
 Journal of Visual Languages and Computing (1996) 7 , 3 – 31

 Pad 11 : A Zoomable Graphical Sketchpad For Exploring
 Alternate Interface Physics

 B ENJAMIN B . B EDERSON , * J AMES D . H OLLAN , * K EN P ERLIN , † J ONATHAN

 M EYER , † D AVID B ACON † AND G EORGE F URNAS ‡

 * Computer Science Department , University of New Mexico , Albuquerque , NM 8 7 1 3 1 , U .S .A . ,
 † Media Research Laboratory , Computer Science Department , New York University , NY 1 0 0 0 3 ,

 U .S .A . , ‡ Bell Communications Research , 4 4 5 South Street , Morristown , NJ 0 7 9 6 0 , U .S .A .

 Received 7 March 1 9 9 5 and accepted 2 9 September 1 9 9 5

 We describe Pad 11 , a zoomable graphical sketchpad that we are exploring as an
 alternative to traditional window and icon-based interfaces . We discuss the motivation
 for Pad 11 , describe the implementation and present prototype applications . In
 addition , we introduce an informational physics strategy for interface design and
 briefly contrast it with current design strategies . We envision a rich world of dynamic
 persistent informational entities that operate according to multiple physics specifically
 designed to provide cognitively facile access and serve as the basis for the design of
 new computationally-based work materials .
 ÷ 1996 Academic Press Limited

 1 . Introduction

 Imagine a computer screen made of a sheet of a miraculous new material that is
 stretchable like rubber but continues to display a crisp computer image , no matter
 what the sheet’s size . Imagine that this sheet is very elastic and can stretch orders of
 magnitude more than rubber . Further , imagine that vast quantities of information are
 represented on the sheet , organized at dif ferent places and sizes . Everything you do
 on the computer is on this sheet . To access a piece of information you just stretch to
 the right part and there it is .

 Imagine further that special lenses come with this sheet that let you look onto one
 part of the sheet while you have stretched another part . With these lenses , you can see
 and interact with many dif ferent pieces of data at the same time that would ordinarily
 be quite far apart . In addition , these lenses can filter the data in any way you would
 like , showing dif ferent representations of the same underlying data . The lenses can
 even filter out some of the data so that only relevant portions of the data appear .

 Imagine also new stretching mechanisms that provide alternatives to scaling objects
 purely geometrically . For example , instead of representing a page of text so small that
 it is unreadable , it might make more sense to present an abstraction of the text , per-
 haps so that just a title that is readable . Similarly , when stretching out a spreadsheet ,

 * (bederson , hollan) ê cs .umn .edu , † (perlin , meyer bacon) ê play .cs .nyu .edu , ‡ gwf ê bellcore .com
 URL : http : / / www .cs .unm .edu / pad 1 1

 1045-926X / 96 / 010003 1 29 $18 . 00 / 0 ÷ 1996 Academic Press Limited

 B . B . BEDERSON ET AL . 4

 Figure 1 . A sequence of views as we zoom into some data

 instead of showing huge numbers it might make more sense to show the compu-
 tations from which the numbers were derived or a history of interaction with them .

 The beginnings of an interface like this sheet exists today in a program we call
 Pad 11 . We don’t really stretch a huge rubber-like sheet , but we simulate it by
 zooming into the data . We use what we call portals to simulate lenses , and a notion we
 call semantic zooming to scale data in non-geometric ways . The user controls where
 they look on this vast data surface by panning and zooming . Portals are objects on the
 Pad 11 data surface that can see anywhere on the surface , as well as filter data to
 represent it dif ferently than it normally appears .

 Panning and zooming allow navigation through a large information space via direct
 manipulation . By tapping into people’s natural spatial abilities , we hope to increase
 users’ intuitive access to information . Conventional computer search techniques are
 also provided in Pad 11 , bridging traditional and new interface metaphors . Figure 1
 depicts a sequence of views as we pan and zoom into some data .

 1 .1 . Motivation

 If interface designers are to move beyond windows , icons , menus and pointers to
 explore a larger space of interface possibilities , additional ways of thinking about
 interfaces that go beyond the desktop metaphor are required .

 There are myriad benefits associated with metaphor-based approaches , but they
 also orient designers to employ computation primarily to mimic mechanisms of older
 media . While there are important cognitive , cultural and engineering reasons to
 exploit earlier successful representations , this approach has the potential of under-
 utilizing the mechanisms of new media .

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 5

 For the last few years we have been exploring a dif ferent strategy [21] for interface
 design to help focus on novel mechanisms enabled by computation rather than on
 mimicking mechanisms of older media . Informally , the strategy consists of viewing
 interface design as the development of a physics of appearance and behavior for
 collections of informational objects .

 For example , an ef fective informational physics might arrange for an object’s
 representation to be a natural by-product of normal activity . This is similar to the
 physics of certain materials that evidence the wear associated with use . Such wear
 records a history of use and at times this can influence future use in positive ways .
 Used books crack open at frequently referenced places . It is common for recently
 consulted papers to be at the tops of piles on our desks . Usage dog-ears the corners
 and stains the surface of index cards and catalogs . All these wear marks provide
 representational cues as a natural product of doing , but the physics of materials limit
 what can be recorded and the ways it can influence future use .

 Following an informational physics strategy has led us to explore history-enriched
 digital objects [18 , 19] . Recording on objects (e . g . reports , forms , source-code , manual
 pages , email , spreadsheets) the interaction events that comprise their use makes it
 possible on future occasions , when the objects are used again , to display graphical
 abstractions of the accrued histories as parts of the objects themselves . For example ,
 we depict the copy history on source code . This allows a developer to see that a
 particular section of code has been copied and perhaps be led to correct a bug not
 only in the piece of code being viewed but also in the code from which it was derived .

 This informational physics strategy has also lead us to explore new physics for
 interacting with graphical data . As part of that exploration we have formed a research
 consortium to design a successor to Pad [25] . This new system , Pad 11 , serves as a
 substrate for exploration of novel interfaces for information visualization and
 browsing in complex , information-intensive domains . The system is being designed to
 operate on platforms ranging from high-end graphics workstations to PDAs (Personal
 Digital Assistants) and interactive set-top cable boxes . Here we describe the
 motivation behind the Pad 11 development , report the status of the current
 implementation and present initial prototype applications .

 Today , there is much more information available than we can access readily and
 ef fectively . The situation is further complicated by the fact that we are on the
 threshold of a vast increase in the availability of information because of new network
 and computational technologies . Paradoxically , while we continuously process
 massive amounts of perceptual data as we experience the world , we have perceptual
 access to very little of the information that resides within our computing systems or
 that is reachable via network connections . In addition , this information , unlike the
 world around is , is rarely presented in ways that reflect either its rich structure or
 dynamic character .

 We envision a much richer world of dynamic persistent informational entities that
 operate according to multiple physics specifically designed to provide cognitively
 facile access . These physics need to be designed to exploit semantic relationships
 explicit and implicit in information-intensive tasks and in our interaction with these
 new kinds of computationally-based work materials .

 One physics central to Pad 11 supports viewing information at multiple scales and
 attempts to tap into our natural spatial ways of thinking . We address the information

 B . B . BEDERSON ET AL . 6

 presentation problem of how to provide ef fective access to a large structure of
 information on a much smaller display . Furnas [15] explored degree of interest
 functions to determine the information visible at various distances from a central focal
 area . There is much to recommend the general approach of providing a central focus
 area of detail surrounded by a periphery that places the detail in a larger context .

 With Pad 11 we have moved beyond the simple binary choice of presenting or
 eliding particular information . We can also determine the scale of the information and ,
 perhaps most importantly , the details of how it is rendered can be based on various
 semantic and task considerations that we describe below . This provides semantic
 task-based filtering of information that is similar to the early work at MCC on
 lens-based filtering of a knowledge base using HITS [20] and the recent work of
 moveable filters at Xerox [4] [30] .

 The ability to make it easier and more intuitive to find specific information in large
 dataspaces is one of the central motivations behind Pad 11 . The traditional approach
 is to filter or recommend a subset of the data , hopefully producing a small enough
 dataset for the user to navigate ef fectively . Pad 11 is complementary to these filtering
 approaches in that it promises to provide a useful substrate to structure information .

 2 . Description

 Pad 11 is a general-purpose substrate for creating and interacting with structured
 information based on a zoomable interface . It adds scale as a first class parameter to
 all items , as well as various mechanisms for navigating through a multiscale space . It
 has several ef ficiency mechanisms which help maintain interactive frame-rates with
 large and complicated graphical scenes .

 While Pad 11 is not an application itself , it directly supports creation and
 manipulation of multiscale graphical objects , and navigation through spaces of these
 objects . It is implemented as a widget in Tcl / Tk [24] (described in a later section)
 which provides an interpreted scripting language for creating zoomable applications .
 The standard objects that pad 11 supports are colored text , graphics , images , portals
 and hypertext markup language (HTML) . Standard input widgets (buttons , sliders ,
 etc .) are supplied as extensions .

 One focus in the current implementation has been to provide smooth zooming
 within very large graphical datasets . The nature of the Pad 11 interface requires
 consistent high frame-rate interactions , even as the dataspace becomes large and the
 scene gets complicated . In many applications , speed is important , but not critical to
 functionality . In Pad 11 , however , the interface paradigm is inherently interactive .
 One important searching strategy is to visually explore the dataspace while zooming
 through it , so it is essential that interactive frame rates be maintained .

 A second focus has been to design Pad 11 to make it relatively easy for third
 parties to build applications using it . To that end , we have made a clear division
 between what we call the ‘substrate’ and applications . The substrate , written in
 C 11 , is part of every release and has a well-defined API . It has been written with
 care to ensure ef ficiency and generality . It is connected to a scripting language
 (currently Tcl , but we are exploring alternatives) that provides a fairly high-level
 interface to the complex graphics and interactions available . While the scripting
 language runs quite slowly , it is used as a glue language for creating interfaces and

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 7

 putting them together . The actual interaction and rendering is performed by the C 11
 substrate . This approach allows people to develop applications for Pad 11 while
 avoiding the complexities inherent in this type of system . (See the Implementation
 section for more information on this .)

 2 .1 . PadDraw : A Sample Application

 PadDraw is a sample drawing application built on top of Pad 11 . It supports
 interactive drawing and manipulation of objects as well as loading of predefined or
 programmatically created objects . This application is written entirely in Tcl (the
 scripting language) and was used to produce all the figures depicted in this paper . The
 tools , such as navigation aids , hyperlinks and the outline browser , that we discuss
 later , are part of this application .

 The basic user interface for navigating in PadDraw uses a three button mouse . The
 left button is mode dependent and lets users select and move objects , draw graphical
 objects , follow hyperlinks , etc . The middle button zooms in and the right button
 zooms out . Zooming is always centered on the cursor , so moving the mouse while
 zooming lets the user dynamically control which point they are zooming around .

 PadDraw has a primitive Graphical User Interface (GUI) builder that is in progress .
 Among other things , it allows the creation of active objects . Active objects can
 animate the view to other locations (a kind of hyperlink) or move other objects
 around on the surface .

 2 . 1 . 1 . Navigation

 Easily finding information on the Pad 11 surface is obviously very important since
 intuitive navigation through large dataspaces is one of its primary motivations .
 Pad 11 supports visual searching with direct manipulation panning and zooming in
 addition to traditional mechanisms , such as content-based search .

 Some applications animate the view to a certain piece of data . These animations
 interpolate in pan and zoom to bring the view to the specified location . If the end
 point is further than one screen width away from the starting point , the animation
 zooms out to a point midway between the starting and ending points , far enough out
 so that both points are visible . The animation then smoothly zooms in to the
 destination . This gives both a sense of context to the viewer as well as speeding up the
 animation since most of the panning is performed when zoomed out which covers
 much more ground than panning while zoomed in . See the section on Space-Scale
 Diagrams for more detail on the surprisingly complex topic of multiscale navigation .

 Content-based search mechanisms support search for text and object names .
 Entering text in a search menu results in a list of all of the objects that contain that
 text . Clicking on an element of this list produces an automatic animation to that
 object . The search also highlights objects on the data surface that match the search
 specification with special markers (currently a bright yellow outline) that remain
 visible no matter how far you zoom out . Even though the object may be so small as
 to be invisible , its marker will still be visible . This is a simple example of task-based
 semantic zooming . See Figure 2 for a depiction of the content-based search
 mechanism .

 We have also implemented visual bookmarks as another navigational aid . Users can

 B . B . BEDERSON ET AL . 8

 Figure 2 . The content-based search window lets users search for text and names , and then animate to any
 of those objects by clicking on the search entry

 remember places they have been , and maintain miniature views onto those places .
 Moving the mouse over one of these bookmark views places a marker in the main
 view to identify where it will take you (although the marker may be of f to the side
 and hence not visible) . Clicking on a view animates the main view to that place
 (Figure 3) .

 2 .2 . Portals

 Portals are special items that provide views onto other areas of the Pad 11 surface , or
 even other surfaces . Each portal passes interaction events that occur within it to the
 place it is looking . Thus , you can pan and zoom within a portal . In fact , you can
 perform any kind of interaction through a portal . Portals can filter input events ,
 providing a mechanism for changing behavior of objects when viewed through a
 portal . Portals can also change the way objects are presented . When used in this
 fashion , we call them lenses (see below) .

 Portals can be used to replicate information ef ficiently , and also provide a method
 to bring physically separate data near each other . Figure 1 was created using several
 portals , each looking at approximately the same place at dif ferent magnifications .

 Portals can also be used to create indices . For example , creating a portal that looks
 onto a hyperlink allows the hyperlink to be followed by clicking on it within the
 portal , changing the main view . This however , may move the hyperlink of f the screen .

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 9

 Figure 3 . Visual bookmarks let users remember interesting places they have been by showing miniature
 views of those places . Clicking on one of the views animates the main view to the location

 We can solve this by making the portal (or any other object for that matter) sticky ,
 which is a method of keeping the portal from moving around as the user pans and
 zooms . Making an object sticky ef fectively lifts it of f the Pad 11 surface and sticks it
 to the monitor glass . Thus , clicking on a hyperlink through a sticky portal brings you
 to the link destination , but the portal index is not lost and can continue to be used .

 2 .3 . Lenses

 Designing user interfaces is typically done at a low level , focusing on user interface
 components rather than on the task at hand . If the task is to enter a number , we
 should be able to place a generic number entry mechanism in the interface . However ,
 typically , once the specific number entry widget , such as a slider or dial , is decided
 on , it is fixed in the interface .

 We can use lenses to design interfaces at the level of specific tasks . For example ,
 we have designed a pair of number entry lenses for Pad 11 that can change a generic
 number entry mechanism into a slider or dial , as the user prefers . By default the
 generic number entry mechanism allows entering a number by typing . However ,
 dragging the slider lens over it changes the representation of the number from text to a
 slider , and now the mouse can be used to change the number . Another lens shows the
 data as a dial and lets you modify that with a mouse as well .

 B . B . BEDERSON ET AL . 10

 Figure 4 . Lenses that show textual data as scatter plots and bar charts

 More generally , lenses are objects that alter appearance and behavior of components
 seen through them . They can be dragged around the Pad 11 surface examining
 existing data . For example , data might normally be depicted by columns of numbers .
 However , looking at the same data through a lens could show that data as a scatter
 plot , or a bar chart (see Figure 4) .

 Lenses such as these support multiple representations so that information can be
 displayed in ways most ef fective for the task at hand . They make the notion of
 multiple representations of the same underlying data more intuitive and can be used to
 show linkages between the representations . For example , if the slider lens only
 partially covers the text number entry widge , then modifying the underlying number
 with either mechanism (text or mouse) modifies both . So typing in the text entry
 moves the slider , and vice versa .

 2 .4 . Semantic Zooming

 Once we make zooming a standard part of the interface , many parts of the interface
 need to be reevaluated . For example , we can use semantic zooming to change the way
 things look depending on their size . As we mentioned , zooming provides a natural
 mechanism for representing abstractions of objects . It is natural to see extra details of
 an object when zoomed in and viewing it up close . When zoomed out , instead of
 simply seeing a scaled down version of the object , it is potentially more ef fective to
 see a dif ferent representation of it .

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 11

 For example , we implemented a digital clock that at normal size shows the hours
 and minutes . When zooming in , instead of making the text very large , it shows the
 seconds , and then eventually the date as well . Similarly , zooming out shows just the
 hour . An analog clock (implemented as a lens that can be positioned over a digital
 clock) is similar—it does not show the second hand or the minute markings when
 zoomed out .

 Semantic zooming can take an even more active role in the interface . It can be used
 as a primary mechanism for retrieving data . We have built prototype tools for
 accessing system usage including information about the print queue , the system load
 and the users on the machine . They are depicted as small objects with labels . Zooming
 into each of them starts a process which gathers the appropriate information and
 shows it in the now larger object . Zooming out makes the information disappear and
 the data-gathering process inactive .

 3 . Visualizations

 We are exploring several dif ferent types of interactive visualizations within Pad 11 ,
 some of which are described briefly here . Each takes advantage of the variable
 resolution available for both representation and interaction .

 Layout of graphical objects within a multi-resolution space is an interesting
 problem , and is quite dif ferent than traditional fixed-resolution layout . Deciding how
 to visually represent an arbitrary graph on a non-zoomable surface is extremely
 dif ficult . Often it is impossible to position all objects near logically related objects . In
 addition , representing the links between objects often requires overlapping or crossing
 edges . Even laying out a tree is dif ficult because , generally speaking , there are an
 exponential number of children that will not fit in a fixed size space .

 Traditional layout techniques use sophisticated iterative , adaptive algorithms for
 laying out general graphs , and still result in graphs that are hard to understand . Large
 trees are often represented hierarchically with one sub-tree depicted by a single box
 that references another tree .

 Using an interactive zoomable surface , however , allows very dif ferent methods of
 visually representing large data structures . The fact that there is always more room to
 put information ‘between the cracks’ gives many more options . Pad 11 is particularly
 well suited to visualizing hierarchical data because information that is deeper in the
 hierarchy can be made smaller . Accessing this information is accomplished by
 zooming .

 3 .1 . Hypertext Markup Language (HTML)

 In traditional window-based systems , there is no graphical depiction of the
 relationship among windows even when there is a strong semantic relationship . For
 example , in many hypertext systems , clicking on a hyperlink brings up a new window
 with the linked text (or alternatively replaces the contents of the existing window) .
 While there is an important relationship between these windows (parent and child) ,
 this relationship is not represented .

 We are experimenting with multiscale layouts of hypertext document traversals
 where the parent – child relationships between links is represented visually . The layout

 B . B . BEDERSON ET AL . 12

 represents a tree that is distorted so that the page that has the focus (i . e . the one being
 looked at) is quite large . As nodes get further away from the focus , they get smaller .
 The distortion is controllable with a pop-up window . This is an example of a
 graphical fisheye view [15] . As links are followed , they are added to the tree and
 become the current focus . The view is animated so that the new node is centered and
 large enough to read .

 Pad 11 reads hypertext written in the Hypertext Markup Language (HTML) , the
 language used to describe hypertext documents used by WWW browsers such as
 Mosaic and Netscape . Pad 11 also can follow links across the internet . Figure 5
 shows a snapshot where several hypertext links have been followed . Two views show
 the same tree focused on dif ferent nodes . The Pad 11 user interface for accessing
 hypertext is similar to traditional systems , but zooming mechanisms are employed .
 There are also special mechanisms to return to an object’s parent .

 An alternative layout technique (not shown here) uses a camera with a special
 zoomed in view of the tree . The idea is to give an overview of the tree in one view
 while allowing individual pages to be read in another view . This gives both a global
 context and local detail simultaneously . The camera can be dragged around the
 overview , and the detail view is updated to see what the camera is pointing at .
 Clicking on a page causes the camera to animate to that page and , when a new page is
 brought in , the camera centers its view on it .

 This layout problem is challenging because the underlying data can be an arbitrary
 cyclic graph . Any graph can be viewed as a hierarchy by taking a single node and
 calling it the root node . Imagine taking that node and shaking the graph out . Its
 neighbors become children , and the children’s neighbors become grandchildren , etc .
 We use this approach to display HTML documents where the order of the links that
 are followed describe the particular hierarchy imposed on the data . When a cycle is
 encountered (i . e . a link is followed to a page that is already loaded) , the user is
 brought to the original copy of the page that was loaded , and the focus is put upon it .

 3 .2 . Directory Browser

 We built a zoomable directory browser as another exploration of multiscale layout .
 The directory browser provides a graphical interface for accessing the directory
 structure of a filesystem (see Figure 6) . Each directory is represented by a folder icon
 and files are represented by solid squares colored by file type . Both directories and
 files show their filenames as labels when the user is suf ficiently close to be able to read
 them . Each directory has all of its subdirectories and files organized alphabetically
 inside it . Searching through the directory structure can be done by zooming in and
 out of the directory tree , or by using the content based search mechanisms described
 above . Zooming into a file automatically loads its text or image inside the colored
 square and it can then be annotated . At any particular view , typically three levels of
 the hierarchy are visible .

 3 . 2 . 1 . Timeline

 Scale can be used to convey temporal information . Events which take place over a
 long period of time use a large scale and brief events are shown at a small scale . We
 used this notion to visualize some of the history of computing and user interfaces .

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 13

 Fi
gu

re
 5

 .
 M

an
y

di
f f

er
en

t
H

T
M

L
 d

oc
um

en
ts

 l
oa

de
d

in
 P

ad
 1

1
 . T

he
ir

 l
ay

ou
t

im
pl

ic
it

ly
 s

ho
w

s
th

e
hi

st
or

y
of

 t
he

 u
se

r’
s

in
te

ra
ct

io
n .

 T
he

 t
w

o
vi

ew
s

sh
ow

 t
he

 sa
m

e
tr

ee
 f

oc
us

ed
 o

n
di

f f
er

en
t

no
de

s

 B . B . BEDERSON ET AL . 14

 Figure 6 . A view of our file system

 The timeline visualization shows decades as large numbers . Zooming in on a decade
 reveals the years within that decade . Further zooming on a particular year shows
 events which took place during that year . Figure 7 shows a sequence of snapshots as
 the view is zoomed in .

 3 . 2 . 2 . Oval Document Layout

 Since objects on the Pad 11 surface reside at absolute locations , the relative positions
 of objects can be used to encode information . Thus , with the Pad 11 HTML
 browser , position is used to encode the order of a user’s traversal of a hypertext
 document . In the Oval Document Layout , position is used to reinforce the narrative
 structure of documents (such as guided tours) in which the reader follows a sequence
 of steps which eventually lead back to the starting point (Figure 8) .

 In this layout , the first page is placed at the bottom edge of an arc . Subsequent
 pages are placed around the edge of the arc and are drawn at a scale which reflects
 their position in the tour—middle pages are shown distant and small , whereas start
 and end pages appear larger and closer to the user .

 Navigation buttons at the bottom edge of each page are used to advance through
 the document . Clicking on a page when it is distant causes Pad 11 to pan and zoom
 so that the page fills most of the screen .

 One advantage of this layout is that as the system animates from one page to the
 next , the user can infer progress through the document by the direction of the
 animation : near the start , pages move down and to the left ; towards the end , pages
 move up and to the right .

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 15

 Figure 7 . A sequence that views the history of computers and interfaces

 The layout is also ef fective for non-linear access to pages within the document .
 Zooming out a small distance reveals the whole document , and clicking on a page
 within the document takes you to that page .

 Hotwords and hyperlink buttons in an oval document can be shown with arrows
 which point towards the destination object . Clicking on the hyperlink animates
 the Pad 11 surface in the direction indicated by the arrow , reducing the

 B . B . BEDERSON ET AL . 16

 Figure 7 . Continued

 sense of disorientation that many users experience when navigating hypertext docu-
 ments .

 The Oval document view illustrates that a pan / zoom coordinate system can lead to
 interesting new ways of laying out even traditional page based material . However , the
 layout has several drawbacks . It is only practical for relatively short documents and
 for documents which adopt a circular narrative structure .

 4 . Space-Scale Diagrams

 In an ef fort to understand multiscale spaces better , we have developed an analytical
 tool for describing them which we call space - scale diagrams . By representing the
 spatial structure of an information world at all its dif ferent magnifications simul-
 taneously , these diagrams allow us to visualize various aspects of zoomable interfaces
 and analyze their properties . We discuss these diagrams briefly here . They are
 discussed in more detail in [16] .

 While Pad 11 provides panning and zooming interactions over a two dimensional
 surface , the basic ideas of a space-scale diagram are most easily illustrated in one
 dimension . This would typically be a slice through a two-dimensional world .

 The basic one-dimensional diagram concept is illustrated in Figure 9 . This diagram
 shows six points that are copied over and over at all possible magnifications . These
 copies are stacked up systematically to create a two dimensional diagram whose
 horizontal axes represents the original spatial dimension and whose vertical axis
 represents the degree of magnification (or scale) . Because the diagram shows an
 infinite number of magnifications , each point is represented by a line emanating from

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 17

 Figure 8 . Pad 11 help screen with oval document layout

1-D Viewing Window
q v

(c)

(b)

(a)

(c)

(b)

(a)

q
'zoomed in'

'zoomed out'

u

 Figure 9 . A one dimensional space-scale diagram of six points as the view zooms in from (a) to (b) to (c)
 around point q

 B . B . BEDERSON ET AL . 18

q
v

(c)
(b)

(a)

u

 Figure 10 . Basic pan – zoom trajectories are shown in the heavy dashed lines ; (a) is pure pan , (b) is pure
 zoom , (c) is zoom around point q

 the origin . We call these lines great rays . In the 2-D analog , whole 2D pictures would
 be stacked up at all magnifications , forming a 3D space-scale diagram , with points still
 becoming great rays and 2D regions becoming cones .

 For comparison , compare this with a standard one-dimensional world . Here , a
 standard viewer is a small one-dimensional window that shows a small piece of the
 world (e . g . a view of a local-piece of a time-line) . As the window is panned around it
 moves to dif ferent parts of that time line . As it is zoomed in , it would narrow its
 scope and look at a smaller region of the time line in detail . As it is zoomed out , it
 looks at a larger section .

 In space-scale diagrams , however , while the viewing window is also represented as a
 one-dimensional segment , it has a constant size and is located at a particular place in
 both space and scale . Thus , as the user pans and zooms around the world , the viewing
 segment is moved rigidly (i . e . without changing its size) in space-scale . A whole
 sequence of such movements can be represented by a path through the space-scale
 diagram (Figure 10) . Thus , the first advantage of these diagrams is that , by reifying
 scale , they allow these multiscale movements to be represented statically and so are
 easier to analyze . For example , a pan operation becomes a horizontal part of such a
 path . A zoom becomes a movement along a great ray . Other types of movement
 correspond to curves of other characteristic shapes .

 The ability of space-scale diagrams to represent pan-zoom movements as a path in
 space-scale has allowed us to solve two concrete problems in designing good
 pan-zoom interactions . Both concern situations where the system needs to move the
 user’s view automatically to another point in the space . This might happen , for
 example , as the result of following some sort of hyperlink mechanism , or jumping to
 the result of some content-based search .

 The first problem occurs when the interface needs to not only move the user to
 some other region of the world , but also needs to zoom in . The solution to doing
 these actions in parallel , jointly panning and zooming to the new view , is not as
 simple as it might seem . However , if one simply computes how much to pan and how
 much to zoom and does the two independently in parallel , the result is disconcert-
 ingly non-monotonic . The pan covers distance at a constant pace while the zoom-in is
 magnifying the world exponentially . The result is that the target location first rushes

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 19

v

u

x1 x2

(x2, z2)

(x1, z1)

s

 Figure 11 . Solution to the simple joint pan – zoom problem . The trajectory s monotonically approaches
 point (x 2 , z 2) in both pan and zoom

 away due to the magnification , and only later does the pan catch up . Various hacks to
 fix this , taking logs and powers of various things , did not work .

 Fortunately , using space scale diagrams , a monotonic approach to the target view is
 captured by a kind of parallelogram constraint on trajectories in space-scale . In Figure
 11 , a path from (x 1 , z 1) to (x 2 , z 2) that goes outside such a parallelogram is
 non-monotonic . If the path exits the sides of the parallelogram , it will violate the
 monotonicity requirement in space . If the path exits the top or bottom of the
 parallelogram , it will violate the monotonicity requirement in zoom . A simple path
 that is monotonic is just the diagonal of this parallelogram . A simple coordinate
 transform that defines these diagrams (given in [16]) allows one to define this path
 analytically , and yields a rather unintuitive hyperbolic relationship between the two .
 We have implemented the trajectory derived from the space-scale diagram analysis
 and have indeed found it far superior to any uninformed ef fort .

 A second pan-zoom problem concerns the notion of shortest paths between two
 points in this pan-zoom parameter space . This is a curious question because , in
 space-scale motions , the shortest distance between two points is not generally a
 straight line . This is because while panning may be expected to take a time or have a
 cost that is linear in the spatial separation , zoom is logarithmic so that the fastest
 way to get from some point p to some point q that is far away would be very tedious
 by pan alone . It is in fact much shorter to zoom out , make a small pan , and then
 zoom in (see Figure 12 .) Inspired by the space-scale diagrams we were able to define
 an information theoretic metric over space-scale interactions : the cost of a path is a
 function of the number of bits that would take to transmit a movie of the motion .
 Then we addressed the question of finding good paths through the space , i . e . make
 the movie as small as possible . We found that for points less than a few window
 widths away , a pure panning motion is pretty good , but for points far away , zoom
 must play a major role .

 Another use of space-scale diagrams is to represent semantic zooming , where
 objects change not just their size but also their appearance when they are magnified .
 For example , an object could appear as a point when small . As it grows , it could then
 in turn appear as a solid rectangle , then a labeled rectangle , then a page of text , etc .

 B . B . BEDERSON ET AL . 20

q
v

u

(a)

(b)

(c)

(d)

 Figure 12 . The shortest path between two points is often not a straight line . Here , each arrow represents
 one unit of cost . Because zoom is logarithmic , it is often shorter to zoom out (a) , make a small pan (b) and

 zoom back in (c) , than to make a large pan (d)

 Figure 13 shows how semantic zooming dif fers from ordinary geometric zooming , in
 that the triangular regions change along the scale axis . By explicitly representing scale ,
 the scale-dependent aspects of an object’s representation can be made visible . We
 intend to use such diagrams to help create semantically zoomable objects . The idea is
 to provide an editing environment where transition boundaries could be moved or
 aligned by direct manipulation .

 All these uses of multiscale diagrams capitalize on the fact that they statically
 represent scale so that multiscale concepts , which are inherently temporal , are more
 readily analyzed .

v

(c)(2)

u

(3) (d)

(b)

(a)(1)

(d)(3)

(c)(2)

(b)(1, a)
 Figure 13 . Semantic zooming . Bottom slices show views at dif ferent points

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 21

 5 . Procedural Animation

 We are also using Pad 11 as a substrate for building user-definable animated objects
 such as complex interface widgets . We have recently applied the same techniques to
 create animated human-like actors [27] . Although the widgets are much simpler , we
 employ the same mechanisms that allow us to control human-like movements and
 gestures to simulate personality and intentionality . The ultimate goal is to support an
 informational physics in which objects animate naturally . Using these tools , the
 Pad 11 application designer can always convey to the user a clearly structured
 animated narrative instead of merely an assortment of disjoint temporal events .

 We approach this goal by providing a mechanism for the definition of moveable
 graphical objects . In addition , we define high-level hierarchical control mechanisms
 for the movements . We are starting to define simple widgets such as buttons and
 sliders at a behavioral level that makes it easier for application developers to easily
 change the look and feel of an application . While the widget definitions we supply
 have a traditional Motif-like look and feel , a designer can easily change their visual
 style or interaction mechanism .

 In addition , we are exploring novel widgets that take advantage of the Pad 11
 zooming environment . We used our extension mechanisms to implement a choice
 widget that provides an alternative to the traditional pop-up menu . Figure 14 shows
 two views of the same widget . The view on the left shows a zoomed out view . Here
 the widget just shows its current value . On the right we have zoomed into the widget
 and now the available choices become visible for user selection .

 These widgets are implemented with our KPL rendering language . This language
 was designed to allow very fast run-time recompilation compact representation and
 ef ficient execution (roughly 100 times faster execution time than Tcl) . It is a post-fix

 Figure 14 . A prototype zoomable choice widget

 B . B . BEDERSON ET AL . 22

 stack language whose simple structure allows execution roughly 10 times faster than
 other interpreted or byte-compiled languages . KPL’s speed allows us to execute
 scripts during each render . Without this ef ficient mechanism , we would only be able
 to render items pre-defined in the C 11 substrate .

 The next step uses KPL to create complex animations by the definition of simple
 repetitive motions of objects based on stochastic processes along with a built-in
 mechanism to make an automatic transition between dif ferent motions . The stochastic
 processes are defined by rotation axes , periods and magnitudes with some coherent
 noise [27] applied to give more natural behavior . The mechanism to change between
 motions gives the hierarchical control described above .

 By changing the parameters of the stochastic movement in response to the
 environment and chaining sequences of motions , together with the transitioning
 mechanism , we are able to build complex animated behavior in the user interface .

 We handle transitions between two actions having dif ferent tempos via morphing
 approach . At the start of the transition , we use the tempo of the first action , and at the
 end , we use the tempo of the second action . During the time of the transition , we
 continuously vary the speed of the master clock from the first to the second tempo . In
 this way , any phase dependent synchronization of the two actions is always preserved
 during transitions . We may also define new actions as extended transitions between
 two or more other actions . When there are multiple actors , each actor maintains its
 own individual tempo .

 A related notion that we are exploring is peripheral attention . How does an actor
 convey that a process is proceeding normally or abnormally , without distracting the
 user from his / her current tasks? This is especially important in a zoomable
 environment where the ability to provide peripheral awareness of processes is an
 important attribute of the paradigm .

 We are also studying the semantics of the discrete state transitions that visually
 represent shifts in attention . In this way an actor on the Pad 11 surface can quickly
 convey to users which other actors and users it is interacting with . We are also
 interested in determining to what extent we can encode the texture of interactions in
 order to convey the visual impression of complex activities going on at dif ferent scales
 without requiring all the detail to be specified . We suspect that some of the same
 techniques used in character animation might be ef fective here too .

 6 . Implementation

 Pad 11 is implemented in C 11 under various versions of the Unix operating system
 using the standard X graphics library system . It currently runs on SGIs , Suns , IBM
 RS-6000s , PCs running Linux , and should be trivially portable to other Unix systems .
 Pad 11 is implemented as a widget in Tcl / Tk and thus allows applications to be
 written in the interpreted Tcl language . All Pad 11 features are accessible through Tcl
 making it unnecessary to write any C 11 code for new applications .

 6 .1 . Ef ficiency

 In order to keep the animation frame-rate up as the dataspace size and complexity
 increases , we utilized several standard ef ficiency methods in our implementation

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 23

 which taken together create a powerful system . We have successfully loaded over
 600 000 objects (with the directory browser) and maintained interactive rates of about
 10 frames per second . Even when objects are not visible , appropriate checks must be
 done each time there is movement to see if those objects should now be visible . The
 key is that the rendering system takes a time roughly proportional to the number of
 visible objects , independent of the number of objects in the database (on average) .

 Briefly , the ef ficiency methods we use in Pad 11 include :

 $ Spatial Indexing : Objects are stored internally in a hierarchy based on bounding
 boxes which allow fast indexing to visible objects .

 $ Clustering : Pad 11 automatically restructures the hierarchy of objects to
 maintain a balanced tree which is necessary for the fastest indexing .

 $ Refinement : Renders fast while navigating by using lower resolution , and not
 drawing very small items . When the system is idle for a short time , the scene is
 successively refined , until it is drawn at maximum resolution .

 $ Level-Of-Detail : Renders items dif ferently depending on how large they appear
 on the screen . If they are small , renders them with lower resolution .

 $ Region Management : Only updates the portion of the screen that has been
 changed . Linked with refinement , this allows dif ferent areas of the screen to
 refine independently .

 $ Clipping : Only renders the portions of large objects that are actually visible .
 This applies to images and text .

 $ Adjustable Frame Rate : Animations and zooming maintain constant perceptual
 flow , independent of processor speed , scene complexity , and window size . This is
 accomplished by rendering more or fewer frames , as time allows .

 $ Interruption : Slow tasks , such as animation and refinement , are interruptible by
 certain input events (such as key-presses and mouse-clicks) . Animations are
 immediately brought to their end state and refinement is interrupted , immedi-
 ately returning control to the user .

 $ Ephemeral Objects : Certain objects that represent large disk-based datasets
 (such as the directory browser) can be tagged ephemeral . They will automatically
 get removed when they have not been rendered for some time , and then will get
 reloaded when they become visible again .

 $ Optimized Image Rendering : The code to render zoomed images has been very
 carefully optimized and allows real-time zooming of high-resolution images .

 6 .2 . Scripting Language Interface

 An important consideration in the design and implementation of Pad 11 is how to
 create a very fast and ef ficient graphics system , and yet still make it extensible . We
 wanted to make sure that we and others would be able to experiment easily with new
 interface mechanisms . Originally , Pad 11 was implemented entirely in C 11 , making
 it very dif ficult for anyone but the authors to add new objects and interactions . Even
 for the authors , going through the compile and link cycle was very slow and tedious ,
 making it dif ficult to do much experimentation .

 We decided to create an interpreted scripting language interface to Pad 11 to get
 around this problem . This approach is becoming quite common , and works well as
 long as the scripting language is at the right level . On one side , you want as much as

 B . B . BEDERSON ET AL . 24

 possible to be in the scripting language so that the system is as easy to modify as
 possible . On the other side , it is critical that all speed-critical code be written as
 ef ficiently as possible . In a system like ours , there are three classes of code , each of
 which have dif ferent speed requirements :

 $ Create objects : Slow—Scripting language is fine
 $ Handle events : Medium—Small amount of scripting language is ok
 $ Render scene : Fast—C 11 or byte-compiled languages only

 Rendering is done in C 11 (for built-in Pad 11 items) or in an ef ficient byte-
 compiled language such as KPL (for user defined widgets or animated items) . This
 results in animation performance which is quite good , even on Linux based PC
 platforms .

 We chose Tcl [24] as our primary scripting language , largely because it comes in
 combination with Tk , a Motif-like library for creating graphical user interfaces .
 Pad 11 is built as a new widget in Tk . This allows it to be used in combination with
 standard , non-zooming widgets such as menubars , buttons , slidets , etc . This lets us
 make complete applications while we build and debug widgets within Pad 11 . Just as
 importantly , it provides a mechanism to compare zoomable interfaces with traditional
 interface mechanisms in the same system .

 The Tcl interface to Pad 11 is designed to be very similar to the interface to the Tk
 Canvas widget (which provides a surface for drawing structured graphics) . While
 Pad 11 does not implement everything in the Tk Canvas yet , it adds many extra
 features . The Tcl interface to Pad 11 is summarized here to give a feel for what it is
 like to program Pad 11 .

 We are also experimenting with other scripting languages which are better suited to
 some tasks—primarily those requiring higher speeds . As mentioned previously , we
 use KPL for high-speed animations . We also are considering incorporating an
 alternative language , such as Scheme or Java , for more general programming which
 needs high speed interaction .

 6 .3 . TCL Interface

 There are many commands that create and manipulate objects , each referring to the
 object’s unique integer id . Objects may be grouped by using tags , a mechanism for
 associating data with each object . Every command can be directed to either a specific
 object id or to a tag , in which case it will apply to all objects that share that tag . Each
 Pad 11 widget has its own name , and all commands start with the name of that
 widget . In the examples that follow , the name of the widget is . pad .

 Examples :

 $ A red rectangle with a black outline is created whose corners are at the points
 (0 , 0) and (200 , 100) :
 . pad create rectangle 0 0 200 100 -fill red -pen black

 $ Put item number 5 at the point (30 , 30) , make the object twice as big , and make
 the object anchored at that point on its northwest corner :
 . pad itemconfig 5 -anchor nw -place ‘ ‘30 30 2’ ’

 $ Specify that item number 5 should be visible only when its largest dimension is
 greater than 20 pixels and less than 100 pixels .
 . pad itemconfig 5 -minsize 20 -maxsize 100

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 25

 It is straightforward to get scripts evaluated when specific events hit objects or groups
 of objects . Simple macros get expanded within the event script to specify information
 specific to that event . Some examples follow :

 $ Make all items with tag foo turn blue when the left button of the mouse is
 pressed over any of those objects :
 . pad bind foo k ButtonPress-1 l h
 . pad itemconfig foo -fill blue

 j
 $ This is a single event binding for a group of objects that af fects just the object

 clicked on , using the macro ‘ %O ’ to expand to the specific object :
 . pad bind foo k ButtonPress-1 l h
 . pad itemconfig %O -fill blue

 j

 Some basic navigation and searching mechanisms are provided by the Tcl interface . A
 few basic ones are :

 $ Smoothly go to the location (100 , 0) with a magnification of 5 , and take 1000
 milliseconds for the animation :
 . pad moveto 100 0 5 1000

 $ Smoothly go to the location such that object number 37 is centered , and fills
 three quarters of the screen , and take 500 milliseconds for the animation :
 . pad center 37 500

 $ Return the list of objects ids that contain the text ‘foo’
 . pad find withtext foo

 6 .4 . Events

 As briefly mentioned , it is possible to attach event handlers to items on the Pad 11
 surface so that when a specific event (such as ButtonPress , KeyPress , etc .) hits an
 item , the appropriate event handler is evaluated . This system operates much as it does
 with the Tk Canvas widget , but there are several significant additions :

 $ Extra Macro Expansions
 When a command is invoked , several substitutions are made in the text of the
 command that describe the specific event that invoked the command . In addition
 to the substitutions that the Tk bind command makes , Pad 11 makes a few
 more . These include mechanisms to find the pad widget and item that actually
 received the event , the coordinates of the event in Pad 11 coordinates , which
 portals the event went through , and a few other related items .

 $ New Events
 Several new events were created that get fired at special times , depending on the
 semantics of the event . k Create l gets fired whenever new Pad 11 items are
 created . k Modify l gets fired whenever an item is modified . k Delete l gets fired
 whenever an item is deleted . k Write l gets fired whenever an item is written out
 with the Pad 11 write command . k PortalIntercept l gets fired just before an event
 passes through a portal . If the event handler executes the break command , then
 the event stops at the portal and does not pass through .

 B . B . BEDERSON ET AL . 26

 $ User-Specified Modifiers
 Event handlers are defined by sequences of the same format as the Tk bind
 command . A sequence contains a list of modifiers which are direct mappings
 hardware such as the shift key , control key , etc . Event handlers only fire
 sequences with modifiers that are active , as defined by the hardware .

 Pad 11 allows user-defined modifiers where the user can control which one
 of the user-defined modifiers is active (if any) . The advantage of modifiers is
 that many dif ferent sets of event bindings may be declared all at once—each
 with a dif ferent user-defined modifier . Then , the application may choose which
 set of event bindings is active by setting the active user-defined modifier . This
 situation comes up frequently with many graphical programs where there are
 modes , and the ef fect of interacting with the system depends on the current
 mode .

 6 .5 . Callbacks

 In addition to the event bindings that every item may have , every Pad 11 item can
 define Tcl scripts associated with it which will get evaluated at special times . There are
 currently three types of these callbacks :

 $ Render Callbacks
 A render callback script gets evaluated every time the item is rendered . The script
 gets executed when the object normally would have been rendered . By default ,
 the object will not get rendered , but the script may render the object at any time
 with the renderitem function . An example follows where item number 22 is
 modified to call the Tcl procedures beforeMethod and afterMethod surrounding
 the object’s rendering .
 . pad itemconfig 22 -renderscript h
 beforeMethod
 . pad renderitem
 afterMethod

 j
 Instead of calling the renderitem command , an object can render itself .
 Several rendering routines are available to render scripts , making it possible to
 define an object that has any appearance whatsoever . Items which define a
 render script are called procedural objects and are used for creating animated
 objects (those that change the way they look on every render) and custom
 objects . They also can be used to implement semantically zoomable objects ,
 since the size of an object is available within the callback .

 $ Timer Callbacks
 A timer callback script gets evaluated at regular intervals , independent of
 whether the item is being rendered , or receiving events .

 $ Zooming Callbacks
 Zooming callback scripts are evaluated when an item gets rendered at a
 dif ferent size than its previous render , crossing a pre-defined threshold . These
 are typically used for creating ef ficient semantically zoomable objects . Since
 many objects do not change the way they look except when crossing size
 borders , it is more ef ficient to avoid having scripts evaluated except for when
 those borders are crossed .

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 27

 6 .6 . Extensions

 Pad 11 is extensible with Tcl scripts (i . e . no C / C 11 code) . This provides an easy to
 use mechanism to define new Pad 11 commands as well as compound object types
 that are treated like first-class Pad 11 objects . That is , they can be created ,
 configured , saved , etc ., with the same commands you use to interact with built-in
 objects , such as lines or text . These extensions are particularly well-suited for widgets ,
 but can be used for anything .

 Extensions are defined by creating Tcl commands with specific prefixes . Each
 extension is defined by three commands which allow creation , configuration and
 invocation of the extension , respectively . Defining the procedures makes them
 automatically available to Pad 11 . No specific registration is necessary . All three
 procedure definitions are necessary for creation of new Pad 11 object types , but it is
 possible to define just the command procedure for defining new commands without
 defining new object types .

 7 . Physics-Based Strategies For Interface Design
 Exploration of Pad 11 is part of a research program to develop alternative strategies
 for interface design . Our goal is to move beyond mimicking the mechanisms of earlier
 media and to start to more fully exploit radical new computer-based mechanisms . We
 propose an information physics view of interface objects that we think provides an
 ef fective complement to traditional metaphor-based approaches .

 While an informational physics strategy for interface design certainly involves
 metaphor , we think there is much that is distinctive about a physics-based approach .
 Traditional metaphor-based approaches map at the level of high-level objects and
 functionality . They yield interfaces with objects such as windows , trash cans and
 menus , and functions like opening and closing windows and choosing from menus .
 While there are ease-of-use benefits from such mappings , they also orient designers
 towards mimicking mechanisms of earlier media rather than towards exploring
 potentially more ef fective computer-based mechanisms . Semantic zooming is but one
 example mechanism that we think arises more naturally from adopting an informa-
 tional physics strategy . Even geometric zooming , especially with the orders of
 magnitude possible in Pad 11 , is not a mechanism that traditional metaphors would
 lead designers to investigate .

 We are not the first to follow a physics-inspired course in thinking about interface
 design . It derives , like most interesting interface ideas , from the seminal work of
 Sutherland [31] on Sketchpad . Simulations and constraint-based interfaces that led to
 the development of direct manipulation style interfaces are other examples of this
 general approach . They too derive from Sutherland and continue to inspire
 developments . Recent examples include the work of Borning and his students [5 , 6] .
 Witkin [33] in particular has taken a physics-as-interface approach to construction of
 dynamic interactive interfaces .

 Smith’s Alternate Reality [28 , 29] and languages such as Self [32] are also examples
 of following a physics-based strategy for interface design . These systems make use of
 techniques normally associated with simulation to help ‘blur the distinction between
 data and interface by unifying both simulation objects and interface objects as
 concrete objects’ [9] . More importantly , they are based on implementation of
 mechanisms at a dif ferent level than is traditional . Smith , for example , gives users

 B . B . BEDERSON ET AL . 28

 access to control of parameters of the underlying physics in his Alternate Reality Kit .
 With this approach comes the realization that one can do much more than just mimic
 reality . As Chang and Unger [9] point out about their use of cartoon animation
 mechanisms in Self , ‘adhering to what is possible in the physical world is not only
 limiting , but also less ef fective in achieving realism . ’

 It is important to look at the costs as well as the benefits of traditional ,
 metaphor-based strategies . They can lead away from exploration of new mechanisms
 and limit views of possible interfaces in at least four ways .

 First , metaphors necessarily pre-exist their use . Pre-Copernicans could never have
 used the metaphor of the solar system for describing the atom . In designing interfaces ,
 one is limited to the metaphorical resources at hand . In addition , the metaphorical
 reference must be familiar in order to work . An unfamiliar interface metaphor is
 functionally no metaphor at all . One can never design metaphors the way one can
 design self-consistent physical descriptions of appearance and behavior . Thus , as an
 interface design strategy physics , in the sense described above , of fers more design
 options than traditional metaphor-based approaches .

 Second , metaphors are temporary bridging concepts . When they become ubi-
 quitous , they die . In the same way that linguistic metaphors lose their metaphorical
 impact (e . g . foot of the mountain or leg of table) , successful metaphors also wind up
 as dead metaphors (e . g . file , menu , window , desktop) . The familiarity provided by the
 metaphor during earlier stages of use gives way to a familiarity with the interface due
 to actual experience .

 Thus , after a while , it is the actual details of appearance and behavior (i . e . the
 physics) rather than any overarching metaphor that form much of the substantive
 knowledge of an experienced user . Any restrictions that are imposed on the behaviors
 of the entities of the interface to avoid violations of the initial metaphor are potential
 restrictions of functionality that may have been employed to better support the users’
 tasks and allow the interface to continue to evolve along with the users’ increasing
 competency .

 Similarly , the pervasiveness of dead metaphors , such as files , menus and windows ,
 may well restrict us from thinking about alternative organizations of interaction with
 the computer . There is a clash between the dead metaphor of a file and newer
 concepts of persistent distributed object hierarchies .

 Third , since the sheer amount and complexity of information with which we need
 to interact continues to grow , we require interface design strategies that scale . A
 traditional metaphor-based strategy does not scale . A physics approach , on the other
 hand , scales to organize greater and greater complexity by uniform application of sets
 of simple laws . In contrast , the greater the complexity of the metaphorical reference ,
 the less likely it is that any particular structural correspondence between metaphorical
 target and reference will be useful . We see this often as designers start to merge the
 functionality of separate applications to better serve the integrated nature of complex
 tasks . Metaphors that work well with the individual simple component applications
 typically do not integrate smoothly to support the more complex task .

 Fourth , it is clear that metaphors can be harmful as well as helpful since they may
 well lead users to import knowledge not supported by the interface . Our point is not
 that metaphors are not useful but that , as the primary design strategy , they may well
 restrict the range of interfaces designers consider and impose less ef fective trade-of fs

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 29

 than those designers might come to if they were led to consider a larger space of
 possible interfaces .

 There are , of course , also costs associated in following a physics-based design
 strategy . One cost is that designers can no longer rely as heavily on users’ familiarity
 with the metaphorical reference (at least at the level of traditional objects and
 functionality) , and so physics-based designs may take longer to learn . However , the
 power of metaphor comes early in usage and is rapidly superceded by the power of
 actual experience . One might want to focus on easily discoverable physics . As is the
 case with metaphors , all physics are not created equally discoverable or equally fitted
 to the requirements of human cognition .

 8 . Future Directions

 To adequately explore the ef fectiveness of the Pad 11 substrate and the informational
 physics design strategy discussed here will require development of a wide range of
 applications . One domain we plan to investigate is construction of active documents .
 Most tools for interacting with documents (like World-Wide Web browsers such as
 Mosaic and Netscape) predefine all of the interactive widgets within the client . Hooks
 are provided so that documents may access those widgets but there is no method to
 provide new ones , except to re-define the standards , modify the client and distribute
 the client to enough of the user population so it becomes the new standard in practice .

 Pad 11 ’s extensibility ensures that new widgets can be defined by scripts which can
 be included with a document . This will allow documents to provide new forms of
 interactivity without depending on the client to supply it . We are currently in the
 design stages of an extension to HTML , we call the MultiScale Markup Language
 (MSML) , that will be the markup language to describe documents within Pad 11 .
 MSML will allow logical formatting of documents with dif ferent sized components
 and will provide a method for allowing Pad 11 scripts to be included with
 documents—allowing truly active documents .

 In addition to data visualizations , we are investigating the use of Pad 11 as a
 replacement for the standard windowing system . PadWin currently consists of a few
 basic semantically zoomable gauges which display statistics such as the list of tasks
 being scheduled , the state of the printer queue or the names of people who are logged
 on . We intend to extend these tools so that most of the computers resources and
 facilities are accessible through navigation within PadWin . We are also producing a
 suite of zoomable applications for use in PadWin .

 In order to support existing non-zoomable applications , PadWin will incorporate a
 mechanism to control the placement of application windows on the screen to make
 them blend into the Pad 11 surface . By mapping , unmapping and moving these
 windows appropriately , PadWin will act as an extended virtual window manager
 where the ef fective screen size is huge , and where zoomable and non-zoomable
 applications reside side by side .

 Pad 11 also seems well-suited to a collaborative work environment . While the
 original Pad implementation allowed some basic shared workspaces (running from a
 single process displaying on multiple X servers) , we are designing a more sophisti-
 cated approach . The goal is to be able to use portals to look remotely on to any
 Pad 11 surfaces on the network (assuming that the right permissions are set) . Each

 B . B . BEDERSON ET AL . 30

 user’s system will contain a spatial database server that will send updates to all other
 systems that have portals looking on to it . With this approach , there may be a lag in
 retrieving others’ data but , once it arrives , it will be cached within the local system so
 the high-speed interactivity of Pad 11 will not be lost .

 Finally , we are building a completely visual interface to Pad 11 for creation of an
 interactive visual dataspace . Multimedia authoring tools such as MacroMedia
 Director T M and Apple’s Multimedia Authoring Tool T M are letting visual designers
 without programming experience create beautiful and complex interactive hypertext
 data retrieval systems . As we discussed with the layout of HTML , however , having a
 huge data surface potentially alleviates some of the problems of navigating within a
 large hypertext document . To this end , we are building a set of tools that will allow
 non-technical visual designers to create interactive zoomable multimedia systems .

 9 . Availability
 The Pad 11 substrate is approaching the point where we can start to make it available
 to a wider community . Our goal is to make it freely available for non-commercial use .
 See the Pad 11 project home page (http : / / www . cs . unm . edu / pad 11) for current
 information .

 Acknowledgments
 This work was supported in part by ARPA contract N66001-94-C-6039 to the
 University of New Mexico . We especially appreciate the support we have received
 from Craig Wier as part of the new HCI Initiative at ARPA . We thank David Fox
 and Matthew Fuchs at NYU and Eric De Mund , David Vick and Jason Stewart at
 UNM for enjoyable discussions about zoomable interfaces . We also would like to
 acknowledge members of the Computer Graphics and Interactive Media Research
 Group at Bellcore for discussions shared during our continuing search for the best
 cheeseburger .

 References
 1 . R . M . Baecker (1990) Human factors and typography for more readable programs . ACM

 Press , Denver .
 2 . B . B . Bederson , L . Stead & J . D . Hollan (1994) Pad 11 : Advances in multiscale interfaces .

 In : Proceedings of ACM SIGCHI Conference (CHI ’ 9 4) . Addison-Wesley , Reading , MA .
 3 . B . B . Bederson & J . D . Hollan (1994) Pad 11 : A zooming graphical interface for exploring

 alternate interface physics . In : Proceedings of ACM Symposium on User Interface Software
 and Technology (UIST ’ 9 4) . ACM Press , New York .

 4 . E . A . Bier , M . C . Stone , K . Pier , W . Buxton & T . D . DeRose (1993) Toolglass and magic
 lenses : the see-through interface . In : Proceedings of ACM SIGGRAPH Conference (Sigraph
 ’ 9 3) . Addison-Wesley , Reading , MA .

 5 . A . Borning (1979) Thinglab : a constraint - oriented simulation laboratory . Technical Report
 SSL-79-3 , Xerox Palo Alto Research Center .

 6 . A . Borning & R . Duisberg (1986) Constraint-based tools for building user interface . ACM
 Transactions on graphics , 5(4) , 345 – 374 .

 7 . R . Brooks (1986) A robust layered control system for a mobile robot . IEEE Journal of
 Robotics and Automation 2(1) , 14 – 23 ,

 8 . S . K . Card , G . G . Robertson & J . D . Mackinlay (1991) The information visualizer , an
 information workspace . In : Proceedings of ACM Human Factors in Computing Systems
 Conference (CHI ’ 9 1) . Addison-Wesley , Reading , MA .

 PAD 11 : A ZOOMABLE GRAPHICAL SKETCHPAD 31

 9 . B . -W . Chang & D . Ungar . Animation : from cartoons to the user interface . In : Proceedings
 of ACM Symposium on User Interface Software and Technology (UIST ’ 9 3) . ACM Press ,
 New York .

 10 . S . Deerwester , S . T . Dunais , G . W . Furmas , T . K . Landauer & R . Harshman (1990)
 Indexing by latent semantic analysis . In : Journal of American Society of Information Science
 41 , 391 – 407 ,

 11 . W . C . Donelson (1978) Spatial management of information . In : Proceedings of 1 9 7 8 ACM
 SIGGRAPH Conference . Addison-Wesley , Reading , MA .

 12 . D . Ebert , Texturing and Modeling , A Procedural Approach . Academic Press , London .
 13 . S . G . Eick , J . L . Stef fen & E . E . Sumner , Jr (1992) Seesoft : a tool for visualizing

 line-oriented software statistics . In : IEEE Transactions on Software Engineering 18(11) ,
 957 – 968 .

 14 . K . M . Fairchild , S . E . Poltrock & G . W . Furnas (1980) SemNet : three-dimensional graphic
 representations of large knowledge bases . In : Cognitive Science and its Applications for
 Human - Computer Interaction . Lawrence Erlbaum Associates , Princetown .

 15 . G . W . Furnas (1986) Generalized fisheye views . In : Proceedings of 1 9 8 6 ACM SIGCHI
 Conference . Addison-Wesley , Reading , MA .

 16 . G . W . Furnas & B . B . Bederson (in press) Space-scale diagrams : understanding multiscale
 interfaces . In : Proceedings of ACM SIGCHI ’ 9 5 . Addison-Wesley , Reading , MA .

 17 . M . Gleicher (1992) Briar : a constraint-based drawing program . In : CHI ’ 9 2 Formal Video
 Program . Addison-Wesley , Reading , MA .

 18 . W . C . Hill , J . D . Hollan , D . Wroblewski & T . McCandless (1992) Edit wear and read wear .
 In : Proceedings of ACM SIGCHI ’ 9 2 . Addison-Wesley , Reading , MA .

 19 . W . C . Hill & J . D . Hollam (1994) History-enriched digital objects : prototypes and policy
 issues . The Information Society , 10 , 139 – 145 .

 20 . J . D . Hollan , E . Rich , W . Hill , D . Wroblewski , W . Wilner , K . Wittenburg , J . Grudin &
 Members of the Human Interface Laboratory (1991) An introduction to HITS : human
 interface tool suite . In : Intelligent User Interfaces (Sullivan & Tyler , eds) pp . 293 – 337 .

 21 . J . D . Hollan & S . Stornetta (1993) Beyond being there . In : Proceedings of the ACM
 SIGCHI ’ 9 2 . Addison-Wesley , Reading , MA .

 22 . G . Lakof f & M . Johnson (1980) Metaphors We Live By . University of Chicago Press ,
 Illinois .

 23 . J . D . Mackinlay , G . G . Robertson & S . K . Card (1991) The perspective wall ; detail and
 context smoothly integrated . In : Proceedings of CHI ’ 9 1 Human Factors in Computing
 Systems . Addison-Wesley , Reading , MA .

 24 . J . K . Ousterhout (1994) Tcl and the Tk Toolkit . Addison Wesley , New York .
 25 . K . Perlin & D . Fox (1993) Pad : an alternative approach to the computer interface . In :

 Proceedings of 1 9 9 3 ACM SIGGRAPH Conference . Addison-Wesley , Reading , MA .
 26 . K . Perlin (1985) An image synthesizer . In : Proceedings of ACM SIGGRAPH ’ 8 5 19 ,

 287 – 293 .
 27 . K . Perlin (1994) Danse interactif . In : Video Proceedings of ACM SIGGRAPH ’ 9 4 , 28(3) .
 28 . R . B . Smith (1986) The alternate reality kit : an animated environment for creating

 interactive simulations . In : Proceedings of the 1 9 8 6 IEEE Computer Society Workshop on
 Visual Languages , Rome .

 29 . R . B . Smith (1987) Experiences with the alternate reality kit : an example of the tension
 between literalism and magic . In : Proceedings of ACM CHI 1 GI ’ 8 7 Conference . ACM
 Press , New York .

 30 . M . C . Stone , K . Fishkin & E . A . Bier (in press) The movable filter as a user interface tool .
 In : Proceedings of ACM SIGCHI ’ 9 4 . Addison-Wesley , Reading , MA .

 31 . I . E . Sutherland (1963) Sketchpad : A man-machine graphical communications systems . In :
 Proceedings of the Spring Joint Computer Conference . Spartan Books , Baltimore , pp .
 329 – 346 .

 32 . D . Ungar & R . B . Smith (1987) Self : The Power of Simplicity . In : Proceedings of OOPSLA
 ’ 8 7 Conference .

 33 . A . Witkin , M . Gleicher & W . Welch (1990) Interactive dynamics . Computer Graphics
 24(2) , 11 – 21 .

