
THE EDUCATRON OF A COMPUTER

Grace Murray Hopper
Remington Rand Corp.

While the materialization is new, the idea
of mechanizing mathematical thinking is not new.
Its lineage starts with the abacus and descends
through Pascal,Leibnit% and Babbage. Fore
immediately, the ideas here presented originate
from Professor Howard K. Aiken of Harvard
University, Dr. John W. Nauehly of Eckert-
Hauchly and Dr. H. V. Wilkes of the University
of Cambridge. From Professor Aiken came, in
1946, the idea of a library of routines
described in the Hark I manual~ and the concepts
embodied in the Hark III coding machined from
Dr. Hauchly, the basic principles of the "short-
order code" and suggestions, criticisms, and
untiring patience in listening to these present
attempts; from Dr. Wilkes, the greatest help
of all, a book on the subject. For those
of their ideas which are included herein, I
most earnestly express my debt and my
appreciation.

Introd~Qtion
To start at the beginning, Fig. I

represents the configuration of the elements
required by an operation: input to the
operations; controls~ even if they be only
start and stop; previously prepared tools
supplied to the operation I and output of
products, which may, in turn, become the
input of another operation. This is the basic
element of a production lines input of raw mate-
rial% controlled by human beings, possibly
through instruments~ supplied with machine
tools; the operation produces an automobile,
a rail~ or a san of tomatoes.

The armed services, government, and

INPUT

I CONTROL

~--'~OPERATION ~--~

industry are interested not only in creating
new operations to produce new results, but
also in increasing the efficiency of old
operations. A very old operation, Fig. 2?
is the solution of a mathematical problem.
It fits the operational configuration: input
of mathematical data~ control by the
mathematician~ supplied with memory, formulas,
tables, pencil? and papers the brain carries
on the arithmetic, and produces results.

It is the current aim to replace, as far
as possible, the human brain by an electronic
digital computer. That such computers
themselves fit this configuration may be seen
in Fig. 3. (With your permission, I shall use
UNIVAC * as synonymous with electronic digital
computer; primarily because I think that way?
but also because it is convenient.)

Adding together the configurations of the
human being and the electronic computer? Fig.
4 shows the solution of a problem in two
levels of operation. The arithmetical chore
has been removed from the mathematician, who
has become a programmer, and this duty
assigned to the UNIVAC. The programmer has
been supplied with a "code" into which he
translates his instructions to the computer.
The "standard knowledge" designed into the
UNIVAC by its engineers, consists of its
elementary arithmetic and logic.

This situation remains static until the
novelty of inventing programs wears off and
degenerates into the dull labor of writing and
checking programs. This duty now looms as an
imposition on the human brain. Also, with the
computer paid for, the cost of programming and
the time consumed, comes to the notice of vice-
presidents and project directors. Co,son sense
dictates the insertion of a third level of
operation, Fig. 5.

OUTPUT

* Registered trade mark.

TOOLS

Fig. I - AN OPERATION

Fig, 2- SOLUTION OF

J PROBLEM H

PROBLEM

MATHEMATICIAN I

J
BRAIN ~-~

T
FORMULAS

TABLES

RESULTS

Page 243

~! ii~ ¸ i ̧

!

r UNITYPER
I

P R O G R A M

UNIPRINTER

Fig, 3 - UNIVAC SYSTEM

The programmer may return to being a
mathematician. He is supplied with a catalogue
of subroutines. No longer does he need to have
available formulas or tables of elementary
functions. He does not even need to know the
particular instruction code used by the
computer. He needs only to be able to use the
catalogue to supply information to the computer
about his problem. The UNIVAC~ on the basis of
the information supplied by the mathematician,
under the control of a "compiling routine of
type A"? using subroutines and its own in-
struction code? produces a program. This
program~ in turn directs the UNIVAC through
the computation on the input data and the
desired results are produced. A major
reduction in time consumed and in sources of
error has been made. If the library is well-
stocked~ programming has been reduced to a
matter of hours? rather than weeks. The
program is no longer subject either to errors
of transcription or of untested routines.

Specifications for computer information?
a catalogue~ compiling routines? and
subroutines will be given after adding
another level to the block diagram. As Fig. 5
stands the mathematician must still perform
all mathematical operations? relegating to
the UNIVAC programming and computational
operations. However~ the computer information
delivered by the mathematician no longer deals
with numerical quantities as such. It treats
of variables and constants in symbolic form

together with operations upon them. The
insertion of a fourth level of operation is
now possible, Fig. 6. Suppose? for example~
the mathematician wishes to evaluate a function
and its first = derivatives. He sends the
information defining the function itself to
the UNIVAC. Under control of a "compiling
routine of type B"~ in this case a
differentiator~ using task routines? the
UNIVAC delivers the information necessary to
program the computation of the function and
its derivatives. From the formula for the
function? the UNIVAC derives the formulas of
the successive derivatives. This information
processed under a compiling routine of Type
A yields a program to direct the computation.

Expansion makes this procedure look?
and seem? long end complicated. It is not.
Peducing again to the two-component system?
the mathematician and the computer? Fig. 7
presents a more accurate picture of the
computing system.

Presuming that cod% program? input data~
and results are familiar terms~ it remains
to define and specify the forms of infor-
mation and routines acceptable to this system.
These include

catalogued
computer information?
subroutine?
compiling routines~ type A and B~
and task routines.

PROBLEM

PROGRAMMER

1 • - ~ , B R A I N

t
FORMULAS

TABLES
CODE

DATA

OR I

PROGRAM

• - -~ , UNIVAC

Y
STANDARD

KNOWLEDGE]

OR II

RESULTS

Fig. 4-SOLUTION OF A PROBLEM

Page ~I!I~

OR g

PROIBLEM

OR II

I MATHEMATICIA~

• -~ BRAIN

CATALOGUE

I
COMPUTER ~__~

INFORMATION

COMPILING
ROUTINE
TYPE A

UNIVAC

,,I
UBROUTINES J

I INPUT
I" DATA

PROGRAM

t
KNOWLEDGE

OP. III

Fig. 5-COMPILING ROUTINES AND SUBROUTINES

RESULTS

Catalogue and Com~ut~r Information
As soon as the purpose is stated to make

use of subroutines, two methods arise. In one,
the program refers to an intmediately available
subroutine, uses it, and continues computation.
For a limited number of subroutines, this
method is feasible and useful. Such a system
has been developed under the nick-name of
the "short-order code 'r by members of the staff
of the Computational Analysis Laboratory.

The second method not only looks up the
subroutine, but translates it, properly adjusted,
into a program. Thus, the completed program
may be run as a unit whenever desired, and
may itself be placed in the library as a more
advanced subroutine.

Each problem must be reduced to the level

of the available subroutines. Suppose a simple
problem, to compute

y - @ sin cx,

using elementary subrou%ines. Each step of the
formula falls into the operational pattern,
Fig. 8 ; that is~

U=e -u

v~ cx

V = s::L v
y=Ug .

I

i O R I

I'
I [

PROBLEM

i , , , , . ~ I I o~.~:'~'~
LLI COMPUTER LLI m .,,A.N ..,.,,OR,,ATO,. i. UN.VA° t

1 1

L

' OR III

I COMPILING
TYPE A , 1

: - ! i Lo i , '

1 i I ~TAN'~D 1
KNOWLEDGE]

[

OR IV

RESULTS

Fig. 6.- COMPILING TYPE B AND TASK ROUTINES

Page 245

PROBLEM

I MATHEMATICIAN]
COMPUTER

INFORMATION

I INFORMATION

INPUT DATA
t

COMPILING 8
COMP~LING A

PROGRAM

UNIVAC

T
TASK ROUTINES
SUBROUTINES

STANDARD
KNOWLEDGE

PRO "%I
RESULTS __~

Fig. 7 - COMPUTING SYSTEM

As presented in Fig. 9~ however~ this
information is not yet sufficiently standardized
to he acceptable to a compiling routine.
Several problems must be considered and
procedures defined.

The operations are numbered in normal
sequence and this number becomes part of the
computer information. Thus when it is desired
to change the normal sequence, the alternate
destination is readily identified. The
compiling routine translates these operation
numbers into instructions in the coded program.
Two fundamental situations arise? the alternate
destination either precedes the operation
under consideration or follows it, by-passing
several intermediate operations. In both
cases? it is necessary only to have the
compiling routine remember where it has
placed each subroutine or that a transfer of
control to operation k has been indicated.
In any event the mathematician need only
state? "go to operation k", and the compiling
routine does the rest.

The symbols to be used for the arguments
and results~ as well as for the operations~
are of next concern. One mathematician
might write

I x Xl 6 q x 6

2 2~ x 2 7 v x 7

3 LX ~c 3 8 V x 8

4 u x 4 9 y x 9

5 U x 5 iO n xlO

As symbols for the operations and sub-
routines, a system of "call-numbers" is used.
These alphabetic characters represent the
class of subroutines. Following Dr. Wilkes~
example~ these symbols are partially
phonetic; that is~ a = arithmetic~ t =
trigonometric, and x = exponential~ amc =
arithmetic~ multiplication by a constan%
x-e = e-U,tsO = trigonometric~ sine. Placed
with the call-numbers~ n~ f~ or s~ indicates
normal? floating~ or stated (flxed) decimal
point. Other letters and digits indicate
radians or degrees for angles~ complex
numbers~ etc. These call-numbers are listed
in the catalogue together with the order in
which arguments~ controls? and results are
to be stated. The general rules for the
description of an operation are:

.x 2
y = e sin cx

and another
_v 2

u=e sin gv.

The obvious solution proves best. Nake a list
of arguments and results and number them.
(This amounts to writing all constants and
variables as xi.) The order is i~naterial?
so that forgotten quantities can be added at
the end.

i. call-numbers~
2. number of operation~
3. arguments in order of appearance

in formula~ variables preceding
constants~

4. controls~ normal exit if altered?
followed by alternate exits in
order of appearance in subroutine~

5. results~ in order of appearance.

All exceptions to the general rules are listed
in the catalogue.

The problem has been reduced to computer
information. The exact positions of characters

Page 24.6

in words as submitted to the UNIVAC has been
omitted since it hardly seems of general
interest. The preparation of information might
be called creating a "multiple-address code",
by which any number of arguments may enter an
operation~ to produce any number of results~
and to proceed directly to the next operation
unless routed to any one of several other
operations.

Each subroutine in the library is expressed
in coding relative to its entrance line
considered as OO1. They are~ in general~
programmed and coded for maximum accurary and
minimum computing time. They may store within
themselves constants peculiar to themselves.
They may also make use of certain "permanent
constants" read in with every program. These
permanent constants occupy a reserved section
of the memory and are called for by alphabetic
memory locations~ a trick~ at present peculiar
to UNIVAC. Thus, these addresses are not
modified in the course of positioning the
subroutine in a program. They include such
quantities as 1/22~ ~/4, logloe~ ~0, .2, .5,
and the like.

Each subroutine is preceded by certain
information, matching and supplementing that
supplied by the mathematician:

I. call-number~
2. arguments, the destination of the

arguments within the subroutine,
expressed in the relative coding
of the subroutines

3. non-modification indicators
locating constants embedded in the
subroutine which are not to be
altered~

4. results~ the positions of the
results within the subroutine,
expressed in relative coding.

Each subroutine is arranged in a standard
pattern.

~l_a~f~_l~_~ - The first line of a subroutine
is its entrance line~ thus in relative coding
it is number one. It is the first line of the
subroutine transferred to a program~ and it
contains an instruction transferring control to

the first action line.
E~it ~ines - The second line of a subroutine is
its normal exit line. This contains an

instruction transferring control to the line
following the last line of the subroutine.
Unless an alternate transfer of control is
desired, all e~its from the subroutine are
referred to the normal exit line. Alternate
exit lines~ involving transfers of control
from the usual sequence? follow the normal exit
llne in a predetermined order as listed in the
catslogue.
Ar~umen%s - The exit lines are followed by
spaces reserved for the arguments arranged
in predetermined order.
Results - The results~ also in specified
order, follow the arguments.
Constants - The results are followed, when
possible~ by any arbitrary constants peculiar
to the subroutine. When the subroutine has
been compounded from other subroutines~
groups of constants may also appear
embedded in the subroutine. These are cared
for by the non-modification information.

The first action line appears next in the
subroutine. Its position in the relative
coding is defined by the entrance line. No
instruction line may precede this line.

The sequence assigned to the entrance
and exit lines, arguments, results, and
constants is arbitrary. It is convenient.
All that is required is that a sequence be
established and that the computer recognize
this sequence.

For convenience in manipulation, a
certain number of elementary subroutines
have been combined to form a sub-library.
These include

a = arithmetic
b = transfer of data
c ~ counters
h = hyperbolic functions
i = input routines
1 = logarithmic functions
o = output routines
p = polynomials
r = roots and fractional exponents
t = trigonometric functions
u ~ control transfers
w =~ storage routines
x = exponential functions
y = editing routines

As subroutines are added to extend the
library~ it becomes more useful and
programming time is further reduced.

I ARGUMENTS
Xjn

I OONT OL
l

•__.[SU BROUTINE~L__J

u.x,' I - I
I

i ND'RDi
O O N S T A N T S J

RESULTSu ']

Fig. 8 - OPERATION

Page 247

y - ~ "x= sin cx

OPERATION
NUMBER

2

5

4

5

OPERATION

TRANSFER

bOi

apn

~U

X - 6

¢®

omc

sin v

t$O

®

omO

ARGUMENTS

Q Dr,99, 2, ,5

X (1, Z, 3, 4, 5)

x, 2

1,t0

g

4

6, '1

V

7

U, V

5, B

EDIT x, y

6 yrs I, 9

~)---'L x,&x,L R

7 @eL t, 2 , 3

STOP

8 ust

RESULTS

X, ~X, Lx, n,

1, 2, 3,10, 6

Lj=X 2

4

u=e ~

5

U=CX.

7

V " ~irl v

8

y- UV

9

CONTROL

l ,y
0 (t, 2)

x • Ax--~x x t L x - ~ x tL~ , ' 8

1 8, t

Fig g - EXAMPLE

Indeed~ the day may come when the elementary
subroutines are rarely used and the conputer
information will contain but seven or eight
items calling into play powerful subroutines.

Construction of Subroutines
It is not neeessary~ nor is ~t advisable?

that the inexperienced programmer tamper with
the coding within a subroutine. It is usually
minimum latency coding using every trick and
device knov to the experienced programmer.
It has been tested by operation on the
computer. However, in order to speed the
original construction~ on paper? of the
elementary routines~ kernel routines and
threading routines have been devised.

A kernel routine computes a mathematical
function or carries out an elementary
process for a limited range of the variable
concerned; for exampl% sin x~ for 0 < x <
~/% and i0 -x for 0 < x < I. A kernel routine
is always entered and left by way of a
threading routine.

Threading routines, incomplete without
kernels~ remove from the arguments and stor%
such quantities as algebraic signs~ integral
parts~ and exponents~ deliver the reduced
arguments to the kernel routin% receive
results from the kernel, and adjust algebraic
signs and exponents. For exampl% the
threading routines for sin y remove the
algebraic sign of y, reduce y by multiples
of 22~, reduce the remainder to a quantity
x less than ~/%~ store the information and
select the sin x or cos x kernel routine.

Page 248

The kernel routine returns sin x or cos x.
The threading routine adjusts the sign?
exponent? and decimal point completing the
computation.

Threading routines recognize and give
special treatment to such values as zero
and infinity, and provide signals and
printed information when the capacity of
the computer is exceeded.

An elementary subroutine consists of
a threading routine accompanied by one or
more kernel routines. Hence, the threading
routines are similar to the subroutines in
form having at the beginning an entrance line?
exit lines~ (usually undetermined until the
kernel routine is supplied)~ arguments~
results~ and constants. At the end of a
threading routine are certain lines prepared
to "overlap" the first section of the kernel
routine. This overlap contains

I. the entrance line of the kernel
routine;

2. the exit line of the kernel routine
set-up by threading routines

3. arguments~ and
4. results.

Compiling Poutines Type A are designed to select
and arrange Subroutines according to information
supplied by the mathematician or by the
computer. Basically~ there is but one Type A
routine. However~ since the UNIVAC code
contains instructions transferring two
neighboring quantities simultaneously, a
second compiling routine has been designed to

care for floating decimal? complex number? and
double precision programs. For each operation
listed by the mathematician~ a type A routine
will perform the following services:

I. locate the subreutine indicated
by the call-number~

2. from the computer and subroutine
information combined with its record of the
program~ fabricate and enter in the program
the instructions transferring the arguments
from working storage to the subroutines

3. adjust the entrance and normal exit
lines to the position of the subroutine in the
program and enter them in the program~

~. according to the control infor-
mation supplied by the programmer~ adjust
alternate exit lines and enter them in the
program (this process involves reference to
the record);

5. according to the control infor-
mation supplied with previous operations adjust
auxiliary entrance lines and enter them in
the program~

6. modify all addresses in the
subroutine instructions and enter these
instructions in the programs

7. according to information supplied
by the subroutine, leave unaltered all constants
embedded in the subroutine and transfer them to
the program~

8. from the computer and the subroutine
information fabricate and enter in the program
the instructions transferring the results to

9. maintain and produce a record of
the program including the call-number of each
subroutine and the position of its entrance
line in the program.

The compiling routines also contain certain
instr~ctions concerning input taoes? tape
library? and program tapes~ peculiar to the
UNIVAC. All counting operations such allo-
cation of temporary storage and program space?
"and control of input and output are carried
on steadily by the compiling routine. Stated
bluntly~ the compiling routine is the
programmer and performs all those services
necessary to the production of a finished
program.

Compiling Poutines of Type B? will for each
operatlon~ by means of "task routines"? replace
orsupplement the given computer information
with new information. Thus? compiling routine
B-1 will? for each operation~ copy the infor-
mation concerning that operation and call in
the corresponding task routine. The task
routine will generate the formula~ and derive
the information? necessary to compute the
derivative of the operation. Compiling
routine B-I then records this information in
a form suitable for submission to a T~fpe A
routine.

Since information may be re-submltted to
a type B routine? it is obvious that in order
to obtain a program to compute f(x) and its
first n derivatives? only the information
defining f(x) and the value of n need be
given. The formulas for the derivatives of
f(x) will be derived by repeated applications
of B-1 and programmed by a type A routine.

It is here that the question can best
be answered concerning a liking for or an
aversion to subroutines. Since the use of
subroutines in this fashion increases the
abilities of the computer? the question
becomes meaningless and transforms into
a question of how to produce better
subroutines faster. However~ balancing
the advantages and disadvantages of using
subroutines? among the advantages are

Page 2~9

i. relegation of mechanical jobs
such as memory allocation~ address modifi-
cation? and transcription to the UNIVAC~

2. removal of error sources such
as programming errors and transcription
errors~

3. i conservation of programming time~
~. ability to operate on operations;
5. duplication of effort is avoided?

since each program in turn may become a
subroutine.

Only two disadvantages are immediately
evident. Because of standardization~ a small
amount of time is lost in performing duplicate
data transfers which could be eliminated in a
tailor-made routine. In base load prob!ems~
this could become serious. Even in this case~
however~ it is worthwhile to have UNIVAC produce
the original program and then eliminate such
duplication before rerunning the problem. The
second disadvantage should not long remain
serious. It is the fact that? if a desired
subroutine does not exist? it must be
programmed and added to the library. This will
be most likely to occur in the case of input
and output editing routines until a large
variety is accumulated. This situation also
emphasizes the need for the greatest gener-
ality in the construction of subroutines.

Several directions of future developments
in this field can be pointed out. It is to
be hoped that reports will be presented on
some of them next September.

More type A compiling routines will be
devised! those handling commercial rather than
mathematical programs; some special purpose
compiling routines such as a routine which
will compute approximate magnitudes as it
proceeds and select sub-routines accordingly.
Compiling routines must be informed of the
average time required for each sub-routlne
so that they can supply estimates of running
time with each program. Compiling routines
can be devised which will correct the
computational procedure submitted to produce
the most efficient program. For example~ if
both sin @ and cos ~ are called for in a
routine~ they will be computed more rapidly
simultaneously. This will involve sweeping
the computer information once to examine its
structure.

Type B routines at present include
linear operators. More type B routines
must be designed. It can scarcely be
denied that type C and D routines will
be found to exist adding higher levels of
operation. Work is already in progress to
produce the formulas developed by type B
routines in algebraic form in addition to
producing their computational programs.

Thus by considering the professional
programmer (not the mathematician); as an
integral part of the computer~ it is evident
that the memory of the programmer and all
information and data to which he can refer is
available to the computer subject only to
translation into suitable language. And it is
further evident that the computer is fully
capable of remembering and acting upon any
instructions once presented to it by the
progrmmner.

With some specialized knowledge of more
advanced topics~ UNIrqAC at present has a well
grounded mathematical education fully
equivalent to that of a college sophomore? and
it does not forget and does not make mistakes.
It is hoped that its undergraduate course will
be completed shortly and it will be accepted
as a candidate for a graduate degree.

