeak’s Smalltalk-to-C translator restricts the
programmer to an even more limited subset of Smalltalk, but
that subset closely mirrors the underlying processor
architecture, allowing the translated code to run nearly as
efficiently as if it were written in C directly: The difference
arises from a difference in goals: The goal of Squeak’s
translation is merely’ to support the construction of its own

virtual machine, a much simpler task than translating full.
blown Smalltalk programs into C!.

Squeak’s translator is more in the spirit of QUICKTALK
[Ball86], a system that used Smalltalk to define new primitive
methods for the virtual machine. Another Smalltalk-to-
primitive compiler, Hurricane [Atki86], used a combination of
hser-supplied declarations and simple type inference to
eliminate class checks and to inline integer arithmetic, Unlike
Squeak’s translator, Hurricane allowed the programmer to also
use, polymorphic arithmetic in the Smalltalk code to be
translated. Neither QUKKDUK nor Hurricane attempted to
produce an entire virtual machine via translation.

Type information can help a translator produce more efficient
code by eliminating run-time type tests and enabling inlining,
Typed Smalltalk [JGZ88] added optional type declarations to
Smalltalk and used that type information to generate faster
code. The quality of its code was comparable to that of
QUICKTALK but, to the best of the authors’ knowledge, the
project’s ultimate goal of producing a complete, stand-alone
Smalltalk virtual machine was never realized, A different
approach is to use type information gathered during program
execution to guide on-the-fly optimization, as done in the Self
[ChUn91] [H&94] and Animorphic [Anim96] virtual
machines. Note that using types for optimization is
independent of whether the programming language has type
declarations. The Self and Animorphic virtual machines USC
type information to optimize declaration-free languages
whereas Strongtalk [B&93], which augments Smalltalk with
an optional type system to support the specification and
verification of interfaces, ran on a virtual machine that knew
nothing about those types. The subset of Smalltalk used for the
Squeak virtual machine maps so directly to the fundamental data
types of the hardware that the translator would not benefit from
additional type information. However, we have contemplated
building a separate primitive compiler that supports
polymorphic arithmetic, in which case the declaration-driven
optimization techniques of Hurricane and Typed Smalltalk
would be beneficial.

Future Work
Work on Squeak continues. We are overhauling Squeak’s
graphics model to supplant the MVC model with a new one
along the lines of Morphic [Ma10951 and Fabrik [Inga88]. We
also plan to complete Squeak’s sound and music facilities by
adding sound input and MIDI input and output.

We are collaborating with Ian Piumarta to produce a dynamic
translation engine for Squeak, inspired by Eliot Mirandn’s
BrouHaHa Smalltalk [Mira87] and his later work with portable
threaded code. A top priority is to build the entire engine in
Smalltalk to keep it entirely portable.

Just as we wanted Squeak to be endowed with music and sound
capability, we also wanted it to be easily interconnected with
the rest of the computing world. To this end, we are adding
network stream and datagram support to the system. While not
yet complete, the current facilities already support TCP/IP
clients and servers on Macintosh and Windows 95/NT, with
UNIX support to follow soon.

Conclusions
As far as we know, Squeak is the first practical Smalltalk
system written in itself that is complete and self-supporting,
Squeak runs the Smalltalk code describing its own virtual
machine fast enough for debugging purposes: although it

324

requires some patience, one can actually interact with menus
and windows in this mode. This is no mean feat, considering
that every memory reference in the inner loop of BitBlt is
running in Smalltalk.

To achieve useful levels of performance, the Smalltalk code of
the virtual machine is translated into C, yielding a speedup of
approximately 450. Part of this performance gain, a factor of
3.4, can be attributed to the inlining of function calls in the
translation process. The translator can also be used to generate
primitive methods for computationally intensive inner loops
that manipulate fundamental data types of the machine such as
bytes, integers, floats, and arrays of these types.

The Squeak virtual machine, since its source code is publicly
available, serves as an updated reference implementation for
Smalltalk-80. This is especially valuable now that the classic
Blue and Green Books [Gold831 [Kras83] are out of print. A
number of design choices made in the Blue Book that were
appropriate for the slower speed and limited address space of
the computer systems of the early 1980’s have been revisited,
especially those relating to object memory and storage
reclamation, Squeak also updates the multimedia components
of this reference system by adding color support and image
transformation capabilities to BitBlt and by including sound
output. While Squeak is not the first Smalltalk to use modem
storage management or to support multimedia, it makes a
valuable contribution by delivering these capabilities in a
small one-language package that is freely available, and that
runs identically on all platforms.

Final RefIections
While we considered using Java for our project, we still feel
that Smalltalk offers a better environment for research and
development. At a time when the world is moving toward
native host widgets, we still feel that there is power and
inspiration in having all of the code for every aspect of
computation and display be immediately accessible,
changeable, and identical across platforms, Finally, when most
development environments fill 100 megabytes of disk space or
more, Squeak is a portable, malleable, full-service computing
environment, including browsing, split-second recompilation,
and source debugging tools, all in a l-megabyte footprint.
Though many of its strengths are rooted in the past, Squeak is
suited to the intimate computing potential of PDAs and the
Internet, and our work is, now more than ever, inspired by the
future.

Acknowledgments
The authors wish to acknowledge the support of Apple
Computer throughout this project, especially Jim Spohrer, Don
Norman, and Elizabeth Greer. We especially appreciate their
wisdom in seeing that Squeak would be worth more if it were
made freely available. We also wish to thank the entire Squeak
community for their encouragement and support, especially
those who have submitted code or donated their time and energy
to maintaining Squeak ports and the Squeak mailing list and
web sites.

References
[Anim96] .Animorphic Systems, Exhibit at OOPSLA ‘96.

Animorphic Systems was a small company that included
several members of the Self team and produced extremely
high performance virtual machines for Smalltalk and Java.
The company has since been purchased by Sun
Microsystems.

[Atki86] Atkinson, R., “Hurricane: An Optimizing Compiler
for Smalltalk,” Proc. of the ACM OOPSU ‘86 con&
September 1986, pp. 151-158.

[BrGr93] Bracha, G. and Griswold, D., “Strongtalk:
Typechecking Smalltalk in a Production Environment,”
Proc. of the ACM OOPSLA ‘93 co@, September 1993.

[Ball861 Ballard, M., Maier, D., and Wirffs-Brock, A.,
“QUICKTALK: A Smalltalk- Dialect for Defining
Primitive Methods,” Proc. of the ACM OOPSLA ‘86 co&
September 1986, pp. 140-150.

[ChUn91] Chambers, C. and Ungar, D., “Making Pure Object-
Oriented Languages Practical,” Proc. of the ACM OOPSLA
‘91 co& November 1991, pp. l-15. *

[Cox87] Cox, B. and Schmucker, K., “Producer: A Tool for
Translating Smalltalk- to Objective-C,” Proc. of the
ACM OOPSLA ‘87 con$, October 1987, pp. 423-429.

[Deut84] Deutsch, L., and Schiffman, A., “Efficient
Implementation of the Smalltalk- System,” Proc. 11th
ACM Symposium on Principles of Programming
Languages, January 1984, pp. 297-302.

[Gitt95] Gittinger, Claus, Smalltalk& http://www.
informatik.uni-stuttgart.de/stx/stx.html, 1995.

[Gold831 Goldberg, A. and Robson, D., Smalltalk-80: The
Language and Its Implementation, Addison-Wesley,
Reading, MA,1983.

[Holz94] Hiilzle, U., Adaptive optimization for Sep
Reconciling High Performance with Exploratory
Programming, Ph.D. Thesis, Computer Science
Department, Stanford University, 1994.

[Inga78] lngalls, D., ‘The Smalltalk- Programming System,
Design and Implementation” Proc. 5th ACM Symposium
on Principles of Programming Languages, Tucson,
January 1978.

[Inga88] Ingalls, D., Wallace, S., Chow, Y., Ludolph, F., and
Doyle, K., “Fabrik: A Visual Programming Environment,”
p6~l;y ACM OOPSLA ‘88 co& September 1988, pp.

[JGZ88] Johnson, R., Graver, J., and Zurawski, L.,“TS: An
Optimizing Compiler for Smalltalk,” Proc. of the ACM
OOPSLA ‘88 conf., September 1988, pp. 18-26.

[Kaeh86] Kaehler, Ted, “Virtual Memory on a Narrow Machine
for an Object-Oriented Language,” Proc. of the ACM
OOPSL4 ‘86 con& September 1986, pp. 87-106.

[Kras83] Krasner, G., ed., Smalltalk-80, Bits of History,
Words of Advice, Addison-Wesley, Reading, MA,1983.

[Malo95] Maloney, J. and Smith, R., “Directness and Liveness
in the Morphic User Interface Construction Environment,”
UZST ‘95, November 1995.

325

[Mira87] Miranda, E., “BrouHaHa-A Portable Smalltalk
Interpreter,” Proc. of the ACM OOPSLA ‘87 conj, October
1987, pp. 354-365.

[MWH94] Moore, I., Wolczko, M., and Hopkins, T., “Babel-
A Translator from Smalltalk into CLOS,” TOOL,T USA
1994, Prentice Hall, 1994.

[Saun77] Saunders,,S., “Improved FM Audio Synthesis
Methods for Real-time Digital Music Generation,” in
Computer Music Journal I.-I, February 1977. Reprinted in
Computer Music, Roads, C. and Strawn, J., eds., MIT
Press, Cambridge, MA, 1985.

”

[Unga84] Ungar, D.,“Generation Scavenging: A Non-
Disruptive High Performance Storage Reclamation
Algorithm,” Proc. ACM Symposium on Practical Sofhvare
Development ‘Environments, April 1984, pp. 157-167.
Also published as ACM SIGPLAN Notices 19(S), May
1984 and ACM Sojiware Engineering Notes 9(3), May
1984.

[UnJa88] Ungar, D. and Jackson, F.,‘Tenuring Policies for
Generation-Based Storage Reclamation,” Proc. of the
ACM OOPSLA ‘88 con& September 1988, pp. 18-26.

naDo95] Yasumatsu, K. and Doi, N., “SPiCE: A System for
Translating Smalltalk Programs Into a C Environment,”
IEEE Transactions on Software Engineering 21(11), 1995,
pp. 902-912.

326

