=

Cconference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages

The Smalltalk-76 Programming System
Design and Implementation

Daniel H. H. Ingalls
XEROX Palo Alto Research Center
Palo Alto, California

Abstract

This paper describes a programming system based on the metaphor of communicating
objects. Experience with a running system shows that this model provides flexibility,
modularity and compactness. A compiled representation for the language is
presented, along with an interpreter suitable for microcoding. The object-oriented
model provides naturally efficient addressing; a corresponding virtual memory is
described which offers dense uiilization of resident space.

INTRODUCTION

The purpose of the Smalltalk project is to support children
of all ages in the world of information. The challenge is to
identify and harness metaphors of sufficient simplicity and
power to allow a single person to have access to, and creative
control over, information which ranges from numbers and
text through sounds and images. In our experience, the
SIMULA notion of class and instance is an outstanding
metaphor for information structure. To describe processing,
we have found the concept of message-sending to be
correspondingly simple and general. Rather than provide
this organization as a "feature" in an existing system, we
have taken these two metaphors as the point of departure for
the Smalltalk programming language. The result is a lively
interactive system which provides its own text editing,
debugging, file handling and graphics display on a personal
computer.

The Smalltalk language is object oriented rather than
function oriented, and this often confuses people with
previous experience in computer science. For example, to
evaluate <some object>+d means to present +4 as a message to
the object. The fundamental difference is that the object is
in control, not +. [If <some object> is the integer 3, then the
result will be the integer 7. However, if <some object> were
the string 'Meta’, the result might be 'Meta4'. In this way,
meaning rides with the objects of the system, and code
remains an abstract form, merely directing the flow of
communication. As we shall see, this separation is a key
factor in the ability of a system to handle complexity.

THE PRINCIPLE OF MODULARITY

No part of a complex system should :pend on the internal
details of any other part. The design of the Smalltalk
language supports this principle through uniform reference
to objects, sending messages to obtain results, and through
organization of object descriptions and computational
methods into classes. Factoring of information structure
and behavior is provided by the implementation of
subclassing.

All references in the Smalltalk language are to objects, which
may be atomic, or may consist of several named fields
which refer in turn to other objects. Though the only truly
atomic datum is the bit, it is often appropriate for such
simple oojects as names and numbers to be considered
atomic. For example, in a piece of code which reads the y-
coordinate of a point in two dimensions, nowhere should
there be instructions such as: "load the second word relative
to point p." Such an instruction would not perform
properly if it encountered a point represented in polar
coordinates.

Communication is the metaphor for processing in the
Smalltalk language. Objects are created and manipulated by
sending messages. The same model describes activiiies
ranging from ordinary arithmetic to communicating
processes in separate machines. The response to a message is
implemented by a method, which reads or writes some data
field, or sends further messages to achieve the desired
response. The communication metaphor supports the
principle of modularity, since any attempt to examine Of
alter the state of an object is sent as a message to that object,
and the sender need never know about internal
representation. For example, points represented in polar
coordinates r and theta would have a method which responds
to the message, y, by returning r*theta cos.

The examples in this paper use a syntax which gives higher
precedence. to messages of fewer arguments. Therefore theta first
receives the message cos (remember, cosine is a property of angles,
not a function!), and then r receives the message * with one
argument, theta’s cosine.

Every object in Smalltalk is created as an instance of some
class. The class holds the detailed representation of its
instances, the messages to which they can respond, and
methods for computing the appropriate responses. The only
information remaining to be stored in an instance is the set
of values for its named fields. The class is the natural unit
of modularity, as it describes all the external messages
understood by its instances, as well as all the internal details
about methods for computing responses to messages and
representation of data in the instances.

In the Smalltalk language, a class can be declared to be a
subclass of another class, and thus inherit all the traits of
that superclass. The subclass can then add traits of its own,
can. override those it wishes, and can still invoke the
overridden ones from within its code. This capability leads
to a highly factored system.

THE REACTIVE PRINCIPLE

The salient feature of Smalltalk is that all objects are active,
ready to perform in full capacity at any time. Nothing of
this aliveness should be lost at the interface to the human
user of the system. In other words, all components of the
system must be able to present themselves to the user in an
effective way, and must moreover present a set of simple
tools for their meaningful alteration.

The Smalltalk anaiogy to a library of useful functions is a
set of well developed superclasses from which most of the
system classes are derived. The most general of these, class
Object, provides default behavior for printing any object, or
examining and altering its contents on a display screen.

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1978 ACM 0-12345-678-9…$5.00

In addition to a keyboard and display screen, the Smalltalk
system provides a stylus for pointing at the screen. The
Smalltalk system includes a class Window which establishes
a uniform mode] for interaction with these devices. From
Window, users can define new subclasses with behavior
specific to their content. The inheritance from class
Window avoids a lot of replicated code and furnishes a
uniform model for reactive control over new objects added
by the user.

T Qe orverce EER
Wm N XER! JX ~ Laarning Rageareh Group
October 12, 1977 o
10:43 am o screen restore
. Smalitalk quit
1314 disk pages
Changes

Files

. Doc\thm(ow Class, (mts.z 5
|l tww\m' nDocdD Wi Mssages
ﬁzwswsdsgcﬁ scroligar edu:Mzri Hardcopy
asFollows! E
B s e ey il Window’;
seniBar ang | felds: frame’s
gain cane, | asFollows!

EventReg s is « .upe/n‘la_ 5 for prasennng Candows an the displav. K|
* enser [self s nofds cantnd onCi the SCpfus 15 eprered urgde. Wi 1 o

S EME 1501 § ron trol, ir direntioeer masaipes (o icsef based user accions,
leave [docui] "

edutvern | Scheddling
ougside startup
(franw contauns: stylus Lics

fedirveny A 2
scrollBar 5 E; g {ztrgm' r
= epe
i m&;ﬁ\] (e [frarne contaths: stylus Locs
thpoam[a. [kulbﬂllldlltLL'v,[qkl kuytonnd]
' smgzelf iy md; W)
e smr@ursu %
. Isrtn\oEv,v super - stylns downs [selr lea)] -
showDoc fatze]

n&i“ﬁ,‘ eDefault Event Responses 3

nder [selt shuwy] ‘

e
' outside [(Iflse]
Fonc ¢ " {pendown
ﬁngoam Thoghard nes oL friune flash]
Image
show

[friwru ouching
T an

turle ar: pane el

Figure 1. A typical Smalltalk display

Figure 1 shows a typical display screen from a Smalltaik
system. Each of the rectangular areas is an instance of class
_Window which provides a basic protocol for user
interaction:

- if the stylus is depressed within the window, the
content is redisplayed, thus showing it "in front of”
the other windows;

- once active, the window becomes the recipient of
all user actions, such as depressing the stylus, typing
on the keyboard, or entering sensitive areas around
the window:

- if the stylus is depressed outside the window,
control is given up so that another window may be
awakened.

The class Window aiso provides a basic protocol for
handling such actions as moving itself, changing its size,
printing its contents, and terminating its appearance on the
screen.

The reader may find himself evaluating the user interface
presented in the figures. This misses the point, which is the
aptness of communicating objects in describing the situation.
Many other approaches to display handling are used with Smalltalk,
and they are nol the subject of this paper.

10

XER!]X ~ Learning Aazaared Groyp

Wedne:
October 12, 1377
1051 am screen restore
. Smalltatk quit
1314 disk pages K
Changes
Files
. Fones
Class new title: ‘Docwindow’; L_ma? 8
subclassofi Windows copy
flelds: ‘document scrollBar editMenu’; CUL
asFoilows! paste
dout
D tises wvents ane passed on o che docement white thelCOMpil
wingow is dctlve. If the seypius goax aut af the winuaw.i GHON

7] scrofiBar any ohe woitMenu &2 94ch given A chance (o
2 yadn conenal

Fvent Responses
“enter [self show
i ediuMenu show. scrollBar shove]

s 0 ehe wspray. il
exside Wt r Ajosf
by usac actians

[mwl\/lmu startups(
scrollBar starrups (sl Lf stywvaCoc]

(tflze]
Zipendown [daciument frmtnwn]
ﬁwoani {docrinwnt fyboard] (]

W
[document showin frame de scrollBir puattion) -
itle [Tdoctimens title] 3

ourside [|1falze]
ndown
ﬁgnbmrd [Meybrart ne o, frame flash]

imaqe
how

Figure 2. Editting text

Each of the windows shown in the figure belongs to some
subclass of Window; the subclass handles the specific
content. In figure 2, for example, the user has awakened a
window for editing the text of a class. Specific to this
content is the ability to select text with the stylus, scroll the
text up and down by entering the scroll bar at the window's
left, and send specific editing messages by entering the menu
at its right. The class has thus provided a simulation of
itself as structured text (which is needed for printing
anyway). This text in turn furnishes a text editor to display
the text and allow it to be manipulated. Finally, the window
provides a spatial channel for the flow of information in
both directions between the user and the subject of
investigation. As shown in figure 2, the user has just drawn
the stylus through the text of the message show, and the
editor has responded by highlighting the text and noting the
selection internally.

In figure 3, the currently active window supports freehand
drawing. It provides a large menu from which to choose
brush shape and paint tone to be applied when the stylus is
depressed. Another window interfaces to one of the
character fonts, allowing the user to design new fonts at will.
Yet another displays the time of day. Each of the windows
brings its own semantics to the uniform "syntax" of stylus
motion and keyboard action available to the investigator. In
this way, the underlying metaphor of communicating objects
can be seen to operate all the way up to the level which
corresponds to a conventional operating system.

B Userview . status I

Wednzsda.g
October 12, 1977
10

54 am.

XEROX - osning sasesren sroun

screen restore
Smalltatk quut

1314 disk pages

Changes
Files

‘ me o Foncs
- - Classes
: Class new title: ‘DocWindow';
. SUbCIAS indows Iviessages

fleldss ‘document scrollar edisMenu’ Hardcopy
asFoltowst

Clitser events asw paxsed o to the ducument while

< {winvaw is avclve, If the stylus gues our af the window,

SCOOHEAS A0 the QOITATINY AN 240D gven a chance o
gain costro/

Event Responses s an the dispiay, it
enter (el show. e, Whitaat bajozf
L] santidenu shov. surollBar show] bo user actions,
Lleave [document hidesclection,
cditivienu hude. scrolle huded
ourside
[edittvienw startup 5[]
scrotlar seartips(self shoveCoc]
nflss)

ndown [dograment perdown)
gzwoardm 4 il Reybogrd | 1]
CAEAL 1eehak
Imag AL 1STrAN .
show [supe)
“{showDoc | |
1 [dorumet
title [faocy
Font | S F"'

Figure 3. Painting a picture

EXAMPLE OF A SMALLTALK CLASS: Rectangle

As we have seen above, most programming in Smalltalk is
done using a structured editor. Rather than go into the
details of this process, we show here an excerpt from class
Rectangle, show how it supports the Window example above,
and describe in detail the operation of one of its messages.

A Smalltalk class is defined by giving it a name, and naming
the fields of its instances. Following this is an optionally
categorized list of the messages to which the class responds.
Each message consists of a pattern followed by Smalltalk
code within brackets.

Class new title: 'Rectangle’;
fields: 'origin corner'.

Access to fields
origin [forigin] "f means return”
corner [fcorner]
origin: origin corner: corner
"no code; just store into the instance"

Testing

contains:pt"return true if pt is inside me"
forigin€pt and: pt<corner]

empty Eﬂ‘comeréorigin]

Combination
inset: delta
[frorigin+deltarect: corner-delta]
intersect: r
[?(origin max: r origin) rect:
corner min: r corner)]

Image
clear:color [primitive] "display operation”
outline: width
[(self inset: (-1B-1)*width)
clear: black.
self clear: white]
moveto: pt
[corner « corner-origin+pt.
origin « pt],

11

Rectangles have two fields: origin is the lower left corner,
and corner is the upper right corner. Because both origin
and corner are Points, Rectangle builds on a data domain
which is already graphically interesting.

Class new title: 'Point';
fields: 'x y'. "Cartesian coordinates'"

Access to fields
x{ﬁx
y{ty
XXy Yy

Testing)
£ pt "return true if I am below/leftof pt"
[Tx%pt x and: y%pt y]

Combination
rect:c "make up a new rectangle”
[®Rectanglenew origin: self corner: c]

Point arithmetic
+pt TPoint new x: x+pt x y: y+pt y
- pt TPoint new x: x-pt x y: y-pt ¥

The scheduling of windows shown in figures 1-3 is
implemented in Window's response to the message startup
(visible in figure 1), The chief element in the code is the
expression

frame contains: stylus loc

which checks whether the stylus location (a Point) is within
the frame (a Rectangle) of the current Window. The code
for Rectangle contains: builds, in the procedural domain, m
the meaning of € for Points. ihe tirst test getermines wnat
origin is below and to the left of the Point pt, and the
second test determines that pt is below and to the left of
corner. The reader will want to know here that arithmetic
messages (+, -, eic.) get sent before keyword messages (the
identifiers ending in colon). Therefore, after the two £ tests
have been made, the conjunction of the two results defines
the case that the rectangle contains the Point pt.

Smalltalk treats all objects which are not false as true. This is
effected rather easily in class Object by messages of the form:

and: x {self=falses[ffalse] ™Tx],

whchh are inherited by all other classes. The implication arrow is
a primitive operation which compiles into a branch conditional on
the distinguished object, false. :

The other messages to Rectangle are presented so that
interested readers can pursue the message outline: w, which
causes an outline of width w to appear around the rectangle
on the screen. This message is used by class Window to
clear and outline its frame,

These readers will want to know that if several keyword messages
appear at a given level, they combine to provide a message with
multiple arguments. For example, class Number provides a message

B arg [MPoint new x: self y: arg]

for creating Points simply. This code sends the compound message
Xx:y: to the new Point with the two arguments, self and arg.

The Benefits of the Message Discipline

Adding a new class of data to a programming system is soon
followed by the need to print objects of that class. In many
extensible languages, this can be a difficult task at a time
when things should be easy. One is faced with having to
edit the system print routine which (a) is difficult to
understand because it is full of details about the rest of the
system, (b) was written by someone eise and may even be in
another language, and (c) will blow the system to bits if you
make one false move. Fear of this often leads to writing a
separate print routine with a different name which then

must be remembergd. In our object-oriented system, on the
other hanq, printing is always effected by sending the
message printon: s (where s is a character stream) to the

object in question. Therefore the only place where code is .
needed is right in the new class description. If the new code.

should.fail, there is no problem; the existing system is
unmodified, and can continue to provide support.

The; _code_for moving a Rectangle (moveto:) could be more
efficient if corner were relative to origin, so that it did not

need to be relocated. This could be accomplished by
changing names from

fields: 'origin corner'
to
fields: 'origin exteat’,

and updating the code from

moveto: pt [corner ¢ corner-origin+pt.
origin ¢ pt]

to

moveto: pt [origin « pt].
In a conventional organization, all the code in the system
will have to be recompiled because it used to count on
finding the corner coordinates in the second field. In fact
most systems would require rewriting because access to the
corner (which used to be a simple load or store) becomes a
computation:

corner
corner:;

[Torigint+extent]
{extente pt-origin]

The class organization and message discipline ensure that if
the original message protocol is supported, then all code
outside the class will continue to work without even
recompiling. Moreover, the only changes required will all be
within the class whose representation is being changed.

Modularity is not just an issue of "cleanliness.” If N parts
depend on the insides of each other, then some aspect of the
system will be proportional to N-squared. Such
interdependencies will interfere with the system’s ability to
handle complexity. The phenomenon may manifest itself at
any level; difficulty of design, language overgrown with
features, long time required to make a change or difficulty
of debugging. Messages enforce an organization which
minimizes interdependencies.

Another benefit of leaving message interpretation up to the
target objects is type independence of code. In the Rectangle
exampie, the code will work fine if the coordinates are
Integer or FloatingPoint, or even some newly-defined
numerical type. This allows for much sharing of code, and
the ability to have one object masquerade as another.

The Power of Subclasses

The utility of type-independent code is exploited by the
subclass organization in Smalltalk. For example, the
superclass Number implements the messages

£ 2 2 max: min:

in terms of the basic comparisons, <, =, and >. Consequently,
after defining only the basic comparisons, any new subclass
of Number can respond to the full numerical protocol.
Other messages in the superclass Number, such as B (which
creates a Point) and to:by: (which creates an interval),
similarly allow coordinates of Points, and limits of for-loop
ranges to be FloatingPoint, Fraction, or any other kind of

Number.

12

The factoring provided by subclassing leads to cleanliness
and compactness. It can also increase efficiency through
multiplied use of high-speed system code. For instance, we
provide microcode support for reading and writing the next
item in a Stream. Now by making class DiskFile a subclass
of Stream, DiskFile inherits this very efficient code for its
most common operations. The superclass Stream sends itself
the message pastend when it reaches the end of its character
buffer, and this gives the subclass DiskFile a chance to read
a new record off the disk by overriding the meaning of
pastend.

Besides allowing subclasses to override messages in their
superclasses, Smalltalk provides for access to the overridden
messages. In figure 2, the selected text defines the message
show to DocWindow,

show [super show. self showDoc]

which overrides Window's definition. The token, super,
indicates that the following message should be looked up
beginning with the class above. In this case it allows
DocWindow to invoke Window's show code to put a frame
around the window before telling the document to display
its text.

Further properties of Smalltalk subclassing, including
multiple inheritance of traits, are beyond the scope of this
paper.

IMPLEMENTATION

The challenge of implementing the Smalltalk language is to
provide acceptable performance without compromising the
simplicity of the underlying metaphors. Beyond the
laudable goals of modularity and factoring, four pragmatic
issues affect the performance of the Smalltalk system:
storage management, compact object code, message handling,
and a decent virtual memory.

Storage Management

Requiring the programmer to manage the allocation and
deallocation of objects is out of the question in a true high-
level language. It is a sure source of errors and it clutters
the code with irrelevant pragmatics. Instead, the Smalitalk
kernel maintains reference counts for all objects, and frees
them to be reused when the count goes to zero. We chose
reference counting over garbage collection because the
computational overhead is more uniform in real-time, and
the behavior with littie free storage is betier. The dominant
flow of data in a programming system is usually smali
integers, either representing characters or results of simple
arithmetic and indexing. The Smalltalk system reclaims
small integers without reference counting (they are special
object references); this one wild-card (present in some LISP
systems) reduces the overhead to a reasonable level.

The reciamation of cyclic structures cannot be handled by
reference counting, but we have not found this to be a
problem, The class architecture makes it especially
convenient to manage objects which are going to participate
in cyclic structures. For each cyclic link field, an
appropriate unlink message can be defined which propagates
through the structure breaking the cycie. it is true that this
discipline corresponds to explicit storage management, but it
is well localized, and hence presents little problem.

Compact Object Code

Dear to our hearts is the ability to run Smalltalk on personal
computers. In this arena, compactness of the system is
crucial and worth sacrificing some raw speed to achieve.
Moreover, our experience with virtual memory systems is
that overall performance actually improves with compactness
owing to reduced swapping of the workingset. To this end,
the Smalltalk system translates source code into compact
syllables corresponding to the elements of the language.

Class

title

part names

superclass

message dict ——/

inst size =2

free list

.

Static Structures

/

MessageDictionary

String

String

'Rectangle’

‘corner origin' l

message

method\

SOUI’CG\

)

UniqueString

‘contains:’

Method

‘contains: pt
[rorigin<pt and: pt<corner}

<setup info (no. args, etc)>

<literals (if any)>

—

SRR
corner] pt < l pt loriginl <
Dynamic Structures and: 1 /1'
Y
—
Vector
Context pt fcomer| pt | |
sender 1'
args and stack
method temps (if any) P
pc - Point
tempframe - - x =10 argument
-
stack ptr | ~— y =20
mclass
self Point receiver
——\ Rectangle / X =5
> origin y =12
corner —"'\)Point
x =120

y =50

Figure 4 - Smalltalk Structures

13

The top of figure 4 illustrates the static structure in
Smalltalk-76 corresponding to Rectangle contains:. One of
the fields of the class points to an object called a
MessageDictionary. This is a hash table whose keys are the
message names (UniqueStrings) and whose value parts
include the corresponding compiled method and also the
source code. The compiler translates the source code into
syllables arranged in postfix order using what the class
knows about instance fields and other variable locations.
Including some setup information discussed below, the code
body for computing contains: occupies 14 code syllables or,
in our system, seven 16-bit words.

The choice of encoding is made by translating every
common item into a single syllable, and then providing
escapes for cases where this is impossible. The codes fall
into the following basic categories:

Load relative to receiver (self)
Load relative to temp frame
Load relative to literals

Load indirect literals

Load relative to context

Load constant

Send literal message
Send special message

o0 ~3 [« WU, RN NRIE S §]

9 Short jumps
10 Long jumps
11 Control ops

12 Escapes

The loads pick up an object reference and push it onto an
evaluation stack, and the message codes either cause a
primitive operation or invoke another context, depending on
the actual message and the receiver on top of the stack. The
jumps come in two flavors, unconditional and conditional,
the latter taking place only if the top of stack is false, but
popping the stack in any event. The long jumps are
followed by an extension syllable. The control ops include
returning to caller, pop stack, and store, which is followed
by a load-like syllable describing the destination field. The
escapes work like the long jumps, extending the loads and
sends by a full syllable of offset. An area is set aside in the
method for literals (object references which do not fit into a
syllable). and these serve when necessary as an escape to
refer to unusual constants, external references or message
tokens. Our example (which does not use any literals) would
be encoded as

origin load receiver.0

corner load receiver.l

pt load temp.0

£ send special message.7
and: send special message.12
T do control.3

The encoded methods typically occupy one quarter the space
of the original source code. In implementations with no
virtual memory, therefore, it would be important to
reconstruct the source from the code syllables.

Message Handling

Execution of the code syllables is relatively simple, and the
lower half of figure 4 illustrates the dynamic environment.
When a Rectangle receives the message contains:, an instance
of class Context is allocated to serve much the function of a
conventional call frame. Its sender field points to the
context of its caller, to which the final value of its
computation will be passed with the return (%) operator.
The self field points to the object who is receiving this
message; in our example it is a Rectangle. The mclass field
in this example is simply the class Rectangle, but in the case
of messages which are inherited from superclasses, it

14

indicates the class from which the message was inherited
(this is needed to provide the super access described earlier).
Method points to the object code for the method being
executed, and pe is a syllable offset into it indicating the
current progress of execution. Tempframe points to a Vectqr
of temporary storage for the computation. Its access is
partitioned into three areas: arguments passed from its paller,
other temporaries required for the computation (none in our
example), and the stack area used in evaluating the syllables.
Stackptr is the offset indicating the current top of stack.

The Smalltalk system gets a great deal of mileage out of the
fact that Contexts are objects of full capability, just like a}l
the other parts of the system. For debugging, the Context is

in a position to reveal the location of the pc, the contents of
the stack, the values of temporary variables and the current
state of the receiver. For analysis purposes, the operation of
the interpreter is simulated Smalltalk by a loop which sends
the message step to the current context:

repeaté [current « current step].

An outline of this simulation appears in an appendix to this
paper.

Most of the task of interpretation is implicit in the syllable
descriptions above. The one complex operation worthy of
further clarification is how a new context gets set up to send
a message 10 a new receiver. Our example of figure 4 will
serve us again: corner has been put on the stack, and pt
above it is the top item in the stack, »nd the next syllable
pointed to by pc indicates that the message £ is to be sent.
The very first thing that happens (since this is a common
arithmetic operation) is that pt is checked to see if it is an
Integer allowing a fast primitive operation; but it is not.
The more general process then begins of hashing the token £
into the MessageDictionary of pt's class, Point. A match is
indeed found, and the resulting code object can be installed
in the new context along with pt (popped off the stack) in
the self field, class Point in the mclass field, and the
previous context in the sender field.

The setup parameters in the beginning of the method are
computed at compile time, and serve to initialize the new
environment. They tell how much space is needed for the
tempframe and how many arguments are expected (one here).
After the arguments have been moved from the previous
stack to the beginning of the tempframe, the setup supplies
initial values of stackptr and pc, and the new context is
ready to run. It will eventually terminate by encountering a
return syllable. Then the value (true or false) on the top of
the stack will get pushed back onto the sender's stack, and
the computation of Rectangle contains: will resume where it
left off.

Efficient Message Handling

It should be obvious that to carry the message sending
metaphor down into integer arithmetic will result in a slow
system on any non message oriented computer. The
implementor must cheat, but not get caught. In other words,
the uwser of the system should not perceive any non-
uniformity.

To achieve acceptable performance, it is important that the
microcode interpreter not send messages to Contexts. [t
performs all the same steps, but in the fastest way possible.

The Smalltalk system achieves its speed by the assignment of
special code syllables to the most frequently executed
operations. For instance, the message + is assigned a special
code, and the (microcode) interpreter responds to that code
by, immediately checking whether both receiver and
argument are of class Integer. If so, it does the addition in-
line and proceeds immediately without even looking up the
symbol plus, let alone creating a new context. If the check
fails, then control passes to the normal message sending
code, thus insuring the appearance of uniformity.

Virtual Memory

One of the most satisfying aspects of a system built of
objects is the naturally efficient use of address space. Since
a Smalltalk reference can only point to an object as a whole,
the Smalltalk system can indicate 2116 distinct objects using
16-bit object references. With a mean object size of 20
words, the system can address over a million words, and this
size is a nice match to the size of common personal
computer disk drives. In implementing this virtual memory,
we decided to swap single objects, thus achieving maximum
utilization of resident storage at the possible expense of
slower establishment of workingset. Without a few tricks
this scheme could never work.

First, a poor man's Huffman code associates the class of an
object with its object reference, thus avoiding a 1-word
class-pointer overhead on every object. The address space is
given to classes for their instances in zones of 128 with the
same high-order bits. [t is therefore possible to index a
table with the high order bits of any object reference and
discover the class of that object.

Second, variable length classes have many such zones, one
for each of the common small lengths. In this way the
overhead of a length word is avoided on the small sizes. For
larger sizes, the zones cover octave ranges (i.e., 9-16, 17-32,
and so on) and an extra word specifies the exact length.

Third, these zones of address space are mapped into
contiguous locations on the disk. Since all the objects are
instances of the same class, they have the same size; hence
the page and offset on the disk can be computed from the
low order bits of the object reference. In this way non-
resident objects can be located on the disk to be brought into
core. For the octave sizes, a little wasted space on the disk is
traded for the ability to compute the disk offset location.

Fourth, the zoning provides a solution to the problem of
making free space without thrashing the disk. Here is the
problem: there are 1000 objects in core, roughly 20 words
each, and we suddenly need 500 words of space; if we have
to write out 25 objects (assuming we can even decide which
ones), how do we keep from doing 25 disk seeks to do it?
Our solution is to purge core by zone, thus writing many
objects together on a page, and sweeping over the disk in
order of pages. Moreover, a single bit on each object
meaning "I've been touched since my zone was last purged”
provides a nice aging criterion for selecting objects to be
purged.

CONCLUSION

We have known for some time that the uniform model of
communicating objects leads to a naturally integrated
programming system. A very gratifying aspect to our work
is the demonstration that this approach can also result in an
efficient implementation. The Smalltalk system has
supported large applications for simulation, information
retrieval, text editing, musical composition and animation
without encountering significant barriers to complexity, and
this is our strongest indication of the worth of the language.
Beyond this I must add that programming in Smalltalk is
fun. On the one hand, the act of assembling expressions
into statements and then into methods is not very different
from conventional programming. On the other hand, the
experience is totally different, for the objects which populate
and traverse the code are active entities, and writing
expressions feels like organizing trained animals rather than
pushing boxes around.

15

Acknowledgement

Many people have contributed to the Smalltalk system. Alan
Kay has been expounding the basic principles for about a
decade now, and the rest has unfolded through the love and
energy of the whole Learning Research Group. Smalltalk-76
was implemented by the author with the assistance of Ted
Kaehler, Diana Merry, and Dave Robson. Several other
people at PARC have contributed significantly, most notably
Larry Tesler and Peter Deutsch.

References
Kay, A. FLEX, a flexible extensible language
M.S. thesis, Univ of Utah, May, 1968 (Univ. Microfiims).
Kay, A. The Reactive Engine
PhD. thesis, Univ of Utah, Sept., 1969 (Univ. Microfilms).
Learning Research Group. Personal Dynamic Media.
SSL76-1, Xerox PARC, Palo Alto, Calif., April 1976.
Birtwistle, G., Dahl, O.-], Myhrhaug, B, Nygaard, K.
Simula Begin. Auerbach, Philadelphia, Pa., 1973.
Fisher, D. A. Control Structures for Programming Languages.
PhD. thesis, Carnegie-Mellon Univ. Pittsburg, 1970
Liskov, B. and Zilles. S. Programming with Abstract
Data Types. SIGPLAN Notices, April 1974, 50-59,
Liskov, B. 4n Introduction to CLU,
CSG Memo 136, MIT LCS, Febuary 1976.
Greif, 1. and Hewitt, C. Actor Semantics of PLANNER-73,
ACM SIGPLAN-SIGACT Conf., Palo Alto, Calif., Jan 1975.
Steiger, R. Actor Machine Architecture,
M.S. thesis, MIT Dept. EECS, June 1974,
Deutsch, L. P. A LISP Machine with Very Compact Programs.
HICAI, Stanford, Calif., August 1973.
Deutsch, L. P. and Bobrow, D. An Efficient Incremental
Automatic Garbage Collector. CACM September 1976.

APPENDIX: A Smalltalk Simulation of the Interpreter

Class new title: 'Context';
fields: 'sender method pc tempframe stackptr mclass receiver';
asFollows!

Contexts carry the dynamic state of Smalltalk processes. They are accessed in efficient ways by
the microcode interpreter. At the same time, they are instances of a perfectly normal Smalltalk
class. In this way, the full generality of Smalltalk can be applied to examining and tracing the
progress of Smalltalk execution.

The code below differs from the actual code in Smalltalk-76 in that it corresponds to the slightly
simplified categories of the text, and has not been carefully checked for off~by-1 errors.

Beyond the specifics in the text, the interested reader will want to know:
- "°" is the subscript message, as in: tempframe’lobits
- except for assignment, "<" is treated as an agglutinating
message part, as in: t°i <« self pop
-~ the » symbol indicates conditional execution;
if the preceding value is true, then the following body of code
is executed, and control exits the outer (!) brackets. This "if-only”
form serves to build dispatch tables as in the message "next" below
- the default value returned from any message is '"self', the receiver
of the message. Other values may be returned with the "f" symbol.

The messages "instfield: n” and "instfield: ne val”, which are used below to read and write the
n-th field of an instance, clearly violate the principle of modularity. This reflects that the buck
stops here, and these primitive messages appear nowhere else in the system.

Access to Fields

sender: sender method: method pe: pc tempframe: tempframe stackptr: stackptr
meclass: mclass receiver: receiver “initializes all fields"

Simulation of the Interpreter

step | byte lobits "dispatch on next code syllable”
[byte « self nextbyte.
lobits « byte|16.

byte/16=13[self push: receiver instfield: lobits]; "load from instance"
=2>[self push: tempframe lobits]; "load from temps (and args)"
=3[self push: (method literals: lobits)]; "load from literals"
=43[self push: (method literals: lobits) valuel; "load indirectly from literals"
=5=>{ self push: self instfield: lobits]; "load from this Context"

=63[self push: G>("1 0 1 2 10 true false nil)-lobits]; “frequent constants”
=7>[Tself send: (method literal: lobits)];

=8> Tself send: (SpecialMessages*lobits)]; "frequent messages"
=9 lobits<(8s[pc« pec+iobits] - "short jump forward”
self popa>[] pce petlobits-87F; . "short branch if false and pop"
=10=[lobits<{8s[pce lobits-3*256+self nextbyte+pc]'long jump forward and back"
self pops[pe« pe+1]; "ship extension byte on true"
pee lobits~11*256+self nextbyte+pc]; "long bfp"
=11[lobits=0=[self popl; "pop stack"

=1a[self store: self top into: self nextbyte]; "store"
=Z>{self store: self pop into: self nextbyte]; "store and pop"

=3»[sender push: self top. fsender]] "return value to sender"
store: val into: field | lobits "same encoding as above"”
[lobits « byte{16.
field/16=1[receiver instfield: lobits « vall; "store into instance"
=2»[tempframe lobits « vall; "store into temps (and args)"
=3»[user notify: 'invalid store']; "can't store into literals"
=4[(method literals: lobits) value « vall;"store indirectly through literals"
=53 [self instfield: lobits « val] "store into this Context”
send: message | class meth callee t i "send a message"

[class « self top class.
until8 (methe class lookup: message) do8 "look up the method"

[class« class superclass. "follow the superclass chain if necess"
class=nils>[user notify: 'Unrecognized message: '+message]]

[meth primitives "If flagged as primitive, then do it"
[self doprimitive: meth o[®self]]]. "If it fails, proceed with send”

callee« Context new "create new Context, and fill its fields"

sender: self method: meth pec: meth startpe
tempirame: (t« Vector new: meth tframesize) stackptr: meth startstack
mclass: class receiver: self pop.

ford i to: meth nargs dos "pass arguments”
[t-i« self pop]
feallee] "return new Context, so it becomes current”
nextbyte "step pc and return next code syllable”

[fmethod"(pce pe+1)]

Stack-related Messages

push: val "push value onto top of stack”
[tempframe’ (stackptr« stackptr+1) « val]

top 'return value on top of stack"
[Ttempframe “stackptr]

popit "pop value of f stack and return it"
[te tempframe "stackptr.
stackptre stackptr-1. Tt]

16

