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Abstract ,, 
Squeak is an open, highly-portable Smalltalk implementation 
whose virtual machine is written entirely in Smalltalk, making 
it easy to. debug, analyze, and change. To achieve practical 
performance, a translator produces an equivalent C .program 
whose performance is comparable to commercial Smalltalks. 

Other noteworthy aspects of Squeak include: a compact object 
format that typically requires only a single word of overhead 
per object; a simple yet efficient incremental garbage collector 
for 32-bit direct pointers; efficient bulk-mutation of objects; 
extensions of BitBlt to handle color of any depth and anti- 
aliased image rotation and scaling; and real-time sound and 
music synthesis written entirely,@ Smalltalk. 

Overview 
Squeak is a modem implementation of Smalltalk-89 that is 
available for free via the Internet, at “” 

http://wwur.research.apple.com/research/ 
proj/learning-concepts/squeak/ 

and other sites. 

It includes platform-independent support for color, sound, and 
image processing. Originally developed on the Macintosh, 
members of its user community have since ported it to 
numerous platforms including Windows 95 and NT, Windows 
CE, all common flavors of UNIX, and the Acorn. 

Squeak stands alone as a practical Smalltalk in which a 
researcher, professor, or motivated student can examine source 
code for every part of the system, including graphics 
primitives and the virtual machine ‘itself, and make changes 
immediately and without needing, to see or deal with any 
language other than Smalltalk. It also runs bit-identical 
images across its wide portability base. 

Three strands weave through this paper: (1) the design of the 
Squeak virtual machine, which differs in several interesting 
ways from the implementation presented in the Smalltalk “Blue 
Book” [Gold831 and explored in the “Green Book” [Kras83]; 
(2) an implementation strategy based on writing the Squeak 
virtual machine in Smalltalk and translating it into C, using an 
existing Smalltalk for bootstrapping until Squeak was able to 
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debug and generate its own virtual machine; and (3) the 
incremental development process through which Squeak was 
created and evolved over the course of a y.ear. 

Background 
In December of 1995, the authors found themselves wanting a 
development environment in which to build educational 
software that could be used-and even programmed-by non- 
technical people, and by children. We wanted our software to be 
effective in mass-access media such as PDAs and the Internet, 
where download times and power considerations make 
compactness essential, and where hardware is diverse, and 
operating systems may change or be completely absent. 
Therefore our ideal system would be a small, portable kernel of 
simple and uniform design that could be adapted rapidly to new 
delivery vehicles. We considered using Java but, despite its 
promise, Java was not yet mature: its libraries were in a state of 
flux, few commercial implementations were available, and 
those that were available lacked the hooks required to create the 
kind of dynamic change that we envisioned. 

While Smalltalk met the technical desiderata, none of the 
availab& implementations gave us the kind of control WC 
wanted over graphics, ‘sound, and the Smalltalk engine itself, 
nor the freedom to port and distribute the resulting work, 
including’ its host environment, freely over the Internet, 
Moreover; we felt that we were not alone, that many others in 
the research community shared our desire for an open, portable, 
malleable, and yet practical object-oriented programming 
environment. It became clear that the best way to get what we 
all wanted was to build a new Smalltalk with these goals and to 
share it with this wider community. 

Project Plan 
Wedid not have to start from scratchi as we had access to the 
existing Apple Smalltalk- implementation, which was a 
gold mine of useful software. This system consisted of an 
image, or object memory, containing the Smalltalk- class 
library, and a separate interpreter, or VM (virtual machine), for 
running on the Macintosh. However, the Apple image format 
was limited by its use of indirect pointers and an object table 
Worse yet, the original interpreter consisted of 120 pages of 
sparsely’ commented 68020 assembly code that had passed 
through the hands of seven authors. Portable it was not, 

‘I I 
We determined that implementation in C would be key to 
portability but none of us, wanted to write in C, However, two 
of us had once adapted the Smalltalk formatter (pretty-printer) 
to convert a body of code to BCPL. Based on that experience, 
we determined to write and debug the virtual machine in 
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Smalltalk. Then, in parallel, we would write (also in Smalltalk) 
a translator from Smalltalk to C, and thus let Smalltalk build its 
own production interpreter. Out of this decision grew the 
following plan for building a new Smalltalk system in the 
shortest possible time: 

. 
Produce a new image: 

l Design a new Object Memory and image file format. 
l Alter the ST-80 System Tracer to write an image in the 

new format. 
l Eliminate uses of Mac Toolbox calls to restore 

Smalltalk- portability. 
l Write a new file system with a simple, portable 

interface. 

Produce a new interpreter written in Smalltalk: 
l Type in the Blue Book descriptions for the Interpreter 

and BitBlt. 
l Write a completely new Object Memory class. 
l Debug the new Object Memory, Interpreter and BitBlt. 

Compile the interpreter to make it practical: 
l Design a translator from a subset of Smalhalk-80 to C. 
l Implement this translator. 
l Translate the virtual machine to C and compile it. 
l Write a small C interface to the Mac OS. 
. Run the compiled interpreter with the new image. 

By following this plan, facilities became available just as they 
were needed. For example, the interpreter and object memory 
were debugged using a temporary memory allocator that had no 
way to reclaim garbage. However, since the system only 
executed a few byte codes, it never got far enough to run out of 
memory, Likewise, while the translator was being prepared, 
most of the bugs in the interpreter and object memory were 
found and fixed by running them in Smalltalk. 

It was easy to stay motivated, because the virtual machine. 
running inside Apple Smalltalk, was actually simulating the 
byte codes of the transformed image just five weeks into the 
project, A week later, we could type “3 + 4” on the screen, 
compile it, and print the result, and the week after that the 
entire user interface was working, albeit in slow motion. We 
were writing the C translator in parallel on a commercial 
Smalltalk, and by the eighth week, the first translated 
interpreter displayed a window on the screen. Ten weeks into 
the project, we “crossed the bridge” and were able to use Squeak 
to evolve itself, no longer needing to port images forward from 
Apple Smalltalk. About six weeks later, Squeak’s performance 
had improved to the point that it could simulate its own 
interpreter and run the C translator, and Squeak became entirely 
self-supporting. 

We attribute the speed with which this initial work was 
accomplished to the Squeak philosophy: do everything in 
Smalltalk so that each improvement makes everything smaller, 
faster, and better. It has been a pleasant revelation to work on 
such low-level system facilities as real-time garbage collection 
and FM music synthesis from within the comfort and 
convenience of the Smalltalk- language and environment. 

Once we had a stable, usable interpreter, the focus shifted from 
creation to evolution. Performance improved steadily and 
support for color, image transforms, sound synthesis, and 
networking were added. These improvements were made 
incrementally, as the need arose, and in parallel with other 
projects that relied on the stability of the virtual machine. Yet 
despite the apparent risk of frequent changes to the VM, Squeak 
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has proven as dependable as most commercial Smalltalks we 
have used. We attribute this success partly to our passion for 
design simplicity but mostly to the strategy of implementing 
the virtual machine in Smalltalk. 

The remainder of the paper discusses various aspects of the 
Squeak implementation, its memory footprint and 
performance, the evolution of its user community, and plans 
for its future. 

The Interpreter 
Weknew that the published Blue Book interpreter description 
would suffice to get us started. Moreover, -we were spared from 
the tedium of transcription by Mario Wolczko, who had already 
keyed in the code for use as an on-line reference source for a 
Smalltalk implementation project at the University of 
Manchester. 

The interpreter is structured as a single class that gets translated 
to C along with the Object Memory and BitBlt classes. In 
addition, a subclass (Interpreter Simulator) runs all the same 
code from within a Smalltalk environment by supporting basic 
mouse, file, and display operations. This subclass was the 
basis for debugging the Squeak system into existence. All of 
this code is included in the Squeak release and it can run its own 
image, albeit at a snail’s pace (every memory access, even in 
BitBIt, runs a Smalltalk method). Having an interpreter that 
runs within Smalltalk is invaluable for studying the virtual 
machine. Any operation can be stopped and inspected, or it 
can be instrumented to gather timing profiles, exact method 
counts, and other statistics. 

Although we have constantly amended the interpreter to 
achieve increasing performance, we have stayed pretty close to 
the Blue Book message interface between the Interpreter and 
the Object Memory. It is a testament to the original design of 
that interface that completely changing the Object Memory 
implementation had almost no impact on the Interpreter. 

The Object Memory 
The design of an object memory that is general and yet compact 
is not simple. We &ll agreed immediately on a number of 
parameters, though. For efficiency and scalability to large 
projects, we wanted a 32-bit address space with direct pointers 
(i.e., a system in which an object reference is just the address of 
that object in memory). The design had to support all object 
formats of our existing Smalltalk. It must be amenable to 
incremental garbage collection and compaction. Finally, it 
must be able to support the “become” operation (exchange 
identity of two objects) to the degree required in normal 
Smalltalk system operation. 

While anyone would. agree that objects should be stored 
compactly, every object in Smalltalk requires the following 
“overhead” information: 

l Size of the object in bytes: 24 bits or more, 
l Class of the object: a full 32-bit object pointer, 
l Hash code for indexing objects: at least 12 bits, 
l Format of the object, specifying pointer-or bits, 

indexable or not, etc.: 4 bits at least, 
l . ..and. of course, a few extra bits for storage 

management needs. 

A simple approach would be to allocate three fir11 32-bit words 
as the header to every object. However, in a system of 40k 
objects, this cavalier expenditure of 5OOk bytes of memory 
could make the difference between an undeployable prototype 



and a practical application. Therefore, we designed a varlable- 
length header format which seldom requires more than a single 
32-bit word of header information uer object. The format is 
given in Tables 1 and 2. 

. - 

offset 
-8 

-4 

0 

contents occurrence 
size in words (30 bits), header 1% 
type (2 bits) 
full class pointer (30 bits), 18% 
header type (2 bits) 
base header, as follows... 100% 

storage management (3 bits) 
object hash (12 bits) 
compact class index (5 bits) 
object format field (4 bits, see below) 
size in words (6 bits) 
header type (2 bits) 

Table 1: Format of a Squeak object header 

0 
1 
2 
3 
4 
5 
6 
7 
8-11 

no fields 
fixed pointer fields 
indexable pointer fields 
both fixed and indexable pointer fields 
unused 
unused 
indexable word fields (no pointers) 
unused 
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indexable byte fields (no pointers): 
low 2 bits are low 2 bits of size in bytes 
compiled methods: 
low 2 bits are low 2 bits of size in bytes. 
The number of literals is specified in 
method header, followed by the indexable . 
bytes that store byte codes. 

Table 2: Encoding of the object format field 
in a Squeak object header 

Our design is based on the fact that most objects in a typical 
Smalltalk image are small instances of a relatively small 

. number of classes. The 5-bit compact class index field, if non- 
zero, is an index into a table of up to 31 classes that are 
designated as having compact instances; the programmer can 
change which classes these are. The 6-bit size field, if non- 
zero, specifies the size of the object in words, accommodating 
sizes up to 256 bytes (i.e., 64 words, with the additional 2 bits 
needed to resolve the length of byte-indexable objects encoded 
in the format field). With only 12 classes designated as, 
compact in the 1.18 Squeak release, around 81% of the objects 
have only this single word of overhead. Most of the rest need 
one additional word to store a full class pointer. Only a few 
remaining objects (I%)‘are large enough to require a third 
header word to encode their size, and this extra word of 
overhead is a tiny fraction of their size. j 

Storage Management 
Apple Smalltalk had achieved good garbage collection 
behavior with a simple two-generation approach similar to 
[Unga84]. At startup, and after any full garbage collection (a 
mark and sweep of the entire image), all surviving objects were 
considered to be old, and all objects created subsequently (until 
the next full collection) to be new. All pointer stores were 
checked and a table maintained of “root” objects-old objects 
that might contain pointers to new objects. In this way, an 
incremental mark phase could be achieved by marking all new 
objects reachable from these roots and sweeping the new object 

area; unmarked new objects were garbage. Compaction was 
simple.in that system, owing to its use of an object table, Full 
garbage collection was triggered either by an ovefflow of tho 
roots table, or by failure of; an incremental collection to 
reclaim a significant amount of space. That system was known 
to run acceptably with less than 500k of free space and to 
perform incremental reclamations in under 250 milliseconds on 
hardware of the 80’s (16MHz 68020). 

For Squeak, we determined to apply the same approach to our 
new system of 32-bit direct pointers. We were faced 
immediately with a number of challenges, First, we had to write 
an in-place mark phase capable of dealing with our variable- 
length headers, including those that did not have an actual class 
pointer in them. Then there was the need to produce a structure 
for remapping object pointers during compaction, since WC did 
not have the convenient indirection of an object table. Finally 
there was the challenge of rectifying all the object pointors in 
memory within an acceptable time. 

The remapping of object. pointers was accomplished by 
building a number of relocation blocks down from tho unused 
end of memory. A thousand such blocks are reserved outsido tho 
object heap, ensuring that at least one thousand objects can bo 
moved even when there is very little free space. However, if tho 
object heap ends with a free block, that space is also used for 
relocation blocks. If there is not enough room for the numbor 
ofrelocation blocks needed told0 compaction in a single’ pass 
(almost never), then the compaction may be done in multiplo 
passes. Each pass generates free space at the ond of the object 
heap which can then be used to create additional relocation 
blockslfor the next pass. 

One more issue remained to be dealt with, and that was support 
of the become operation without an object table. (Tho 
Smalltalk become primitive atomically exchanges tho 
identity of two objects; to Smalltalk code, each object appoars 
to turn into, or “become,” the other.) With an object tablo, tho 
become primitive simply exchanges the contents of two 
object table entries. ‘Without an object table, it requires a full 
scan of memory to replace every pointer to one object with a 
pointer to the other. Since full memory scans arc relatively 
costly, we made two changes. First, we eliminated most uses of 
become in the Squeak image by changing certain collectlon 
classes to store their elements in separate Array objects instead 
of indexed fields. However, become operations are essential 
when adding an instance variable to a class with extant 
instances, as each instance.must mutate into a larger object to 
accommodate the new variable. So, our second change was to 
restructure the primitive to one that exchanges the identity of 
many objects at once. This allows all the instances of a class to 
be mutated in a single pass through memory. The code for this 
operation uses the same technique and, in fact, the very samo 
code, as that used to rectify pointers after compaction. 

We originally sought to minimize compaction frequency, 
owing to the overhead associated with rectifying direct 
addresses. Our strategy was to do a fast mark and sweop, 
returning objects to a number of free lists, depending on size, 
Only when memory became overly fragmented would we do a 
consolidating compaction. 

As we studied and optimized the Squeak garbage collector, 
however, we were able to simplify this approach greatly, Slnco 
an incremental reclamation only compacts the new object 
space, it is only necessary to rectify the surviving new objects 
and any old objects that point to them. The latter are exactly 
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those objects marked as root objects. Since there are typically 
just a few root objects and not many survivors (most objects 
die young), we discovered that compaction after an incremental 
reclamation could be done quickly. In fact, due to the overhead 
of managing free lists, it turned out to be more efficient to 
compact after every incremental reclamation and eliminate free 
lists altogether. This was especially gratifying since issues of 
fragmentation and coalescing had been a burden in design, 
analysis, and coding strategy. 

Two policy refinements reduced the incremental garbage 
collection pauses to the point where Squeak became usable for 
real-time applications such as music and animation. First, a 
counter is incremented each time an object is allocated. When 
this counter reaches a threshold such as 4000 objects, an 
incremental collection is done even if there is plenty of free 
space left. This reduces the number of new objects that must be 
scanned in the sweep phase, and also limits the number of 
surviving objects. By doing a little work often, each 
incremental collection completes quickly, typically in 5-8 
milliseconds. This is within the timing tolerance of even a 
fairly demanding musician or animator. 

The second refinement is to tenure all surviving objects when 
the number of survivors exceeds a threshold such as 2000 
objects, a simplified version of Ungar and Jackson’s feedback- 
mediated tenuring policy [UnJa88]. Tenuring is done as 
follows. After the incremental garbage collection and 
compaction, the boundary between the old and new object 
spaces is moved up to encompass all surviving new objects, as 
if a full garbage collection had just been done. This “clears the 
decks” so that future incremental compactions have fewer 
objects to process. Although in theory this approach could 
hasten the onset of the next full garbage collection, such full 
collections are rare in practice. In any case, Squeak’s relatively 
lean image makes full garbage collections less daunting than 
they might be in a larger system; a full collection typically 
takes only 250 milliseconds in Squeak. 

We have been using this storage manager in support of real- 
time graphics and music for over a year now with extremely 
satisfactory results. In our experience, 10 milliseconds is an 
important threshold for latency in interactive systems, because 
most of the other critical functions such as mouse polling, 
sound buffer output and display refresh take place at a 
commensurate rate. 

BitBlt 
For BitBlt as well, we began with the Blue Book source code. 
However, the Blue Book code was written as a simulation in 
Smalltalk, not as virtual machine code to run on top of the 
Object Memory. We transformed the code into the latter form, 
made a few optimizations, and this sufficed to get the first 
Squeak running. The special cases ,we optimized are: 

l the case when there is no source (store constant), 
. the case when there is no halftone (store unmasked), 
l the horizontal inner loop (no partial word stores). 

Once Squeak became operational, we immediately wanted to 
give it command over color. We chose to support a wide range 
of color depths, namely: l-, 2-, 4, and 8-bit table-based color, 
as well as 16- and 32-bit direct RGB color (with 5 and 8 bits per 
color component respectively). 

It was relatively simple to extend the internal logic of BitBlt to 
handle multiple pixel sizes as long as source and destination 
bit maps are of the’same depth. To handle operations between 

images of different depth, we provided a default conversion, and 
added an optional color map parameter to BitBlt to provide 
more control when appropriate. The default behavior is simply 
to extend smaller source pixels to a larger destination size by 
padding with zeros, and to truncate larger source pixels to a 
smaller destination pixel size. This approach works very well 
among the table-based colors because the color set for each 
depth includes the next smaller depth’s color set as a subset. In 
the case of RGB colors, BitBlt performs the zero-fill or 
truncation independently on each color component. 

The real challenge, however, involves operations between 
RGB and table-based color depths. In such cases, or when 
wanting more control over the color conversion, the client can 
supply BitBlt with a color map. This map is sized so that there ’ 
is one entry for each of the source colors, and each entry 
contains a pixel in the format expected by the destination. It is 
obvious how to work with this for source pixel sizes of 8 bits 
or less (map sizes of 256 or less). But it would seem to require a 
map of 65536 entries for 16 bits or 4294967296 entries for 
32-bit color! However, for these cases, Squeak’s BitBlt accepts 
color maps of 512, 4096, or 32768 entries, corresponding to 
3,4, and 5 bits per color component, and BitBlt truncates the 
source pixel’s color components to the appropriate number of 
bits before looking up the pixel in the color map. 

Smalltalk to C Translation 
We have alluded to the Squeak philosophy of writing 
everything in Smalltalk. While the Blue Book contains a 
Smalltalk description of the virtual machine that’ was actually 
executed at Ieast once to verify its accuracy, this description 
was meant to be used only as an explanatory model, not as the 
source code of a working implementation. In contrast, we 
needed source code that could be translated into C to produce a 
reliable and efficient virtual machine. 

Gur bootstrapping strategy also depended on being able to 
debug the Smalltalk code for the Squeak virtual machine by 
running it under an existing Smalltalk implementation, and 
this approach was highly successful. Being able to use the 
powerful tools of the Smalltalk environment saved us weeks of 
tedious debugging with a C debugger. However, useful as it is 
for debugging, the Squeak virtual machine running on top of 
Smalltalk is orders of magnitude too slow for useful work: 
running in Squeak itself, the Smalltalk version of the Squeak 
virtual machine is roughly 450 times slower than the C 
version. Even running in the fastest available commercial 
Smalltalk, tbe Squeak virtual machine running in Smalltalk 
would still be sluggish. 

The key to both practical performance and portability is to 
translate the Smalltalk description of the virtual machine into 
C. To be able to do this translation without having to emulate 
all of Smalltalk in the C runtime system, the virtual machine 
was written in a subset of Smalltalk that maps directly onto C 
constructs. This subset excludes blocks (except to describe a 
few control structures), message sending, and even objects! 
Methods of the interpreter classes are mapped to C functions 
and instance variables are mapped to global variables. For byte 
code and primitive dispatches, the special message 
dispatchOn:in: is mapped to a C switch statement. (When 
running in Smalltalk, this construct works by perform:-ing 
the message selector at the specified index in a case array; since 
a method invocation is much less efficient than a branch 
operation, this dispatch is one of the main reasons that the 
interpreter runs so much faster when translated to C). 
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The translator first translates Smalltalk into parse trees, then 
uses a simple table-lookup scheme to generate C code from 
these parse trees. There are only 42 transformation rules, as 
shown in Table 3. Four of these are for integer operations that 
more closely match those of the underlying hardware, such as 
unsigned shifts, and the last three are macros for operations so 
heavily used that they should always be inlined. All translated 
code accesses memory through six C macros that read and write 
individual bytes, Cbyte words, and S-byte floats. In the early 
stages of development, every such reference was checked 
against the bounds of object memory. 

& I and: or: not 
+ - * /I \\ min: max: 
bitAnd: bitOr: bitXor: bitshift: -8 
< <= = > >z -= = 
isNil notNil 
whileTrue: whileFalse: to:do: to:by:do: 
iffrue: ifFalse: ifTrue:itFalse: ifFalse:iffrue: 
at: at:put: 
<< >> bitInvert preIncrement 
integerValueOf: integerGbjectOE isIntegerGbject: 

Table 3: Operations of primitive Smalltalk 

Our first translator yielded a two orders of magnitude speedup 
relative to the Smalltalk simulation, producing a system that 
was immediately usable. However, one further refinement to 
the translator yielded a significant additional speedup: 
inlining. Inlining allows the source code of the virtual 
machine to be factored into many small, precisely defined 
methods-thus increasing code-sharing and simplifying 
debugging-without paying the penalty in extra procedure 
calls. Inlining is also used to move the byte code service 
routines into the interpreter byte code dispatch loop, which 
both reduces byte code dispatch overhead and allows the most 
critical VM state to be kept in fast, register-based local 
variables. All told, inlining increases VM performance by a 
factor of 3.4 while increasing the overall code size of the 
virtual machine by only 13%. 

Sound 
Several of us were involved in eady experiments with computer 
music editing and synthesis [Saun77], and it was a 
disappointment to us that the original Smalltalk- release 
failed to incorporate this vital aspect of any lively computing 
environment. We determined to right this wrong in the Squeak 
release. 

Early on, we implemented access to the Macintosh sound 
driver. As the performance of the Squeak system improved, we 
were delighted to find that we could actually synthesize and mix 
several voices of music in real time using simple wave table 
and FM algorithms written entirely in Smalltalk. 

Nonetheless, these algorithms are compute-intensive, and we 
used this application as an opportunity to experiment with 
using C translation to improve the performance of isolated, 
time-critical methods. Sound synthesis is an ideal application 
for this, since nearly all the work is done by small loops with 
simple arithmetic and array manipulation. The sound 
generation methods were written so that they could be run 
directly in Smalltalk or, without changing a’line of code, 
translated into C and linked into the virtual machine as an 
optional primitive. Since the sound generation code had 
already been running for weeks in .Smalltalk, the translated 
primitives worked perfectly the first time they ran. 

Furthermore, we observed nearly a 40-fold increase In 
performance: from 3 voices sampled at 8 KHz, we jumped to 
over 20 voices sampled at 44 KHz. 

WarpBlt ” 
As we began doing more with general rotation and scaling of 
images, we found ourselves dissatisfied with the slow speed of 
non-integer scaling and image rotations by angles other than 
multiples of 90 degrees. To address this problem in a simple 
manner, we added a “warp drive” to BitBlt. WarpBIt takes as 
input a quadrilateral specifying the traversal of the source 
image corresponding to BitBlt’s normal rectangular 
destination. If the quadrilateral is larger than the destination 
rectangle, sampling occurs and the image is reduced. If the 
quadrilateral is smaller than the destination, then interpolation 
occurs and the image is expanded. If the quadrilateral is a’ 
rotated rectangle, then the image is correspondingly rotated. If 
the source quadrilateral is not rectangular, then the 
transformation will be correspondingly distorted. 

Once we started playing with arbitrarily rotated and scaled 
images, we began to wish that the results of this crude warp 

were not so jagged. This led to support for over sampling and 
smoothing in the warp drive, which does a reasonable job of 
anti-aliasing in many cases. The approach is to average a 
number of pixels around a given source coordinate. Averaging 
colors is not a simple matter with the table-based colors of 8 
bits or less. The approach we used is to map from the source 
color space to RGB colors, average the samples in RGB space, 
and map the final result back to the nearest indexed color via 
the normal depth-reducing color map. 

As with the sound synthesis work, WarpBlt is completely 
described in Smalltalk, then translated into C to deliver 
performance appropriate to interactive graphics. 

Code Size and Memory Footprint 
Table 4 gives the approximate size of the main components of 
Squeak in lines of code, based on version 1.18 of December, 
1996. Our measurement includes all comments, but excludes all 
blank lines. We present these statistics not as rigorous 
measurement, but more as an order-of-magnitude gauge. For 
instance, the entire virtual machine is approximately 100 
pages. Of that, 6547 lines are in Smalltalk (translator not 
included) versus 1681 lines of OS interface in C that may need 
to be altered for porting. 

Smalltalk Lines C Lines 
Interpreter 3951 OS interface 168 1 
Object Memory 1283 
BitBlt with Warp 13 13 

Table 4: Lines of code in Squeak VM 

The size of the 1.18 Squeak release image, with all 
development support, including browsers, inspectors, 
performance analyzers, color graphics, and music support is 
968K bytes on the Macintosh. The code for the virtual 
machine, simulator, and Smalltalk-to-C translator, which arc 
only needed by those engaged in virtual machine development, 
adds 290K to this figure. The interpreter, when running, 
requires 300K on a Power PC Macintosh, and the entire 
Smalltalk environment runs satisfactorily with as little as 
200K of free space available. In monochrome, the system runs 
comfortably in 1.8 MB. We distribute a 650K image with the 
complete development environment that runs in. less than 1MB 
on the Cassiopeia hand held computer. 
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Performance and Optimization 
Thanks to today’s fast processors, Squeak’s performance was 
satisfactory from the moment the translator produced its first C 
translation of the virtual machine. Since this debut, Squeak’s 
performance has improved steadily, and the current version, 
1.18, executes about four million byte codes or 173 thousand 
message sends per second on a 110 MHz Power PC Mac 8100. 
Table 5 shows the improvement in Squeak’s performance over* 
its first year. Two simple benchmarks from the release were 
used to track the approximate byte code execution rate (“10 
benchmark”) and the cost of full method activation and return 
(“26 benchFib”). Note that the latter benchmark measures the 
worst case; not all message sends require a full activation. 

Date && codeslsec sendslsec 
Apr. 14 458K 22,928 
May 20 1,lllK 60,287 
May 23 1,522K 69,319 
July 9 2,802K 134,717 
Aug. 1 2,726K 130,945 
Sept. 23 3,528K 141,155 
Nov. 12 3,156K 133,164 
Dec. 12 3,410K 169,617 
Jan. 21 4,108K 173,360 

Table 5: Squeak performance over time 

The rapid early leaps in performance were due partly to removal 
of scaffolding-such as ,assertion checks and range checks on 
memory references-and partly to improving the runtime 
model of the translator. For example, object references were 
originally represented as offsets relative to the base of the 
object memory rather than as true direct pointers. After May, 
however, the easy changes had all been ‘made and 
improvements came in smaller increments, sometimes only a 
few percent at a time. The most significant of these 
optimizations include: 

l recycling method contexts (this cut the allocation rate 
by a factor of 10) 

l managing the frequency of checks for user and timer 
interrupts 

l keeping the instruction and stack pointers (IP and SP) 
in registers 

l making the IP and SP be direct pointers, rather than 
offsets into their base object 

l patching the dispatch loop to eliminate an unneeded 
compiler-generated range check 

l eliminating store-checks when storing into the active 
and home contexts 

l comparing small integers as oops rather than 
converting them into integers first 

l peeking for and doing a jump-if-false byte code that 
follows a compare 

Table 6 compares Squeak’s current performance over a small 
suite of benchmarks with that of several commercial Smalltalk 
implementations that cover a cross-section of implementation 
technologies, including a bytecode interpreter similar to the 
original Smalltalk- virtual machine (Apple Smalltalk); an 
aggressively optimized interpreter (STN Mac l.l), and two 
implementations using dynamic translation to native code 
(ParcPIace SmalItaIk 2.3 and 2.5). In order to draw meaningful 
comparisons between Squeak and these 68K-based virtual 
machines, all timings except those in the last column were 
taken on a Duo 230 (33Mhz 68030). Since Squeak runs 
significantly better on modem processors with instruction 
caches and a generous supply of registers, the final column of 

the table, SqueakPPC,, shows Squeak’s performance relative to 
C on a Power PC-based Macintosh. 

AppleST STN PP2.3 PP2.5 Squeak Sqz&PfC 

IntegerSum 185.00 32.00 7.58 6.92 62.34 72.56 
VectorSum 99.00 30.00 10.30 11.50 61.70 41.01 
PrimeSieve 53.00 40.00 16.07 12.10 70.53 51.57 
BubbleSort 88.23 35.29 21.35 13.98 80.29 63.12 
TreeSort 43.90 5.00 20.29 1.98 16.33 7.31 
MatrixMult 40.79 6.00 22.80 2.94 18.00 36.74 
Recur-se 28.26 9.47 3.73 2.08 50.26 35.19 

Table 6: Virtual machine performance relative 
to optimized, platform-native C for various benchmarks. 
Smaller numbers are better. A result of 1.0 would 
indicate that a benchmark ran exactly as fast as 
optimized C. 

So far in the design of Squeak, we have emphasized simplicity, 
portability, and small memory footprint over high 
performance. Much better performance is possible. The PP2.3 
and PP2.5 columns of Table 6 are examples of Deutsch- 
Schiffman-style dynamic translation (or “JIT”) virtual 
machines [Deut84]. Dynamic translation avoids the overhead 

‘of byte code dispatch by translating methods into native 
instructions kept in a size-bounded cache. The Self project 
[ChUn91] [Holz94] broke new ground in high performance by 
investing more compilation time in heavily used methods, 
using inlining to eliminate expensive calls and enable further 
optimizations. This work, which was later extended to 
Smalltalk and Java [Anim96], shows that one can obtain 
performance approaching half the speed of optimized C without 
compromising the semantics of a clean language. 
Unfortunately both of these approaches have resulted in virtual 
machine implementations that ‘are, by Squeak standards, 
unapproachable and difficult to port. 

We believe that Squeak can enjoy the same performance as 
commercial Smalltalk implementations without compromising 
malleability and portabibty. In our experience the byte code 
basis of the Smalltalk- standard pInga is hard to beat for 
compactness and simplicity, and for the programming tools 
that have grown around it. Therefore dynamic translation is a 
natural avenue to high performance. The Squeak philosophy 
implies that both the dynamic translator and its target code 
sequences should be written and debugged in Smalltalk, then 
automatically translated into C to build the production virtual 
machine. By representing translated methods as ordinary 
Smalltalk objects, experiments with Self-style inlining and 
other optimizations could be done at the Smalltalk level., This 
approach is currently being explored as a way to improve 
Squeak’s performance without adversely affecting its 
portability. 

The Squeak Community 
As exciting as the day the interpreter first ran, .was the day we 
released Squeak to the Internet community. In. the back of our 
minds, we all felt that we were finally doing, in September of 
1996,, what we had failed to do in 1980. However, the code we 
released ran only on the Macintosh and, although we had 
worked hard to make it. portable, we did not know if we had 
succeeded. 

Three weeks later, we received a message announcing Ian 
Piumarta’s first UNIX port of Squeak. He had ported it to seven 
additional UNIX platforms two weeks later. At the same time, 
Andreas Raab announced ports of Squeak for Windows 95 and 
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Windows NT. Neither of these people had even contacted us 
before starting their porting efforts! A mere five weeks after it 
was released, Squeak was available on all the major computing 
platforms except Windows 3.1, and had an active and-rapidly 
growing mailing list. Since that time, Squeak ports have been 
done for Linux, the Acorn RISC, and Windows CE, and several 
other ports are underway. 1 

The Squeak release, including the source code for the virtual 
machine, C translator and everything else described in this 
paper, as well’ as all the ports ’ mentioned above, is available, 
through the following sites:’ \ ’ 

http://www.research.apple.com/research/ 
pro j /learning-concepts/squeak/ 

ftp://ftp.create.ucsb.edu 
ftp://alix.inria.fr 
ftp://ftp.cs.uni-magdeburg.de/pub/ 

Smalltalk/free/squealc 

The Squeak license agreement explicitly grants the right to use 
Squeak in commercial applications royalty-free. The only 
requirement in return is that any ports of Squeak or changes to 
the base class library must be made available for free on the 
Internet. New applications and facilities built on Squeak do not 
need to be shared. We believe that this licensing agreement 
encourages the continued development and sharing of Squeak 
by its user community. 

Related Work 
For the Smalltalk devotee, nothing is more natural than the 
desire to attack all programming problems with Smalltalk. 
Thus, there has long been a tradition of using Smalltalk to 
describe and debug a low-level system before its final 
implementation. As mentioned earlier, the Blue Book used 
Smalltalk as a high-level description of a Smalltalk virtual 
machine, and this description was actually checked for accuracy 
by rum-ring it. In LOOM [KaehS6], the kernel of a virtual 
object memory was written and executed in a separate, 
simplified Smalltalk virtual machine whenever an “object 
fault” occurred. For better performance, this kernel was later 
translated into BCPL semi-automatically,’ then fixed up by 
hand. This experience planted the seed for the approach taken 
in Squeak two decades later. 

A number of recent systems translate complete Smalltalk 
programs into lower-level languages to gain speed, 
portability, or application packaging advantages. Smalltalk/X 
[Gitt95] and SPiCE [YaDo95] generate C code from programs 
using the full range of Smalltalk semantics, including blocks. 
Babel [MWH94] translates Smalltalk applications into CLOS, 
and includes a facility for automatically winnowing out unused 
classes and methods. 

Producer [Cox87] translated Smalltalk programs into Objective 
C, but required the programmer to supply type declarations and 
rules for mapping dynamically allocated objects such as Points 
into Objective C record structures. Producer only supported a 
subset of Smalltalk semantics because it depended on the 
Objective C runtime and thus did not support blocks as first- 
class objects. Squeak’s Smalltalk-to-C translator restricts the 
programmer to an even more limited subset of Smalltalk, but 
that subset closely mirrors the underlying processor 
architecture, allowing the translated code to run nearly as 
efficiently as if it were written in C directly: The difference 
arises from a difference in goals: The goal of Squeak’s 
translation is merely’ to support the construction of its own 

virtual machine, a much simpler task than translating full. 
blown Smalltalk programs into C!. 

Squeak’s translator is more in the spirit of QUICKTALK 
[Ball86], a system that used Smalltalk to define new primitive 
methods for the virtual machine. Another Smalltalk-to- 
primitive compiler, Hurricane [Atki86], used a combination of 
hser-supplied declarations and simple type inference to 
eliminate class checks and to inline integer arithmetic, Unlike 
Squeak’s translator, Hurricane allowed the programmer to also 
use, polymorphic arithmetic in the Smalltalk code to be 
translated. Neither QUKKDUK nor Hurricane attempted to 
produce an entire virtual machine via translation. 

Type information can help a translator produce more efficient 
code by eliminating run-time type tests and enabling inlining, 
Typed Smalltalk [JGZ88] added optional type declarations to 
Smalltalk and used that type information to generate faster 
code. The quality of its code was comparable to that of 
QUICKTALK but, to the best of the authors’ knowledge, the 
project’s ultimate goal of producing a complete, stand-alone 
Smalltalk virtual machine was never realized, A different 
approach is to use type information gathered during program 
execution to guide on-the-fly optimization, as done in the Self 
[ChUn91] [H&94] and Animorphic [Anim96] virtual 
machines. Note that using types for optimization is 
independent of whether the programming language has type 
declarations. The Self and Animorphic virtual machines USC 
type information to optimize declaration-free languages 
whereas Strongtalk [B&93], which augments Smalltalk with 
an optional type system to support the specification and 
verification of interfaces, ran on a virtual machine that knew 
nothing about those types. The subset of Smalltalk used for the 
Squeak virtual machine maps so directly to the fundamental data 
types of the hardware that the translator would not benefit from 
additional type information. However, we have contemplated 
building a separate primitive compiler that supports 
polymorphic arithmetic, in which case the declaration-driven 
optimization techniques of Hurricane and Typed Smalltalk 
would be beneficial. 

Future Work 
Work on Squeak continues. We are overhauling Squeak’s 
graphics model to supplant the MVC model with a new one 
along the lines of Morphic [Ma10951 and Fabrik [Inga88]. We 
also plan to complete Squeak’s sound and music facilities by 
adding sound input and MIDI input and output. 

We are collaborating with Ian Piumarta to produce a dynamic 
translation engine for Squeak, inspired by Eliot Mirandn’s 
BrouHaHa Smalltalk [Mira87] and his later work with portable 
threaded code. A top priority is to build the entire engine in 
Smalltalk to keep it entirely portable. 

Just as we wanted Squeak to be endowed with music and sound 
capability, we also wanted it to be easily interconnected with 
the rest of the computing world. To this end, we are adding 
network stream and datagram support to the system. While not 
yet complete, the current facilities already support TCP/IP 
clients and servers on Macintosh and Windows 95/NT, with 
UNIX support to follow soon. 

Conclusions 
As far as we know, Squeak is the first practical Smalltalk 
system written in itself that is complete and self-supporting, 
Squeak runs the Smalltalk code describing its own virtual 
machine fast enough for debugging purposes: although it 
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requires some patience, one can actually interact with menus 
and windows in this mode. This is no mean feat, considering 
that every memory reference in the inner loop of BitBlt is 
running in Smalltalk. 

To achieve useful levels of performance, the Smalltalk code of 
the virtual machine is translated into C, yielding a speedup of 
approximately 450. Part of this performance gain, a factor of 
3.4, can be attributed to the inlining of function calls in the 
translation process. The translator can also be used to generate 
primitive methods for computationally intensive inner loops 
that manipulate fundamental data types of the machine such as 
bytes, integers, floats, and arrays of these types. 

The Squeak virtual machine, since its source code is publicly 
available, serves as an updated reference implementation for 
Smalltalk-80. This is especially valuable now that the classic 
Blue and Green Books [Gold831 [Kras83] are out of print. A 
number of design choices made in the Blue Book that were 
appropriate for the slower speed and limited address space of 
the computer systems of the early 1980’s have been revisited, 
especially those relating to object memory and storage 
reclamation, Squeak also updates the multimedia components 
of this reference system by adding color support and image 
transformation capabilities to BitBlt and by including sound 
output. While Squeak is not the first Smalltalk to use modem 
storage management or to support multimedia, it makes a 
valuable contribution by delivering these capabilities in a 
small one-language package that is freely available, and that 
runs identically on all platforms. 

Final RefIections 
While we considered using Java for our project, we still feel 
that Smalltalk offers a better environment for research and 
development. At a time when the world is moving toward 
native host widgets, we still feel that there is power and 
inspiration in having all of the code for every aspect of 
computation and display be immediately accessible, 
changeable, and identical across platforms, Finally, when most 
development environments fill 100 megabytes of disk space or 
more, Squeak is a portable, malleable, full-service computing 
environment, including browsing, split-second recompilation, 
and source debugging tools, all in a l-megabyte footprint. 
Though many of its strengths are rooted in the past, Squeak is 
suited to the intimate computing potential of PDAs and the 
Internet, and our work is, now more than ever, inspired by the 
future. 
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