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Abstract: Fabrik is a visual programming environment - a kit of computational and user-interface 
components that can be “wired” together to build new components and useful applications. Fabrik 
diagrams utilize bidirectional dataflow connections as a shorthand for multiple paths of flow. Built on 
object-oriented foundations, Fabrik components can compute arbitrary objects as outputs. Music and 
animation can be programmed in this way and the user interface can even be extended by generating 
graphical structures that depend on other data. An interactive type system guards against meaningless con- 
nections. As with simple dataflow, each Fabrik component can be compiled into an object with access 
methods corresponding to each of the possible paths of data propagation. 

1 Kits and Concrete Manipulation 

A kit is a set of primitive components, together 
with a framework for connecting the components 
to do new and interesting things. If objects built 
with the kit can in turn be used to augment the 
original set of components, then the range of 
application becomes very large, limited only by 
the capability of the primitive components and the 
manner of their interconnection. The kit approach 
has been around for a long time, manifest in the 
subroutine libraries of the last three decades. 
However, the ability to browse through, and ex- 
periment with the available components was ex- 
tremely primitive, owing to the textual orientation 
of underlying computing environments during 
those early years. 

With the advent of iconic user interfaces, nontech- 
nical users - those not trained to appreciate invis- 
ible objects and connections - are able to work 
concretely (by pointing at an image) with data and 
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functional components. While iconic interfaces 
have had little effect on conventional program- 
ming practice, they’ have the potential to greatly 
facilitate programming with kits. A box with 
connectors can represent a function and its pa- 
rameter list. The insides of a box can be descrip- 
tive of a function or it can be an active piece of the 
user interface. A connecting line connotes both 
the passage of a value and sequential dependence. 
A single intuitive visual metaphor thus encom- 
passes the acts of browsing, testing, connecting, 
and finally using the components in the library and 
those built from them. We feel that concrete 
manipulation can offer users untrained in pro- 
gramming the kind of control that has previously 
been available only to professional programmers. 

2 Programming with a Kit 

The Fabrik library includes computational ele- 
ments found in most programming libraries, such 
as arithmetic and string manipulation, file access, 
and logic. These appear as boxes with connectors 
which can be wired together to build new func- 
tions, This concrete access to functional compo- 
sition is important, but it is only part of what is 
needed to build a complete application. 
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A look at a modern application program reveals 
many idiomatic components which make up its 
user interface. Windows, panels with editable 
text, lists of selectable items, choice buttons, scroll 
bars, and menus are a few that appear fequently. 
As with simple computational elements, the Fab- 
rik library provides equally immediate access to 
components which provide such high-level capa- 
bility and which support concrete user interaction. 

The remaindei of this section presents an example 
which illustrates the support for browsing, con- 
struction, testing and packaging of a complete 
application iti Fabrik. Many details relating to the 
user interface have been postponed to a later 
section to preserve the flow of what is an ex- 
tremely simple and immediate process. 

Goal: To build a simple file browser with the 
following capability (see figure If): 

l User can type a name pattern in one panel, 
l Second panel shows file names that match, 
l Athirdpanelshows thetextofafileiftheuser 

selects its name. 

Figure la. A String Viewer has been dragged from the 
Parts Bin to a new Construction Window. 

Figure la shows a Fabrik Parts Bin in the top 
window, and a new Construction Window below 
it. The process of building applications in Fabrik 
is as simple as dragging copies of components 
from the Parts Bin into a Construction Window, 
and hooking together the components by their 
connectors. In the first figure, a String Viewer has 
been copied from the Front Panel section of the 
Parts Bin to the Construction window to allow the 
user to type text. 

The application in figure la, though trivial, is 
already usable. One can type and edit text within 
the Sting Viewer, with full support for font 
changes and justification. Upon typing <enter>, 
the current text appears as output at the pin on the 
top but nothing else happens because the output 
pin is not connected to anything. If another text 
component were wired to the one shown, then the 
text would appear in that one as well. 

In figure 1 b, the author has typed the word ‘memo’ 
in the String Viewer, in order to prepare the 

W 
FileSize 

Figure lb. The String Viewer has been hooked to a 
File Name Matcher. The resulting list of file names is 
waiting at the output pin. 
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Figure lc. A List Viewer has been installed and Figure Id. The selected file name output is now hooked 
attached to view the list of filenames. up via a File Contents extractor to a String Viewer. 

example to search for files with those letters in 
their names. He then selected the File Access 
category of the parts bin, dragged a File Name 
Partern Marcher to the Construction Window, 
and hooked that component to the String Viewer. 
He also slid the top pin of the String Viewer to one 
side for neatness. 

In figure lc, the author has obtained aList Viewer 
from the Front Panel category of the Parts Bin to 
view the list of file names matching the string, 
‘memo’. As soon as the File Name Matcher 
output is connected to the List Viewer input, the 
list of names appears as shown. 

In figure Id, the desired functionality of our 
sample application is completed by installing a 
File Data Contents extractor and a second String 
Viewer. These are hooked up in the obvious 
manner to view the text when a file name is 
selected. The connection appears dashed at this 
point in the construction because, with no file 
name selected, the value is nil. Fabrik takes care 
in this situation to track invalidity SO that no 
component is triggered with invalid data. 

Figure le shows that after a file name has been 
selected, it propagates through the File Data 
Contents module, turning the connecting lines 
solid, and finally displaying the text of the se- 

lected file as desired. In roughly five simple steps, 
the desired application has been programmed, and 
is ready for use. The only problem is that it is still 
surrounded by a small scaffold of computational 
components and their connections. 

Fabrik allows a subregion of each diagram to be 
designated as the userframe. This has been done 
with the left three panels in figure le, as can be 
seen form the heavy border around their periph- 
ery. Once the user frame has been designated, a 
menu command is available to enter that frame as 
shown in the figure. This command instructs 
Fabrik to restrict its view to only the designated 

Figure le. The left three panels have been selected 
as the “user frame,” and a menu command lets one 
“enter” that frame. 
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Subject Fabrik 

Figure If. The construction scaffold is now hidden 
and the application can be launched as a reframable 
window ready for normal use. 

components, and to make the result available as a 
normal window in the environment, capable of 
reframing, multiple instances, and all the other 
comforts of the supporting environment. 

Figure 1 f shows our file browser application after 
entering the user frame. An application such as 
this can easily be assembled in less than five 
minutes. Moreover all of the original scaffolding 
can later be retrieved for documentation or as the 
basis for a revision. This ease of “opening the 
hood” adds to the potential reusability of Fabrik 
software. 

3 About the User Interface 

As shown in the preceding example, an author 
defines his application by directly manipulating 
its visual representation. He selects appropriate 
components from the library, places them in a 
Fabrik window, and connects them up to achieve 
the desired functionality and appearance. A Fab- 
rik component appears as a rectangle, usually with 
one or more connectors. called “pins,” on its 
periphery. Some components are purely compu- 
tational. Others provide user interface functions 
within their rectangles. Some pins are used to 
gather input for the component, others to channel 

output, and others (bidirectional pins) are able to 
pass data in either direction. The pins can be 
moved about the periphery to simplify wiring. 

The Fabrik Parts Bin is organized as a file drawer 
with index tabs as shown in figures la and lb. 
Components in the library appear here in mini- 
ature to save space. The file drawer idiom used for 
the Parts Bin was chosen for its rapid access to 
many categories without the complexity of gener- 
ally nested windows. To use a component, the 
author uses the mouse to “grab” it from the Parts 
Bin, to drag it over the desired layout window, and 
to place it at the desired location by releasing the 
mouse button. The “part” being laid out grows to 
actual size as it leaves the Parts Bin, to facilitate 
layout in the destination window. 

Components are connected using a concrete 
“wiring” interface, which serves to connect pins of 
different components. To wire from a to b, the 
author clicks on a, and then clicks again on b. It is 
not necessary to wire directly Tom one pin to 
another. Each click down establishes a “vertex”in 
the wiring diagram, a point where the wire can be 
bent or additional wires attached, making it easier 
to produce readable diagrams. Numerous features 
in the user interface allow this wiring to be 
changed for either aesthetic or logical reasons. 

As the Fabrik author lays out his components, the 
tableau he is creating is always ‘alive’. The 
appearance and behavior of the application being 
built are always directly manifest. This is in 
contrast to the conventional cycle of editing 
source code, compiling, fixing syntax errors, re- 
compiling, linking, loading, then test-running an 
application. 

If the author is building a new component, as 
opposed to a stand-alone application, he will need 
to add pins to the window border that serve as 
gateways for data to flow into and out of the 
component. Internal dataflow semantics of the 
component are expressed by wiring between gate- 
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?CConverter 1 

Figure 2.a. Bidirectional diagram using two Slider 
controls to achieve a Fahrenheit-to-Centigrade converter. 

ways and the pins of the sub-components. The 
gateways later appear as the pins on the periphery 
of the component when it is used to build other 
components and applications. 

The direct manipulation of components to assert 
relationships virtually eliminates syntax errors 
from the development process. The only error 
possible in building a Fabrik application is to 
connect two pins that shouldn’t be connected. 
Fabrik checks for incompatible modality (output 
to output or input to input), as well as for type 
mismatch (see section 8) before allowing a wire to 
be connected. Permission to connect is communi- 
cated to the user through apparent attraction and 
repulsion during the wiring process. 

The attentive reader will notice that the bidirec- 
tional pin on the String Viewer in figure la was 
coerced to output-only as a result of being con- 
nected to the input of the file component in figure 
lb. Such directional coercions are handled by 
Fabrik automatically. 

Fabrik’s user interface, browsing, programming 
and debugging support are discussed in full detail 
in a companion paper [Ludolph]. 

Figure 2b. Internal diagram for the F/C component 
used in the diagram at left. 

4 Bidirectionality 

In Fabrik we have chosen dataflow as the underly- 
ing model of computation. It is presented to the 
user in a loop-free and therefore timeless and 
declarative model. Dataflow is often considered 
to be incompatible with bidirectionality because 
bidirectional diagrams appear to have loops in 
them. However, with some care, most of the 
benefits of bidirectionality can be achieved in a 
system based on dataflow. 

The key observation about most uses of bidirec- 
tional@ is that they are simply a shorthand for 
multiple paths of dataflow. Except in complex 
situations with subtle constraints, the different 
paths may be treated completely independently. 

Figure 2 above shows Fabrik diagrams for a bidi- 
rectional temperature converter, an example bor- 
rowed from Thinglab[Boming]. Both the outer 
application and the numerical conversion resolve 
simply into a left-to-right flow for input on the left, 
and vice-versa for input on the right. 

Bidirectionality enhances the intuitive aspect of 
Fabrik’s concrete constructions by reducing the 
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amount of wiring as well as by reducing the 
number of components needed in the library. We 
consider support for bidirectional behavior to be 
crucial in any system used to build user interfaces, 
since most visual metaphors used for output have 
a natural interpretation for input as well. 

It is, of course, possible to construct confusing or 
ambiguous diagrams with bidirectional compo- 
nents. For instance, if the Times/Divide compo- 
nent in figure 2b were bidirectional at all three 
pins, there would be abiguity as to whether a 
change in one temperature caused a change in the 
other temperature or a change in the conversion 
constant! We have chosen to leave Fabrik users 
exposed to such possible confusion since the 
benefits are so compelling. Possible solutions 
range from simple restrictions, such as allowing 
no more than two bidirectional pins per compo- 
nent, to employing more powerful techniques as in 
Thinglab. 

5 Synthetic graphics 

We have seen in the foregoing examples how 
existing components can be combined to make 
new applications and how, through the use of 
external connectors, the new applications can act 
as components themselves, thus augmenting the 
Fabrik library and increasing the power of the 
system as a whole. It is obvious that, given a 
reasonable basic set of arithmetic and string-han- 
dling components, most simple programming 
functions can be built up on Fabrik. What is less 
apparent at first is that, by including a basic set of 
components capable of producing images, Fabrik 
assumes the ability to synthesize any computable 
image, In this way, Fabrik applications are as 
extensible in their user interfaces as they are in 
their numerical and textual manipulations, thus 
enabling simple construction of applications and 
components such as a bar-chart, a scroll-bar, or an 
animation sequence. 

Fabrilc’s graphical capabilities center around 
graphemes, objects that represent images. Graph- 

emes can be simple, such as lines, circles or 
bitmaps, or they may be transformed or combined 
with other graphemes through overlays, clipping, 
rotation and so on. The ability to carry avariety of 
different graphical objects on a wire relies criti- 
cally on the polymorphism of the underlying ob- 
ject-oriented programming language (Smalltalk) 
in which Fabrik is implemented. 

Some Fabrik components take in non-graphical 
data (such as magnitudes, points, vectors, style 
specifications) and generate graphemes as output. 
Thus, a rectangle creator component takes in two 
points for its opposite comers and an optional style 
(border color, border width, interior color), and 
produces a grapheme representing the image of a 
rectangle satisfying the input parameters. Various 
other such components create lines, ovals, 
bitmaps, display text, etc. 

A second group of graphical components provide 
graphical transformations of general applicabil- 
ity. These include components to scale, translate, 
rotate, hide, and invert a grapheme, and to merge 
multiple graphemes in various ways. 

Graphemes are viewed with graphic viewers. 
Each viewer defines its own local coordinate 
space. The coordinates carried by the grapheme 
define its location in that local space. Whenever 
the input changes, the grapheme is redisplayed. 
Different graphic viewers offer such features as 
automatically scaling their contents, emitting the 
final bitmap resulting from the incoming (com- 
plex) grapheme, allowing their contents to “pop 
up” on top of the current screen layer, and so on. 

Finally, interaction is supported in this world of 
synthetic graphics by sensor components that 
sensitize a grapheme or collection of graphemes to 
user input, such as mouse clicks and location 
within the bounding box of the grapheme. The 
Mouse component has one output pin (on the right 
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Figure 3. A Fabrik diagram computes the image for the slider in figure 2. The Mouse 
component sensitizes the slider image to support input as well as output. 

in figures 3 and 4) which emits a sensitized version 
of the input grapheme whenever it changes, The 
output on the bottomis activated when a grapheme 
viewer detects user input, at which time it emits the 
cursor location. Various sensors support tracking 
of different button states, keyboard input, and so 
on. 

Figure 3 shows the complete Fabrik diagram for 
the slider component used in the Fahrenheit-to- 
Centigrade example of figure 2a. Several Iabels 
have been made visible, using an option available 
in the Fabrik interface. To the right, the slider is 
visible in a graphic viewer that automatically 
scales the incoming grapheme to fit. The slider is 
composed of two rectangular graphemes, a tall 
slender one generated by the rectangle creator 
grapheme with input points 15@0 and 22@118 
(its top-left and lower-right comers), and a hori- 
zontal, mouse-sensitized rectangular grapheme 
with the size 26@6 whose location is determined 
by the program. Below the slider is a small number 
component that displays the current value, 13. 

When the user positions the cursor over the hori- 
zontal rectangle in the graphic viewer and presses 
the mouse button, the mouse component emits the 
viewer-relative location of the cursor out the bot- 
tom pin. The new cursor location causes two 
components, NumToPoint and Default, to fire. 
Default passes non-nil inputs through to its output 
unchanged. If the input is nil here, the value, 
6@50 is output. ConstrainPoint is a user-built 
component that limits the Y value of the point to 
the range O-l 12 and replaces the X value with 6. 
The resulting point is fed unchanged to the origin 
pin (upper-left comer) of therectange creator and, 
after adding 26@6, to the comer point (lower- 
right comer). The apparent loop through the 
Mouse component is not really a violation of 
dataflow, since the cursor output is not triggered 
by incoming data, but only by user input. 

The new rectangle grapheme created as a result is 
sensitized to the mouse, merged with the vertical 
rectangle, scaled and displayed. Sensitization to 
the mouse means that clicking the mouse button in 
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Figure 4a. A simple scrollbar diagram. Logic is 
provided for rotating when the image is wider than high. 

the area of the slide will cause the mouse coordi- 
nate to be emitted from the bottom pin of the 
Mouse component. NumToPoint is a user-built 
component that converts the Y value of the input 
point to an integer which is both displayed in the 
small number component below the graphic 
viewer and passed through the gateway on the 
right wall of the window to anything wired to it. 
As the user moves the mouse with the button still 
pressed, the cycle is repeated. 

Bidirectionality permits the slider to be used as an 
output indicator as well as an input control. If the 
user types into the small number component or a 
value flows in through the external gateway, it is 
displayed in the number component, flows 
through NumToPoint which changes the integer 
value into a point, through Default (no change), 
through ConstrainPoint, etc., and causes the small 
horizontal rectangle to be repositioned and redis- 
played at the appropriate location in the graphic 
viewer. 

The use of a general algebra of images in Fabrik’s 
synthetic graphics adds considerable leverage to 
each application. For instance, the scrollbar ex- 
ample in figure 4 produces either a vertical or a 
horizontal image, depending upon the aspect ratio 
of its framed image. 

Figure 4b. Demonstrating the rotation logic. All 
display and mouse-tracking operations are properly 
scaled and rotated. 

In this case, the background image, another Fabrik 
diagram, is scaled and rotated as well as the slider. 
Mouse-tracking coordinates are automatically 
transformed through this logic, leaving the scroll- 
bar diagram relatively uncluttered. 

From these examples of synthetic graphics it is 
apparent how Fabrik deals with other dynamic 
media. A musical score or an animation sequence 
can equally well be synthesized as a set of primi- 
tive elements combined and transformed by other 
higher-level functions. 

6 The Draw component 

As shown above, images can be generated by 
connecting various grapheme creators and view- 
ers. A step toward more direct manipulation of 
graphical material is the Draw component. Cur- 
rently a primitive component, it allows the user to 
draw graphic objects as in a normal drawing pro- 
gram, while the corresponding Fabrik diagram is 
automatically laid down and connected. The user 
can further adjust the location and size of the 
graphic objects right in the Draw component. 
These changes are immediately shown as updated 
point values that are inputs to the grapheme crea- 
tors. The Fabrik diagram generated is exactly the 
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Figure 5a. The Draw component automatically lays Figure !%. By editing the generative diagram, the top-left 
out diagrams as the user cre+es a drawing. of the oval is tied to the bottom-right of the rectangle. 

same as one assembled from scratch, and hence it 
can be edited to place additional constraints on the 
image. 

(inbound gateways) or from inside the component 
to the outside world (outbound gateways). 

In the example of figure 5a, the only component 
the user actually laid out was the the one marked 
“Draw”; the rest of the diagram was automatically 
constructed as consequences of the user drawing 
within that component. By tying vertices A and B 
together in figure 5b, the top-left comer of the oval 
is constrained to have the same location as the 
bottom-right comer of the rectangle. Moving 
either the oval or the rectangle will cause the other 
to resize and maintain the constraint. 

Certain kinds of gateways can provide iterative 
functionality, however. For example, in figure 6, 
the inner component expects a collection of num- 
bers to be fed to it. Its inbound collection gateway 
on the left disaggregates the collection into its 
elements, and the interior of the iterator is fired 
once in turn for each element. 

7 Iteration 

Fabrik components that wish to communicate 
with the outside world do so by means of gafe- 
ways, pins that provide the link between data 
outside the component and data within the compo- 
nent. Most often, these gateways provide a simple 
handoff of data from the outside to the inside 

On the right of the iterator, a similar outbound 
gateway collects up the values it receives from 
each firing of the iterator, and when the last itera- 
tion is done, it aggregates the data it has received 
into a new collection. In the example above, the 
collected rectangle graphemes appear as the bar 
chart image in the viewer at the bottom. 

In Fabrik, every component fms to completion 
when instructed to, and iterators are no exception. 
The firing of an iterator may involve many com- 
plete passes through it. The number of passes is 
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larChart 

Figure 6. Streaming gateways provide iterative capability. Here numbers are 
converted to rectangles, resulting in a simple bar &art. 

determined by both the component topology and 
the actual data values arriving. Global state within 
the iterator between passes is preserved by the 
semantics of the gateways, and a particular kind of 
gateway structure allows mutable values global to 
the iteration process to be used. 

Within any particular pass through an iterator, 
strict rules of dataflow scoping prevail so that 
predictability and system integrity are assured. 
Fabrik’s approach to iteration in a dataflow con- 
text was inspired by the Show And Tell Language 
[Kimura]. The library includes a full repertoire of 
iterative control gateways, such as conditional 
terminators and the iteration count used for hori- 
zontal spreading in the above example. 

The bar chart example illustrates the use of itera- 
tion to produce graphical aggregates. This same 
approach is the key to Fabrik’s handling of music 
and animation. 

8 Type System 

In order to validate (or prohibit) wiring attempts in 
Fabrik, a type is associated with each component 
pin. Fabrik currently supports primitive (record) 
types, bundled types, array types, and enumerated 
types. Primitive types are defined by the primitive 
data operations in the system, e.g., Number, 
Boolean, Character, Grapheme, etc. Bundled 
types are defined via bundler components that 
allow non-homogeneous element types. Each 
element type can in turn be any of the above types. 
The order is defined by the connections to the 
prong pins of the bundler component. Array types 
must have homogeneous element types, although 
their size does not matter for compatibility. An 
enumerated type defines a set of actual values 
allowed. 

Each primitive component assigns a type for each 
of its pins restricting input and output to specified 
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types. When a user places the mouse over a pin, 
the pin name and type are shown to assist connec- 
tion of the correct pin. When a pin is about to be 
connected to another pin, type checking is per- 
formed. If the two types match, the connection is 
allowed; otherwise, a message is displayed in a 
status panel and the connection is not made. A 
primitive type can only match with other similar 
primitive types. A bundled type can match with 
another bundled type or array type. Two bundled 
types are compatible if their sizes are the same and 
each of the element types matches in order. A 
bundled type can match with an array type only if 
all the element types of the bundled type are the 
same and match with that of the array type. The 
result type is the array type. An enumerated type 
can match with a primitive type if the primitive 
type is the same as the type of the data allowed in 
the enumerated type, and data is actually checked 
if the primitive typed data is available. Some 
components have unspecified types, i.e., their pins 
can be connected to any typed pins. Theresult type 
of such a connection is the specified type or 
remains unspecified if both types are unspecified. 

User-built components can have their pins desig- 
nated with types which are either implicitly in- 
ferred from the connections to the corresponding 
gateways or explicitly assigned to be some known 
types. 

Components with unspecified type also have the 
ability to propagate types to other pins once a 
connection is made to a typed pin. For exampIe, 
the selector component that selects from a set of 
inputs has all pins designated to be unspecified but 
of the same type (except the selection pin which is 
of Number type). Therefore when one of these 
pins is connected to a typed pin, that type is 
propagated to all the other unspecified pins of the 
selector, so that other connections to the selector 
will only be allowed if they carry that same type. 
Similarly when a wire to the selector is cut, its pin 
type reverts to unspecified or is inferred from other 
pins if there are still other connections. Thus even 

with the flexibility of unspecified types, every pin 
in the complete Fabrik diagrams will be inferred to 
have a type. This makes the diagrams simple and 
easy to understand. 

9 Compilation 

Compaction of representation and speed of execu- 
tion are the masons for undertaking compilation in 
Fabrik. The task of compilation here is to map the 
semantics of a diagram, as embodied in its inter- 
pretive behaviour when manipulated in the Fabrik 
layout editor, into the definition of a new class 
whose instances behave as specified by the dia- 
gram- 

The current version of Fabrik uses the ability of 
Smalltalk to compile new classes and methods 
dynamically, and hence the code generated, as 
illustrated below, consists of Smalltalk methods. 

Every Fabrik diagram contains a particular set of 
subparts (themselves all Fabrik components) and 
a particular set of what may be thought of as data 
slots, where each data slot corresponds to the 
datum beneath the “copper” of one particular wire. 
Instances of a compiled class representing a Fab- 
rik diagram hold, in instance storage, the subparts 
and the data slots. Compiled methods mostly read 
from and store to these instance variables, making 
for efficient code. 

The consequences of any data perturbation in a 
Fabrik diagram can be mapped, after a topological 
sort, into a linear dataflow path - a sequence of 
subparts to be traversed in a specified order and in 
specified manners. The compiled method repre- 
senting any particular path carries out the corre- 
sponding series of traversals. 

Compilation example 1: The FtoC 

Looking at the internal structure of the FtoC 
component shown in section 4, we notice that the 
diagram has four subcomponents - the two bidi- 
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rectional arithmetical components TimesDivide 
and PlusMinus (both of them in turn being compo- 
nents built with Fabrik) and the two boxes that 
generate the conversion constants 915 and 32. 

Additionally, there can be seen tu be five diifferefit 
pieces of data flowing in the wires, starting Wh, 
at center left, the datum that represents the Centi- 
grade value, and including two invariant data 
constants, one intermediate result, and the Faren- 
heit value. 

After compilation, the FtoC would be represented 
by an object with the instance structure shown in 
figure 7a. Note that there is one instance variable 
for each constituent subcomponent, and one in- 
stance variable for each data slot in the 
component’s scope. 

Note that part of the responsibility of the traversal 
code of any component is to export its computed 
output data to the surrounding domain. Thus, for 

nst WI 
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e TimesDivide component 
generates the constant 9/S 
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holds Centigrade velue 
holds the constant 9/S 
holds intermediate result between PluSlllnus b TimesDivIde 
holds the constsnt 32 
holds Ferenhott value 

Figure 7a Instance structure for FtoC application 

pi : x “called when a new Centigrade value elpl : x ‘rakes value x, emitted from the left 
arrives from the left” slider, and propagates it rightward” 

c3 pl : x. “traverse the Times/Divide from left c2p1:x. “convert from Centigrade to 
c5 pl : v3. “traverse the Plus/Minus from left” Farenheit; load result on v2” 
self export: v5 outchannel: 2 c3 pl : v2 “sends the value through the 

“ship V5 value out output channel 2” right slider’ 

p2: x “called when a new Farenheit value 
arrives from the right” 

c5 p2: x. “traverse the Plus/Minus from right” 
c3 p2: v3. “traverse the Times/Divide from tight” 
self export: vi outchannel: 1 

“ship Vl value out output channel 1" 

e2pl: x “takes value x, emitted from the right 
slider, and propagates it leftward” 

c2 p2: x. “convert from F to C; will leave 
computed C value on vi” 

cl pl : vl “sends the value through the 
left slider 

Figure 7b Compiled methods for FtoC application 

example, in method pl :, the call 
c3 pl: x 

will result in an updated value appearing on in- 
stance variable v3. In this case, ~3 represents an 
intermediate result, which will be seen to be used 
subsequently as an input argument in the call 

c5 pl: v3. 
The calls to export:outChannel: handle exporting 
of values computed during traversal to the world 
outside for the FtoC itself. 

Compilation example 2: The FCConverter 

Turning to the FCConverter, we have an even 
simpler diagram, and hence an even simpler in- 
stance structure. In this case there are no traversal 
methods, since no data arrives from external 
components connected to the edge of this one. 
Instead, one needs “radiation” methods, which 
propagate data originating spontaneously from 
within nested subcomponents. Note that in this 
example, either of the sliders can generate new 
dataflow by being stimulated, via the user inter- 
face, from either keyboard input or mouse actions. 

lnst ver 
name 

deocriptton 

I 
Cl 
c2 

I.3 

Vl 

v2 

the left Sllder 
the FtoC 
the right Slider 

holds Centlgrade value 
holds Forenheit value 

Figure 8a Instance structure for compiled FCConverter 

Figure 8b Compiled methods for FCConverter 
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Note that in this example, the methods p 1: and p2: 
invoked for subcomponent named c2, which is the 
FtoC, are precisely the methods pl: and p2: illus- 
trated for the FtoC in the previous example, 

Compilation example 3: The Slider 

The Slider, shown in figure 3, combines elements 
of the two preceding compilation examples, in that 
it must respond both to traversal (new value arriv- 
ing on an external input pin) and to internal change 
from the user interface (user drags the slider’s bar, 
or types in a new value in the slider’s numeric 
readout panel). Since it has a considerably more 
complex internal structure, we shall only illustrate 
the instance structure (figure 9a), one traversaI 
method, and one radiation method (figure 9b). 

Note that there is a common subsequence of six instructions 
between the two illustrated methods. Combining such 
common subsequences into separate methods is just one of 
a number of possibilities for codesizecompression and code 
optimization arising from the basic scheme illustrated. 

nst vet- 
name description 

Cl 4 Point component (1500) 
c2 4 Point component (22* I 18) 
CS 4 RectangleCreator 
c4 4 Graphemetlerger 
C5 4 Mouse component 
C6 4 NumToPoint component 
c? an Expression component (6@50) 
CB 4 Default component 
c9 an Exprasslon component (0) 
c 10 4n Expression component ( 1 12) 
CI 1 4 ConstmtnPoint component 
c I2 an Expression component (2606) 
cl3 an Adder 
c I4 4 RectangleCreator 
cl5 4 Dlsplsy component 
c 16 an Integer component 

Vl 1500 
v2 220118 
V3 default style for fixed rectangle 
v4 fixed rectangle grapheme 
VS grapheme output from HouSe COmpOIWnt 
vb eenmr locatlon from blouse component or from NumToPolnt 
v7 button-state output from House component 
v8 selected or default point 
v9 6050 
VlO 0 
VII 1 I2 
VI 2 constmlned point 
~15 2606 
VI 4 comer far movable rectangle 
~15 delsult style formweblr rectangle 
vt6 movable-rectangle grapheme 
V I? ffl8q8d Qrsphsttl8 
VIE bitmap out from Dlsplag component 
v I9 computed mognltude 

Figure 9a Instance structure for compiled Slider 

pl: x “invoked when a new magnitude enters the Slider from outside” 
cl6pl: x. “textual display of value at base of slider 
c6 p2: x. “convert to a poinr 
c8 p2: v6. “use 6@50 if nil comes in from outside” 
cl 1 p3: v8. “constrain point to fit within slider” 
cl3 pl: ~12. “compute corner for movable rectangle” 
c14pl:v12p2:v14p3:vl5. “generate grapheme for movable rectangle’ 
c5 pl: ~16. “bundle rectangle with an input sensor’ 
c4 p2: v5. “now merge with the fixed vertical rect” 
cl5 pl: v17. “display the merged grapheme” 

e5p2: x “invoked upon mouse-click in the slider’s display area” 
c8 p2: v6. “use 6@50 if nil comes in from outside” 
cl 1 p3: v8. “constrain point to fit within slider” 
cl3 pl: ~12. “compute corner for movable rectangle” 
cl4 pl: VI2 p2: VI4 p3: v15. “generate grapheme for movable rectangle” 
c5 pi : ~16. “bundle rectangle with an input sensor” 
c4 p2: v5. “now merge with the fixed vertical rect” 
cl5 pl: v17. “display the merged grapheme” 
c6 pl : x. “convert to a number” 
cl6 pl: v19. “display magnitude at base of slider” 

Figure 9b Two methods for compiled Slider 
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pl:x 
*Pr&iteration processing” 
c6 import: x. 
c7 prepareTolterate 

“import the new collection and set up” 
“initialize the collection-out gateway” 

“Actual iteration” 
self iterate: 

[cS fireonce. 
15 fireonce. 
c8 p2: VlO p3: v9. 
c3 pl : v4 p2: v3 p3: v7. 
c4 pi : vi p2: v8. 
c2 pl : v6 p2: v2. 
c7 pl : vq. 

“repeat the following block until done...” 
“inject the next collection element” 
“inject the current tick-count” 
“fire the bundler component” 
“create a new rectangle” 
“evaluate a l b 
“translate the grapheme” 
“accumulate at the collection-out gateway” 

“Post-iteration processing” 
c7 export “export the resulting array” 

Figure 10 Compiled method involving iteration 

Compilation example 4: Iteration 

Compilation of components that iterate requires 
extra mechanism. Iterating traversals are decom- 
posed into three processing phases: pre-iterative 
processing, actual iteration, and post-iterative 
processing. The compiled code for the actual 
iteration features invocation of “self iterate:” with 
a block as its argument. The block describes a 
single traversal, and its contents are similar to 
other traversal code, with special code added to 
carry out the functions of the iterating gateways. 

For example, here is the code compiled for firing 
the iterator illustrated in the BarChart example in 
Section 7, with “x” representing the new array to 
be charted: 

10 History and Status 

Experience with Fabrik suggests that a successful 
visual programming kit requires only three things: 
Specification of an effective visual and computa- 
tional interface for each component, interactive 
access to an interesting (network) library of exist- 
ing components, and the ability to use and com- 

bine these components interactively to build new 
Iibrary components and finished applications. 
The examples and discussion above detail 
Fabrik’s contribution in the areas of bidirectional- 
ity, synthetic graphics, iteration, type checking 
and compilation. 

Fabrik began with an attempt to mix arbitrary 
layout and cell types in an object-oriented spread- 
sheet. The spreadsheet approach brokedown with 
the complex expressions needed for synthetic 
graphics and other generative structures. The 
wiring approach addressed this problem and also 
opened the way for bidirectional constructions. 

The initial Fabrik prototype was developed in 
Smalltalk within the Advanced Technology 
Group of Apple in 1985, and was demonstrated 
widely within Apple in Spring of 1986. The type 
system was added during the Winter of 1987 and 
compilation was completed in the Spring of 19 8 8. 

An important next step in this investigation is one 
of scale: to assemble a library sufficient to acco- 
modate alarge class of applications, and to support 
networking of this library so that many people can 
borrow from and experiment with each other’s 
work. 
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