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While the materialization is new, the idea 
of mechanizing mathematical thinking is not new. 
Its lineage starts with the abacus and descends 
through Pascal,Leibnit% and Babbage. Fore 
immediately, the ideas here presented originate 
from Professor Howard K. Aiken of Harvard 
University, Dr. John W. Nauehly of Eckert- 
Hauchly and Dr. H. V. Wilkes of the University 
of Cambridge. From Professor Aiken came, in 
1946, the idea of a library of routines 
described in the Hark I manual~ and the concepts 
embodied in the Hark III coding machined from 
Dr. Hauchly, the basic principles of the "short- 
order code" and suggestions, criticisms, and 
untiring patience in listening to these present 
attempts; from Dr. Wilkes, the greatest help 
of all, a book on the subject. For those 
of their ideas which are included herein, I 
most earnestly express my debt and my 
appreciation. 

Introd~Qtion 
To start at the beginning, Fig. I 

represents the configuration of the elements 
required by an operation: input to the 
operations; controls~ even if they be only 
start and stop; previously prepared tools 
supplied to the operation I and output of 
products, which may, in turn, become the 
input of another operation. This is the basic 
element of a production lines input of raw mate- 
rial% controlled by human beings, possibly 
through instruments~ supplied with machine 
tools; the operation produces an automobile, 
a rail~ or a san of tomatoes. 

The armed services, government, and 
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industry are interested not only in creating 
new operations to produce new results, but 
also in increasing the efficiency of old 
operations. A very old operation, Fig. 2? 
is the solution of a mathematical problem. 
It fits the operational configuration: input 
of mathematical data~ control by the 
mathematician~ supplied with memory, formulas, 
tables, pencil? and papers the brain carries 
on the arithmetic, and produces results. 

It is the current aim to replace, as far 
as possible, the human brain by an electronic 
digital computer. That such computers 
themselves fit this configuration may be seen 
in Fig. 3. (With your permission, I shall use 
UNIVAC * as synonymous with electronic digital 
computer; primarily because I think that way? 
but also because it is convenient.) 

Adding together the configurations of the 
human being and the electronic computer? Fig. 
4 shows the solution of a problem in two 
levels of operation. The arithmetical chore 
has been removed from the mathematician, who 
has become a programmer, and this duty 
assigned to the UNIVAC. The programmer has 
been supplied with a "code" into which he 
translates his instructions to the computer. 
The "standard knowledge" designed into the 
UNIVAC by its engineers, consists of its 
elementary arithmetic and logic. 

This situation remains static until the 
novelty of inventing programs wears off and 
degenerates into the dull labor of writing and 
checking programs. This duty now looms as an 
imposition on the human brain. Also, with the 
computer paid for, the cost of programming and 
the time consumed, comes to the notice of vice- 
presidents and project directors. Co,son sense 
dictates the insertion of a third level of 
operation, Fig. 5. 
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Fig, 3 -  UNIVAC SYSTEM 

The programmer may return to being a 
mathematician. He is supplied with a catalogue 
of subroutines. No longer does he need to have 
available formulas or tables of elementary 
functions. He does not even need to know the 
particular instruction code used by the 
computer. He needs only to be able to use the 
catalogue to supply information to the computer 
about his problem. The UNIVAC~ on the basis of 
the information supplied by the mathematician, 
under the control of a "compiling routine of 
type A"? using subroutines and its own in- 
struction code? produces a program. This 
program~ in turn directs the UNIVAC through 
the computation on the input data and the 
desired results are produced. A major 
reduction in time consumed and in sources of 
error has been made. If the library is well- 
stocked~ programming has been reduced to a 
matter of hours? rather than weeks. The 
program is no longer subject either to errors 
of transcription or of untested routines. 

Specifications for computer information? 
a catalogue~ compiling routines? and 
subroutines will be given after adding 
another level to the block diagram. As Fig. 5 
stands the mathematician must still perform 
all mathematical operations? relegating to 
the UNIVAC programming and computational 
operations. However~ the computer information 
delivered by the mathematician no longer deals 
with numerical quantities as such. It treats 
of variables and constants in symbolic form 

together with operations upon them. The 
insertion of a fourth level of operation is 
now possible, Fig. 6. Suppose? for example~ 
the mathematician wishes to evaluate a function 
and its first = derivatives. He sends the 
information defining the function itself to 
the UNIVAC. Under control of a "compiling 
routine of type B"~ in this case a 
differentiator~ using task routines? the 
UNIVAC delivers the information necessary to 
program the computation of the function and 
its derivatives. From the formula for the 
function? the UNIVAC derives the formulas of 
the successive derivatives. This information 
processed under a compiling routine of Type 
A yields a program to direct the computation. 

Expansion makes this procedure look? 
and seem? long end complicated. It is not. 
Peducing again to the two-component system? 
the mathematician and the computer? Fig. 7 
presents a more accurate picture of the 
computing system. 

Presuming that cod% program? input data~ 
and results are familiar terms~ it remains 
to define and specify the forms of infor- 
mation and routines acceptable to this system. 
These include 

catalogued 
computer information? 
subroutine? 
compiling routines~ type A and B~ 
and task routines. 
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Catalogue and Com~ut~r Information 
As soon as the purpose is stated to make 

use of subroutines, two methods arise. In one, 
the program refers to an intmediately available 
subroutine, uses it, and continues computation. 
For a limited number of subroutines, this 
method is feasible and useful. Such a system 
has been developed under the nick-name of 
the "short-order code 'r by members of the staff 
of the Computational Analysis Laboratory. 

The second method not only looks up the 
subroutine, but translates it, properly adjusted, 
into a program. Thus, the completed program 
may be run as a unit whenever desired, and 
may itself be placed in the library as a more 
advanced subroutine. 

Each problem must be reduced to the level 

of the available subroutines. Suppose a simple 
problem, to compute 

y - @ sin cx, 

using elementary subrou%ines. Each step of the 
formula falls into the operational pattern, 
Fig. 8 ; that is~ 
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As presented in Fig. 9~ however~ this 
information is not yet sufficiently standardized 
to he acceptable to a compiling routine. 
Several problems must be considered and 
procedures defined. 

The operations are numbered in normal 
sequence and this number becomes part of the 
computer information. Thus when it is desired 
to change the normal sequence, the alternate 
destination is readily identified. The 
compiling routine translates these operation 
numbers into instructions in the coded program. 
Two fundamental situations arise? the alternate 
destination either precedes the operation 
under consideration or follows it, by-passing 
several intermediate operations. In both 
cases? it is necessary only to have the 
compiling routine remember where it has 
placed each subroutine or that a transfer of 
control to operation k has been indicated. 
In any event the mathematician need only 
state? "go to operation k", and the compiling 
routine does the rest. 

The symbols to be used for the arguments 
and results~ as well as for the operations~ 
are of next concern. One mathematician 
might write 

I x Xl 6 q x 6 

2 2~ x 2 7 v x 7 

3 LX ~c 3 8 V x 8 

4 u x 4 9 y x 9 

5 U x 5 iO n xlO 

As symbols for the operations and sub- 
routines, a system of "call-numbers" is used. 
These alphabetic characters represent the 
class of subroutines. Following Dr. Wilkes~ 
example~ these symbols are partially 
phonetic; that is~ a = arithmetic~ t = 
trigonometric, and x = exponential~ amc = 
arithmetic~ multiplication by a constan% 
x-e = e-U,tsO = trigonometric~ sine. Placed 
with the call-numbers~ n~ f~ or s~ indicates 
normal? floating~ or stated (flxed) decimal 
point. Other letters and digits indicate 
radians or degrees for angles~ complex 
numbers~ etc. These call-numbers are listed 
in the catalogue together with the order in 
which arguments~ controls? and results are 
to be stated. The general rules for the 
description of an operation are: 

.x 2 
y = e sin cx 

and another 
_v 2 

u=e sin gv. 

The obvious solution proves best. Nake a list 
of arguments and results and number them. 
(This amounts to writing all constants and 
variables as xi.) The order is i~naterial? 
so that forgotten quantities can be added at 
the end. 

i. call-numbers~ 
2. number of operation~ 
3. arguments in order of appearance 

in formula~ variables preceding 
constants~ 

4. controls~ normal exit if altered? 
followed by alternate exits in 
order of appearance in subroutine~ 

5. results~ in order of appearance. 

All exceptions to the general rules are listed 
in the catalogue. 

The problem has been reduced to computer 
information. The exact positions of characters 
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in words as submitted to the UNIVAC has been 
omitted since it hardly seems of general 
interest. The preparation of information might 
be called creating a "multiple-address code", 
by which any number of arguments may enter an 
operation~ to produce any number of results~ 
and to proceed directly to the next operation 
unless routed to any one of several other 
operations. 

Each subroutine in the library is expressed 
in coding relative to its entrance line 
considered as OO1. They are~ in general~ 
programmed and coded for maximum accurary and 
minimum computing time. They may store within 
themselves constants peculiar to themselves. 
They may also make use of certain "permanent 
constants" read in with every program. These 
permanent constants occupy a reserved section 
of the memory and are called for by alphabetic 
memory locations~ a trick~ at present peculiar 
to UNIVAC. Thus, these addresses are not 
modified in the course of positioning the 
subroutine in a program. They include such 
quantities as 1/22~ ~/4, logloe~ ~0, .2, .5, 
and the like. 

Each subroutine is preceded by certain 
information, matching and supplementing that 
supplied by the mathematician: 

I. call-number~ 
2. arguments, the destination of the 

arguments within the subroutine, 
expressed in the relative coding 
of the subroutines 

3. non-modification indicators 
locating constants embedded in the 
subroutine which are not to be 
altered~ 

4. results~ the positions of the 
results within the subroutine, 
expressed in relative coding. 

Each subroutine is arranged in a standard 
pattern. 

~l_a~f~_l~_~ - The first line of a subroutine 
is its entrance line~ thus in relative coding 
it is number one. It is the first line of the 
subroutine transferred to a program~ and it 
contains an instruction transferring control to 

the first action line. 
E~it ~ines - The second line of a subroutine is 
its normal exit line. This contains an 

instruction transferring control to the line 
following the last line of the subroutine. 
Unless an alternate transfer of control is 
desired, all e~its from the subroutine are 
referred to the normal exit line. Alternate 
exit lines~ involving transfers of control 
from the usual sequence? follow the normal exit 
llne in a predetermined order as listed in the 
catslogue. 
Ar~umen%s - The exit lines are followed by 
spaces reserved for the arguments arranged 
in predetermined order. 
Results - The results~ also in specified 
order, follow the arguments. 
Constants - The results are followed, when 
possible~ by any arbitrary constants peculiar 
to the subroutine. When the subroutine has 
been compounded from other subroutines~ 
groups of constants may also appear 
embedded in the subroutine. These are cared 
for by the non-modification information. 

The first action line appears next in the 
subroutine. Its position in the relative 
coding is defined by the entrance line. No 
instruction line may precede this line. 

The sequence assigned to the entrance 
and exit lines, arguments, results, and 
constants is arbitrary. It is convenient. 
All that is required is that a sequence be 
established and that the computer recognize 
this sequence. 

For convenience in manipulation, a 
certain number of elementary subroutines 
have been combined to form a sub-library. 
These include 

a = arithmetic 
b = transfer of data 
c ~ counters 
h = hyperbolic functions 
i = input routines 
1 = logarithmic functions 
o = output routines 
p = polynomials 
r = roots and fractional exponents 
t = trigonometric functions 
u ~ control transfers 
w =~ storage routines 
x = exponential functions 
y = editing routines 

As subroutines are added to extend the 
library~ it becomes more useful and 
programming time is further reduced. 
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y -  ~ "x= sin cx 
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Indeed~ the day may come when the elementary 
subroutines are rarely used and the conputer 
information will contain but seven or eight 
items calling into play powerful subroutines. 

Construction of Subroutines 
It is not neeessary~ nor is ~t advisable? 

that the inexperienced programmer tamper with 
the coding within a subroutine. It is usually 
minimum latency coding using every trick and 
device knov to the experienced programmer. 
It has been tested by operation on the 
computer. However, in order to speed the 
original construction~ on paper? of the 
elementary routines~ kernel routines and 
threading routines have been devised. 

A kernel routine computes a mathematical 
function or carries out an elementary 
process for a limited range of the variable 
concerned; for exampl% sin x~ for 0 < x < 
~/% and i0 -x for 0 < x < I. A kernel routine 
is always entered and left by way of a 
threading routine. 

Threading routines, incomplete without 
kernels~ remove from the arguments and stor% 
such quantities as algebraic signs~ integral 
parts~ and exponents~ deliver the reduced 
arguments to the kernel routin% receive 
results from the kernel, and adjust algebraic 
signs and exponents. For exampl% the 
threading routines for sin y remove the 
algebraic sign of y, reduce y by multiples 
of 22~, reduce the remainder to a quantity 
x less than ~/%~ store the information and 
select the sin x or cos x kernel routine. 
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The kernel routine returns sin x or cos x. 
The threading routine adjusts the sign? 
exponent? and decimal point completing the 
computation. 

Threading routines recognize and give 
special treatment to such values as zero 
and infinity, and provide signals and 
printed information when the capacity of 
the computer is exceeded. 

An elementary subroutine consists of 
a threading routine accompanied by one or 
more kernel routines. Hence, the threading 
routines are similar to the subroutines in 
form having at the beginning an entrance line? 
exit lines~ (usually undetermined until the 
kernel routine is supplied)~ arguments~ 
results~ and constants. At the end of a 
threading routine are certain lines prepared 
to "overlap" the first section of the kernel 
routine. This overlap contains 

I. the entrance line of the kernel 
routine; 

2. the exit line of the kernel routine 
set-up by threading routines 

3. arguments~ and 
4. results. 

Compiling Poutines Type A are designed to select 
and arrange Subroutines according to information 
supplied by the mathematician or by the 
computer. Basically~ there is but one Type A 
routine. However~ since the UNIVAC code 
contains instructions transferring two 
neighboring quantities simultaneously, a 
second compiling routine has been designed to 



care for floating decimal? complex number? and 
double precision programs. For each operation 
listed by the mathematician~ a type A routine 
will perform the following services: 

I. locate the subreutine indicated 
by the call-number~ 

2. from the computer and subroutine 
information combined with its record of the 
program~ fabricate and enter in the program 
the instructions transferring the arguments 
from working storage to the subroutines 

3. adjust the entrance and normal exit 
lines to the position of the subroutine in the 
program and enter them in the program~ 

~. according to the control infor- 
mation supplied by the programmer~ adjust 
alternate exit lines and enter them in the 
program (this process involves reference to 
the record); 

5. according to the control infor- 
mation supplied with previous operations adjust 
auxiliary entrance lines and enter them in 
the program~ 

6. modify all addresses in the 
subroutine instructions and enter these 
instructions in the programs 

7. according to information supplied 
by the subroutine, leave unaltered all constants 
embedded in the subroutine and transfer them to 
the program~ 

8. from the computer and the subroutine 
information fabricate and enter in the program 
the instructions transferring the results to 

9. maintain and produce a record of 
the program including the call-number of each 
subroutine and the position of its entrance 
line in the program. 

The compiling routines also contain certain 
instr~ctions concerning input taoes? tape 
library? and program tapes~ peculiar to the 
UNIVAC. All counting operations such allo- 
cation of temporary storage and program space? 
"and control of input and output are carried 
on steadily by the compiling routine. Stated 
bluntly~ the compiling routine is the 
programmer and performs all those services 
necessary to the production of a finished 
program. 

Compiling Poutines of Type B? will for each 
operatlon~ by means of "task routines"? replace 
orsupplement the given computer information 
with new information. Thus? compiling routine 
B-1 will? for each operation~ copy the infor- 
mation concerning that operation and call in 
the corresponding task routine. The task 
routine will generate the formula~ and derive 
the information? necessary to compute the 
derivative of the operation. Compiling 
routine B-I then records this information in 
a form suitable for submission to a T~fpe A 
routine. 

Since information may be re-submltted to 
a type B routine? it is obvious that in order 
to obtain a program to compute f(x) and its 
first n derivatives? only the information 
defining f(x) and the value of n need be 
given. The formulas for the derivatives of 
f(x) will be derived by repeated applications 
of B-1 and programmed by a type A routine. 

It is here that the question can best 
be answered concerning a liking for or an 
aversion to subroutines. Since the use of 
subroutines in this fashion increases the 
abilities of the computer? the question 
becomes meaningless and transforms into 
a question of how to produce better 
subroutines faster. However~ balancing 
the advantages and disadvantages of using 
subroutines? among the advantages are 
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i. relegation of mechanical jobs 
such as memory allocation~ address modifi- 
cation? and transcription to the UNIVAC~ 

2. removal of error sources such 
as programming errors and transcription 
errors~ 

3. i conservation of programming time~ 
~. ability to operate on operations; 
5. duplication of effort is avoided? 

since each program in turn may become a 
subroutine. 

Only two disadvantages are immediately 
evident. Because of standardization~ a small 
amount of time is lost in performing duplicate 
data transfers which could be eliminated in a 
tailor-made routine. In base load prob!ems~ 
this could become serious. Even in this case~ 
however~ it is worthwhile to have UNIVAC produce 
the original program and then eliminate such 
duplication before rerunning the problem. The 
second disadvantage should not long remain 
serious. It is the fact that? if a desired 
subroutine does not exist? it must be 
programmed and added to the library. This will 
be most likely to occur in the case of input 
and output editing routines until a large 
variety is accumulated. This situation also 
emphasizes the need for the greatest gener- 
ality in the construction of subroutines. 

Several directions of future developments 
in this field can be pointed out. It is to 
be hoped that reports will be presented on 
some of them next September. 

More type A compiling routines will be 
devised! those handling commercial rather than 
mathematical programs; some special purpose 
compiling routines such as a routine which 
will compute approximate magnitudes as it 
proceeds and select sub-routines accordingly. 
Compiling routines must be informed of the 
average time required for each sub-routlne 
so that they can supply estimates of running 
time with each program. Compiling routines 
can be devised which will correct the 
computational procedure submitted to produce 
the most efficient program. For example~ if 
both sin @ and cos ~ are called for in a 
routine~ they will be computed more rapidly 
simultaneously. This will involve sweeping 
the computer information once to examine its 
structure. 

Type B routines at present include 
linear operators. More type B routines 
must be designed. It can scarcely be 
denied that type C and D routines will 
be found to exist adding higher levels of 
operation. Work is already in progress to 
produce the formulas developed by type B 
routines in algebraic form in addition to 
producing their computational programs. 

Thus by considering the professional 
programmer (not the mathematician); as an 
integral part of the computer~ it is evident 
that the memory of the programmer and all 
information and data to which he can refer is 
available to the computer subject only to 
translation into suitable language. And it is 
further evident that the computer is fully 
capable of remembering and acting upon any 
instructions once presented to it by the 
progrmmner. 

With some specialized knowledge of more 
advanced topics~ UNIrqAC at present has a well 
grounded mathematical education fully 
equivalent to that of a college sophomore? and 
it does not forget and does not make mistakes. 
It is hoped that its undergraduate course will 
be completed shortly and it will be accepted 
as a candidate for a graduate degree. 


