THE EDUCATION OF A COMPUTER

Grace Murray Hopper
Remington Rand Corp.

While the materialization is new, the idea
of mechanizing mathematical thinking is not new,
Its lineage starts with the abacus and descends
through Pascal,Leibnitz, and Babbage. More
immediately, the ideas here presented originate
from Professor Howard H, Aiken of Harvard
University, Dr, Jolm W, Mauchly of Eckert-
Mauchly and Dr. M. V., Wilkes of the University
of Cambridge. TFrom Professor Alken came, in
1946, the ides of a library of routines
described in the Mark I manual, and the goncepts
embodied in the Mark III coding machinesy from
Dr, Mauchly, the besic principles of the "short-
order code" and suggestions, criticisms, and
untiring patience in listening to these present
attempts; from Dr, Wilkes, the greatest help
of all, a book on the subject, For those
of their ideas which are included herein, I
most earnestly express my debt and my
appreciation,

Introduction
To start at the beginning, Fig, 1

represents the configuration of the elements
required by an operation: input to the
operationsj controls, even if they be only
atart and stop} previously prepared tools
supplied to the operations and output of
products, which may, in turn, become the
input of another operation. This is the basic
element of a production liney input of raw mate-
rials, controlled by human beings, possibly
through instrumentsy supplied with machine
tools; the operation produces an automobile,
a rail, or a can of tomatoes.

The armed services, government, and

CONTROL

industry are interested not only in creating
new operations to produce new results, but
slso in increasing the efficiency of old
operations, A very old operation, Fig. 2,

is the solution of a mathematical problem.

It fits the operational configuration: input
of mathematical dataj control by the
mathematician; supplied with memory, formulas,
tables, pencil, and paper; the brain carries
on the arithmetic, and produces results.

It is the current aim to replace, as far
as possible, the human brain by an electronic
digital computer, That such computers
themselves fit this configuration may be seen
in Fig., 3. (With your permission, I shall use
UNIVACY as synonymous with electronic digital
computers primarily because I think that way,
but also because it is convenient.)

Adding together the configurations of the
humaen being and the electronic computer, Fig.
4 shows the solution of a problem in two
levels of operation, The arithmetical chore
has been removed from the maethematician, who
has become a programmer, and this duty
assigned to the UNIVAC. The programmer has
been supplied with a "code" into which he
translates his instructions to the computer.
The "standard knowledge" designed into the
UNIVAC by its engineers, consists of its
elementary arithmetic and logie,

This situation remains statie until the
novelty of inventing progrems wears off and
degenerates into the dull labor of writing and
checking programs, This duty now looms as an
imposition on the human brain., Also, with the
computer paid for, the cost of programming and
the time consumed, comes to the notlice of viee-
presidents and project directors, Common sense
dictates the insertion of & third level of
operation, Fig. 5.

* Reglstered trade mark,

INPUT - OPERATION OUTPUT
Y
TOOLS
Fig. 1-AN OPERATION ATHEMATICIAN
PROBLEM BRAIN RESULTS
FORMULAS
Fig. 2- SOLUTION OF PROBLEM TABLES

Page 23

PROGRAM

UNITYPER

UNIVAC

UNIPRINTER

UNISERVO

Fig. 3 - UNIVAC SYSTEM

The programmer may return to being a
mathematician,
of subroutines,
available formulas or tables of elementary
functions, He does not even need to know the
perticular instruction code used by the
computer,

He is supplied with a catalogue
No longer does he need to have

He needs only to be able to use the

catalogue to supply information to the computer

about his problem,

The UNIVAC, on the basis of

the information supplied by the mathematician,

under the control of a "compiling routine of
type A", using subroutines and its own in-
struction code, produces a program. This
program, in turn directs the UNIVAC through
the computation on the input date and the
desired results are produced. A major
reduction in time consumed and in sources of
error has been made. If the library is well-
stocked, programming has been reduced to a
matter of hours, rather than weeks. The
program is no longer subject either to errors
of transcription or of untested routines,
Specifications for computer information,
a catalogue, compiling routines, and
subroutines will be given after adding
another level to the block diagram.
stands the mathematician mist still perform
all mathematical operations, relegating to
the UNIVAC programming and computational
operations,

As Fig, 5

However, the computer information

delivered by the mathematician no longer deals

together with operations upon them, The
insertion of a fourth level of operation is
now possible, Fig. 6., Suppose, for example,
the mathematician wishes to evaluate a function
and its first m derivatives, He sends the
information defining the function itself to
the UNIVAC. Under control of a "compiling
routine of type B", in this case a
differentiator, using task routines, the
UNIVAC delivers the information necessary to
program the computation of the function and
its derivatives, TFrom the formula for the
function, the UNIVAC derives the formulas of
the successive derivatives, This information
processed under a compiling routine of Type
A yields a program to direct the computation,
Expansion makes this procedure look,
and seem, long and complicated, It is not.
Peducing again to the two—component system,
the mathematician and the computer, Fig, 7
presents a more accurate picture of the
computing system,
Presuming that code, program, input data,

and results are familiar terms, it remains
to define and specify the forms of infor-
mation and routines acceptable to this systen,
These include

catalogue,

computer information,

subroutine,

compiling routines, type A and B,

with numerical quantities as such., It treats and task routines,
of varisbles and constants in symbolic form
M oP I |
] PROGRAMMER |
| ﬁr—_ . I —”]
: OP 1l
| | PROBLEM |— BRAIN : PROGRAM | | |
| | | |
| L ' |
| FORMULAS | | | !
: TABLES | ! | |
| cooE_| | | i
L__-q__.___-___-___.___-__.i__*-___-___.__.____.___-”J
fof INPUT L~ UNIVAG [Resuts | |
' STANDARD ‘
i KNOWLEDGE ,
L _

Fig. 4 -SOLUTION OF A PROBLEM

Page 2l

- l
5’69 | T 1 [compiLine |
aanl | ROUTINE .
MATHEMATICIAN | } e l
e A -
i l i - | l B .[ORIl |
PROBLEM [— BRAIN |+ ‘SF&%’E(’;N—T— UNIVAG H PROGRAM | | |
T} I | |
GATALOGUE i i SUBROUTINES i : l
! ' | , |
N S (U J ; i
| o N |
| |
+ A [UNIVAC RESULTS il
i STANDARD |
! KNOWLEDGE |
L _

Catalogue and_ Computer Information
As soon a8 the purpose is stated to make
use of subroutines, two methods arise,

Fig. 5-COMPILING ROUTINES AND SUBROUTINES

problem
In one, ’

the program refers to an immediately aveilable
subroutine, uses it, and continues computation.

For a limited number of subroutines, this
method is feasible and useful.

Such a system

of the available subroutines.

to compute

y-e

using elementary subroutines.
formula falls into the operational pattern,

sin ox,

Suppose a simple

Each step of the

has been developed under the nick-name of Fig. 8 3 that is,
the "short-order code" by members of the staff
of the Computational Analysis Laboratory. u=x
The second method not only looks up the U= e?
subroutine, but translates it, properly adjusted,
into a program. Thus, the completed program v = ex
may be run as & unit whenever desired, and
maey itself be placed in the library as a more V = sin v
advanced subroutine.
Each problem must be reduced to the level y = UV,
[
i OP Il
T
OP I
|
OF iU | [compiLinG COMPILING.
i _— I — oo
PROBLEM BRAIN ‘NCF%';;%%?N_L UNIVAC |-+|INFORMATION(—1~ UNIVAC |1+ PROGRAM
j . TASK
CATALOGUE l | ROUTINES SUBROUTINES
] — j
I — —_— i R e
"
Le INPUT DATA UNIVAC L—-‘ RESULTS
[STANDARD
: KNOWLEDGE

Fig. 6.- COMPILING TYPE B AND TASK ROUTINES

Page 215

(‘"' "/
I COMPILING B '
i COMPILING A !
| PROGRAM |
| MATHEMATICIAN| | ‘ INFORMATION |— = PROGRAM ‘
| COMPUTER ! ‘
S—— 1 —— ,..,__i
% PROBLEM BRAIN INFORMATION |] UNIVAC INFORMATION i
! CATALOGUE ! i INPUT DATA [—= RESULTS ‘
- m__;_____J TASK ROUTINES ‘
i SUBROUTINES ’
X STANDARD !
‘ KNOWLEDGE |
e -]
Fig. 7- COMPUTING SYSTEM
As presented in Fig. 9, however, this _ 1 x X1 6 ¢ xg
informetion is not yet sufficiently standardized
to be acceptable to a compiling routine. 2 IMx x 7 v x
Several problems must be considered and
procedures defined. 3 Ix x3 8 V =xg
The operations are numbered in normal
sequence and this number becomes part of the VA Xy, 9 3 Xg
computer information, Thus when it is desired
to change the normal sequence, the alternate 5 U X5 10 n x99

destination is readily identified, The
compiling routine translates these operation
numbers into instructions in the coded program.
Two fundamental situations arise, the alternate
destination either precedes the operation
under consideration or follows it, by-passing
several intermediate operations. In both
cases, it is necessary only to have ihe
compiling routine remember where it has
placed each subroutine or that a transfer of
control to operation k has been indicated.
In any event the mathematician need only
state, "go to operation k", and the compiling
routine does the rest.

The symbols to be used for the srguments
and results, as well as for the operations,
are of next concern., One mathematician

might write
y=e sin cx
and another
—Vz
u=e sin gv,

The obvious solution proves best, Make a list
of arguments and results and number them,
(This amounts to writing all constants and
varisbles 8s xj.) The order is immateriel,

so that forgotten quantities can be added at
the end.

Page 246

As symbols for the operations and sub~-
routines, a system of "call-numbers" 1s used.
These alphabetic characters represent the
cless of subroutines, Following Dr, Wilkes»
example, these symbols are partially
phoneticy that is, & = arithmetic, t =
trigonometric, and x = exponentials amec =
arithmetic, multiplication by a constant,
x-e = e"3,130 = trigonometric, sine. Placed
with the call-numbers, n, f, or s, indicates
normal, floating, or stated (fixed) decimal
point. Other letters and digits indicate
radians or degrees for angles, complex
numbers, etc. These call-numbers are listed
in the catalogue together with the order in
which arguments, controls, and results are
to be stated, The general rules for the
description of an operation are:

1., call-numbers,

2, number of operation,

3. arguments in order of appearance
in formula, varlables preceding
constants,

4, controls, normal exit if altered,
followed by alternate exits in
order of appearance in subroutine,

5. results, in order of appearance,

All exceptions to the general rules are listed
in the catalogue,

‘ The problem has been reduced to computer
information. The exact positions of characters

in words as submitted to the UNIVAC has been
omitted since it hardly seems of general
interest, The preparation of information might
be called creating a "multiple-address code",
by which any number of arguments may enter an
operation, to produce any number of results,
and to proceed directly to the next operation
unless routed to any one of seversl other
operations,

Subroutines

Fach subroutine in the librsry is expressed
in coding relative to its entrance line
considered as 001, They are, in general,
programmed and coded for maximum accurary and
minimum computing time., They may store within
themselves constants peculiar to themselves,
They may also maske use of certain "permanent
constants' read in with every program. These
permanent constants occupy & reserved section
of the memory and asre called for by alphabetic
memory locations, a trick, at present peculiar
to UNIVAC. Thus, these addresses are not
modified in the course of positioning the
subroutine in & program. They include such
quentities as 1/2m, /4, logioe, #0, .2, .5,
and the like,

Fach subroutine is preceded by certain
informetion, matching and supplementing that
supplied by the mathematician:

1. call-numbers

2. arguments, the destination of the
arguments within the subroutine,
expressed in the relative coding
of the subroutines

3. non-modification indicators
locating constants embedded in the
subroutine which are not tp be -
altereds

L. results, the positions of the

results within the subroutine,
expressed in relative coding.

Each subroutine is arranged in a standard
pattern.

Entrauce line - The first line of a subroutine
is its entrance line, thus in relative coding
1t is number one, It is the first line of the
subroutine transferred to a program, and it
contains an instruction transferring control to
the first action line.

it es ~ The second line of & subroutine is
Tts normel exit line, This contains an

instruction transferring control to the line
following the last line of the subroutine.,
Unless an alternate transfer of control is
desired, a1l exits from the subroutine are
referred to the normal exit line. Alternate
exit lines, involving transfers of control
from the usual sequence, follow the normal exit
line in a predetermined order as listed in the
catalogue.

Arguments -~ The exit lines are followed by
spaces reserved for the arguments arranged

in predetermined order,

Results ~ The results, also in specified
order, follow the arguments,

Constants - The results are followed, when
possible, by any arbitrary constents peculiar
to the subroutine., When the subroutine has
been compounded from other subroutines,
groups of constants may also appear

embedded in the subroutine., These are cared
for by the non-modification information.

The firgt action line appears next in the
subroutine, Its position in the relative
coding is defined by the entrance line, No
instruction line may precede this line,

The sequence assigned to the entrance
and exit lines, arguments, results, and
constants is arbitrary. It is convenient,
A11 thet is required is that a sequence be
established and that the computer recognize
this sequence,

For convenience in manipulation, a
certain number of elementary subroutines
have been combined to form a sub-library.
These include

arithmetic

transfer of data
counters

hyperbolic functions
input routines
logarithmic functions
output routines
polynomials

roots and fractional exponents
trigonometric functions
control transfers
storage routines
exponential functions
editing routines

iy

Ao s e o

noilou

YR ESHEHTY O YO O

As subroutines are added to extend the

libraery, it becomes more useful and
programming time is further reduced.

CONTROL

ARGUMENTS
x,n

SUBROUTINE

u=x"

RESULTS
u

STANDARD
CONSTANTS

Fig. 8 - OPERATION

Page 2447

y= e sin cx
OPERATION ESULTS | CONTROL
NUMBER OPERATION | ARGUMENTS | R
TRANSFER 0,01,99,2,5 | xazl,n ¢
0 bOi 1(1,2,3,4,5)| 1,2,3,10,6
x“ x, 2 uext
i apn 1,10 4
Y u Ueg™
2 x-8 4 5
c® ¢, % u=2ex
3 ame 6,1 7
sinv v Veosginy
4 ts0 7 8
® u,v yaUV
5 amO 58 9
EoIT %,y %
6 yrs 1,9 0(,2)
@-L x,ax,L, R Bx—on Jtél el xsl =8
7 aol 1,2,3 { 8, 1
STOP
8 ust

Indeed, the day may come when the elementary
subroutines are rarely used and the computer
information will contain but seven or eight

items celling into play powerful subroutines.

Construection of Subroutines

It is not necessary, nor is it advisable,
that the inexperienced programmer tamper with
the coding within a subroutine. It is usually
minimum latency coding using every trick and
device know to the experienced programmer,

It has been tested by operation on the
computer, However, in order to speed the
original construction, on paper, of the
elementary routines, kerrel routines and
threading routines have been devised.

A kernel routine computes a mathematical
function or carries out an elementary
process for a limited range of the variable
concerned; for example, sin x, for 0 < x <
w/l end 107X for 0 < x < 1, A kernel routine
is alweys entered and left by way of a
threading routine,

Threading routines, incomplete without
kernels, remove from the arguments and store,
such quantities as algebraic signs, integral
parts, and exponents, deliver the reduced
arguments to the kernel routine, receive
results from the kernel, and adjust algebraic
signs and exponents, For example, the
threading routines for sin y remove the
algebraic sign of y, reduce y by multiples
of 2w, reduce the remainder to a quantity
x less than /4, store the information and
select the sin x or cos x kernel routine.

Fig 9 - EXAMPLE

Page 248

The kernel routine returns sin x or cos x,
The threading routine adjusts the sign,
exponent, and decimal point completing the
computation,

Threading routines recognize and give
special treatment to such values as zero
end infinity, and provide signals and
printed information when the capacity of
the computer is exceeded.

An elementary subroutine consists of
a threading routine accompanied by one or
more kernel routines. Hence, the threading
routines are similar to the subroutines in
form having at the beginning an entrance line,
exit lines, (usually undetermined.until the
kernel routine is supplied), arguments,
results, and constants, At the end of a
threading routine are certain lines prepared
to "overlap" the first section of the kernel
routine. This overlap contains

1. the entrance line of the kernel

routine;
2, the exit line of the kernel routine
set-up by threading routines
argumentssy and
4. Tesults,
Compiling Poutines Type A are designed to select
and arrange subroutines according to information
supplied by the mathematician or by the
computer, Basically, there is but one Type A
routine. However, since the UNIVAC code
contains instructions transferring two
nelighboring quantities simultaneously, &
second compiling routine has been designed to

3.

care for floating decimal, complex number, and
double precision programs., For each operation
listed by the mathematician, a type A routine
will perform the following services:

1. locate the subrcutine indicated
by the call-numbers

2. from the computer and subroutine
information combined with its record of the
program, fabricate and enter in the program
the instructions transferring the arguments
from working storage to the subroutines

3. adjust the entrance and normal exit
lines to the position of the subroutine in the
program and enter them in the program;

4. according to the control infor-
mation supplied by the programmer, adjust
alternate exit lines and enter them in the
program (this process involves reference to
the record);

5. according to the control infor-
mation supplied with previous operations adjust
auxiliary entrance lines and enter them in
the program;

6. modify all addresses in the
subroutine instructions and enter these
instructions in the programs

7. according to information supplied
by the subroutine, leave unaltered all constants
embedded in the subroutine and transfer them to
the program;

8. from the computer and the subroutine
information fabricate and enter in the program
the instructions transferring the results to

9. maintain and produce a record of
the program including the call-number of each
subroutine and the position of its entrance
line in the program,

The compiling routines also contain certain
instructions concerning input tapes, tape
library, and program tapes, peculiar to the
UNIVAC, All counting operations such allo-
cation of temporary storage and program space,
“and control of input and output are carried
on steadily by the compiling routine, Stated
bluntly, the compiling routine is the
programmer and performs all those services
necessary to the production of a finished
program,

Compiling Routines of Type B, will for each

operation, by means of "task routines", replace
or supplement the given computer information
with new information., Thus, compiling routine
B-1 will, for each operation, copy the infor-
mation concerning that operation and call in
the corresponding task routine, The task
routine will generate the formula, and derive
the information, necessary to compute the
derivative of the operation., Compiling
routine B-1 then records this information in
a form suitable for submission to a Type 4
routine,

Since information may be re-submitted to
a type B routine, it is obvious that in order
to obtain a program to compute f(x) and its
first n derivatives, only the information
defining f(x) and the value of n need be
given. The formulas for the derivatives of
f(x) will be derived by repeated applications
of B~1 and programmed by a type A routine.

It is here that the question can best
be answered concerning a liking for or an
aversion to subroutines, Since the use of
subroutines in this fashion increases the
abilities of the computer, the question
becomes meaningless and transforms into
a question of how to produce better
subroutines faster. However, balancing
the advanteges and disadvantages of using
subroutines, among the advantages are

Page 21,9

1. relegation of mechanical jobs
such as memory allocation, address modifi-
cation, and transecription to the UNIVAC,

2, removal of error sources such
as programming errors and transcription
errorss

3. | conservation of programming timej

4. ability to operate on operations;

5. duplication of effort is avoided,
since each program in turn may become a
subroutine,

Only two disadvanteges are immediately
evident. Because of standardization, a small
amount of time is lost in performing duplicate
data transfers which could be eliminated in a
tailor-made routine. 1In base load problems,
this could become serious, Even in this case,
however, it is worthwhile to have UNIVAC produce
the original program and then eliminate such
duplication before rerunning the problem. The
second disadvantage should not long remain
serious. Tt is the fact that, if a desired
subroutine does not exist, it must be
programmed and added to the library. This will
be most likely to occur in the case of input
and output editing routines until a large
variety is accumulated. This situation also
emphasizes the need for the greatest gener-
ality in the construction of subroutines.

Several directions of future developments
in this field can be pointed out. It is to
be hoped that reports will be presented on
some of them next September,

More type A compiling routines will be
devisedi those handling commercial rather than
mathematical programsi some special purpose
compiling routines such as a routine which
will compute approximate magnitudes as it
proceeds and select sub-routines accordingly,
Compiling routines must be informed of the
average time required for each sub-routine
so that they can supply estimates of running
time with each program, Compiling routines
can be devised which will correct the
computational procedure submitted to produce
the most efficient program, For example, if
both sin 6 and cos 8 are called for in a
routine, they will be computed more rapidly
simultaneously. This will involve sweeping
the computer information once to examine its
structure,

Type B routines at present include
linear operators, More type B routines
must be designed. It can scarcely be
denied that type C and D routines will
be found to exist adding higher levels of
operation. Work is already in progress to
produce the formulas developed by type B
routines in algebraic form in addition to
producing their computational programs.

Thus by considering the professional
programmer (not the mathematician), as an
integral part of the computer, it is evident
that the memory of the programmer and all
information and data to which he can refer is
available to the computer subject only to
translation into suitable language. And it is
further evident that the computer is fully
capable of remembering and acting upon any
instructions once presented to it by the
programmer,

With some specialized knowledge of more
advanced topics, UNIVAC at present has a well
grounded mathematical education fully
equivalent to that of a college sophomore, and
it does not forget and does not make mistakes.
It is hoped that its undergraduate course will
be completed shortly and it will be accepted
as a candidate for a graduate degree.

