
The Connection Machine

by
William Daniel Hillis

M.S., B.S., Massachusetts Institute of Technology

(1981, 1978)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

June 1985

@W. Daniel Hillis, 1985
The author hereby grants to M.I.T. permission to reproduce and to

distribute publicly copies of this thesis document in whole or in part.

Signature of Author. Department of Electrical Engineering and Computer Science

May 3, 1985

Certified byG
Prc tsor Gerald Sussmnan, Thesis Supervisor

Acceptd by 'hairman, Ifepartment Committee

MASSACHUSETTS INSTiTUTE
OF TECHNOL.OGY

MAR 2 21988 I

UDIWaS

The Connection Machine

by

W. Daniel Hillis

Submitted to the Department of
Electrical Engineering and Computer Science

on May 3, 1985
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

Someday, perhaps soon, we will build a machine that will be able to perform
the functions of a human mind, a thinking machine. One of the many prob-
lems that must be faced in designing such a machine is the need to process
large amounts of information rapidly, more rapidly than is ever likely to
be possible with a conventional computer. This document describes a new
type of computing engine called a Connection Machine, which computes
through the interaction of many, say a million, simple identical process-
ing/memory cells. Because the processing takes place concurrently, the
machine can be much faster than a traditional computer.

Thesis Supervisor: Professor Gerald Sussman

2

Contents

1 Introduction

1.1 We Would Like to Make a Thinking Machine

1.2 Classical Computer Architecture Reflects Obsolete Assumptions

Concurrency Offers a Solution ... 0.

Deducing the Requirements From an Algorithm

The Connection Machine Architecture.....

Issues in Designing Parallel Machines......

Comparison With Other Architectures.....

The Rest of the Story..............

Bibliographic Notes for Chapter 1.0......

.. . a. 9. 0. 6. 1. 9. a. a. 0. 1. . 10

.. . a. 0. 0. 9. 9. 9. a. 0. 0. 9. 9. 15

21

. . . 25

28

30

31

2 How to Program a Connection Machine

2.1 Connection Machine Lisp Models the Connection Machine........

2.2 Alpha Notation..........

2.3 Beta Reduction............

2.4 Defining Data Structures with Defstruct (Background) .. R..

2.5

2.6

2.7

2.8

An Example: The Path-Length Algorithm.............

Generalized Beta (Optional Section)................

CmLisp Defines the Connection Machine............. .

Bibliographic Notes for Chapter 2...a. .0.....

33

33

38

42

42

.. . 1. . 44

46

48

. . .48

3 Design Considerations 50

3.1 The Optimal Size of a Processor/Memory Cell.. 51

3.2 The Communications Network................8.9..........54

3.3 Choosing a Topology........ 55

3.4 Tour of the Topology Zoo.......a.I...................... 56

3.5 Choosing A Routing Algorithm.... 59

3.6 Local versus Shared Control...... 60

3.7 Fault Tolerance............. 62

3.8 Input/Output and Secondary Storage.. 63

3.9 Synchronous versus Asynchronous Design..... 64

3.10 Numeric versus Symbolic Processing 64

3.11 Scalability and Extendability .. op. 65

3

1.3

1.4

1.5

1.6

1.7

1.8

1.9

6

6

9

3.12 Evaluating Success W........

3.13 Bibliographic Notes for Chapter 3..........

Prototype

The Chip...........

The Processor Cell

The Topology. .I..

Routing Performance

The Microcontroller

Sample Operation: Addition

5 Data Structures for the Connection Mac

5.1 Active Data Structures

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

hine

. . . .

.l . .

Sets

Bit Representation of Sets

Tag Representation of Sets

Pointer Representation of Sets

Shared Subsets.........

Trees.4....0...........

Optimal Fanout of Tree

Butterflies............

Sorting On A Butterfly . . .0

Induced Trees.........

Strings.....0..........

Arrays..............

Matrices.........

5.15 Graphs.

5.16 Bibliographic Notes for Chaptcr5

6 Storage Allocation and Defect

6.1 Free List Allocation......

6.2 Random Allocation0......

6.3 Rendezvous Allocation . .

6.4 Waves...............

6.5 Block Allocation...

6.6 Garbage Collection..0....

6.7 Compaction . .

Tolerance

. 1

.

.q . . .

111

111

113

114

115

117

118

.a.I.a.0.a. . .120

4

4The

4.1

4.2

4.3

4.4

4.5

4.6

87

87

87

88

89

91

92

93

95

.100

101

102

104

105

107

108

110

66

68

69

70

71

75

80

84

85

. . .

6.8 Swapping a.. 122

6.9 Virtual Cells.......... 123

6.10 Bibliographic Notes for Chapter 6........ 124

7 New Computer Architectures and Their Relationship to Physics; or,

Why Computer Science is No Good 125

7.1 Connection Machine Physics........t.........1..o.f........127

7.2 New Hope for a Science of Computation............. 129

7.3 Bibliographic Notes for Chapter 7........................131

5

Chapter 1

Introduction

1.1 We Would Like to Make a Thinking Machine

Someday, perhaps soon, we will build a machine that will be able to perform the func-

tions of a human mind, a thinking machine. One of the many problems that must be

faced in designing such a machine is the need to process large amounts of information

rapidly, more rapidly than is ever likely to be possible with a conventional computer.

This document describes a new type of computing engine called a Connection Machine,

which computes through the interaction of many, say a million, simple identical pro-

cessing/memory cells. Because the processing takes place concurrently, the machine

can be much faster than a traditional computer.

Our Current Machines Are Too Slow

While the construction of an artificial intelligence is not yet within our reach, the

ways in which current computer architectures fall short of the task are already evident.

Consider a specific problem. Let us say that we are asked to describe, in a single

sentence, the picture shown in Figure 1.1. With almost no apparent difficulty a person

is able to say something like "It is a group of people and horses." This is easy for

us. We do it almost effortlessly. Yet for a modern digital computer it is an almost

impossible task. Given such an image, the computer would first have to process the

hundreds of thousands of points of visual information in the picture to find the lines, the

connected regions, the textures of the shadows. From these lines and regions it would

then construct some sort of three-dimensional model of the shapes of the objects and

their locations in space. Then it would have to match these objects against a library of

known forms to recognize the faces, the hands, the folds of the hills, etc. Even this is

not sufficient to make sense of the picture. Understanding the image requires a great

deal of commonsense knowledge about the world. For example, to recognize the simple

waving lines as hills, one needs to expect hills; to recognize the horses' tails, one needs

to expect a tail at the end of a horse.

Even if the machine had this information stored in its memory, it would probably

not find it without first considering and rejecting many other possibly relevant pieces

6

'p

' .

-~ -- r

Figure 1.1: The Watering Place, Pablo Picasso, 1905

7

of information, such as that people often sit on chairs, that horses can wear saddles,
and that Picasso sometimes shows scenes from multiple perspectives. As it turns out,
these facts are all irrelevant for the interpretation of this particular image, but the
computer would have no a priori method of rejecting their relevance without considering
them. Once the objects of the picture are recognized, the computer would then have to
formulate a sentence which offered a concise description, This involves understanding
which details are interesting and relevant and choosing a relevant point of view. For
example, it would probably not be satisfactory to describe the picture as "Two hills,
partially obscured by lifeforms," even though this may be accurate.

We know just enough about each of these tasks that we might plausibly undertake
to program a computer to generate one-sentence descriptions of simple pictures, but the
process would be tedious and the resulting program would be extremely slow. What the
human mind does almost effortlessly would take the fastest existing computers many
days. These electronic giants that so outmatch us in adding columns of numbers are
equally outmatched by us in the processes of symbolic thought.

The Computer versus the Brain

So what's wrong with the computer? Part of the problem is that we do not yet fully
understand the algorithms of thinking. But, part of the problem is speed. One might
suspect that the reason the computer is slow is that its electronic components are
much slower than the biological components of the brain, but this is not the case.
A transistor can switch in a few nanoseconds, about a million times faster than the
millisecond switching time of a neuron. A more plausible argument is that the brain
has more neurons than the computer has transistors, but even this fails to explain the
disparity in speed. As near as we can tell, the human brain has about 1010 neurons,
each capable of switching no more than a thousand times a second. So the brain should
be capable of about 1013 switching events per second. A modern digital computer, by
contrast, may have as many as 109 transistors, each capable of switching as often as
1o9 times per second. So the total switching speed should be as high as 1018 events per

seconds, or 10,000 times greater than the brain. This argues the sheer computational

power of the computer should be much greater than that of the human. Yet we know

the reality to be just the reverse. Where did the calculation go wrong?

8

1.2 Classical Computer Architecture Reflects Obsolete As-
sumptions

One reason that computers are slow is that their hardware is used extremely ineffi-
ciently. The actual number of events per second in a large computer today is less than
a tenth of one percent of the number calculated above. The reasons for the inefficiency
are partly technical but mostly historical. The basic forms of today's architectures

were developed tinder a very different set of technologies, when different assumptions
applied than are appropriate today. The machine described here, the Connection Ma-
chine, is an architecture that better fits today's technology and, we hope, better fits
the requirements of a thinking machine.

A modern large computer contains about one square meter of silicon. This square
meter contains approximately one billion transistors which make up the processor and

memory of the computer. The interesting point here is that both the processor and
memory are made of the same stuff. This was not always the case. When von Neumann
and his colleagues were designing the first computers, their processors were made of
relatively fast and expensive switching components such as vacuum tubes, whereas
the memories were made of relatively slow and inexpensive components such as delay
lines or storage tubes. The result was a two-part design which kept the expensive
vacuum tubes as busy as possible. This two-part design, with memory on one side
and processing on the other, we call the von Neumann architecture, and it is the way
that we build almost all computers today. This basic design has been so successful
that most computer designers have kept it even though the technological reason for the
memory/processor split no longer makes sense.

The Memory/Processor Split Leads to Inefficiency

In a large von Neumann computer almost none of its billion or so transistors are doing
any useful process'ng at any given instant. Almost all of the transistors are in the
memory section of the machine, and only a few of those memory locations are being

accessed at any given time. The two-part architecture keeps the silicon devoted to

processing wonderfully busy, but this is only two or three percent of the silicon area.

The other 97 percent sits idle. At a million dollars per square meter for processed,
packaged silicon, this is an expensive resource to waste. If we were to take another

measure of cost in the computer, kilometers of wire, the results would be much the
same: most of the hardware is in memory, so most of the hardware is doing nothing
most of the time.

9

As we build larger computers the problem becomes even worse. It is relatively

straightforward to increase the size of memory in a machine, it is far from obvious how

to increase the size of the processor. The result is that as we build bigger machines

with more silicon, or equivalently, as we squeeze more transistors into each unit of area,

the machines have a larger ratio of memory to processing power and are consequently

even less efficient. This inefficiency remains no matter how fast we make the processor

because the length of the computation becomes dominated by the time required to move

data between processor and memory. This is called the "von Neumann bottleneck."

The bigger we build machines, the worse it gets.

1.3 Concurrency Offers a Solution

The obvious answer is to get rid of the von Neumann architecture and build a more

homogeneous computing machine where memory and processing are combined. It is

not difficult today to build a machine with hundreds of thousands or even millions

of tiny processing cells which has a raw computational power that is many orders of

magnitude greater than the fastest conventional machines. The problem lies in how to

couple the raw power with the applications of interest, how to program the hardware

to the job. How do we decompose our application into hundreds of thousands of parts

that can be executed concurrently? How do we coordinate the activities of a million

processing elements to accomplish a single task? The Connection Machine architecture

was designed as an answer to these questions.

Why do we even believe that it is possible to perform these calculations with such a

high degree of concurrency? There are two reasons. First, we have the existence proof

of the human brain, which manages to achieve the performance we are after with a

large number of apparently very slow switching components. Second, we have many

specific examples in which particular computations can be achieved with high degrees

of concurrency by arranging the processing elements to match the natural structure of

the data.

Image Processing: One Processor per Pixel

In image processing, for example, we know that it is possible to perform two-dimensional

filtering operations efficiently using a two-dimensionally connected grid of processing

elements. In this application it is most natural to store each point of the image in

its own processing cell. A one thousand by one thousand point image would use a

million processors. In this case, each step of the calculation can be performed lo-

10

Figure 1.2: In a machine vision application, a separate processor /memory cell processes

each point in the image. Since the computation is two-dimensional the processors are

connected into a two-dimensional grid.

cally within a pixel's processor or through direct communication with the processors'

two-dimensionally connected neighbors. (See Figure 1.2.) A typical step of such a

computation involves calculating for each point the average value of the points in the

immediate neighborhood. Such averages can be computed simultaneously for all points

in the image. For instance, to compute the average of each point's four immediate

neighbors requires four concurrent processing steps during which each cell passes a

value to the right, left, below, and above. On each of these steps the cell also receives a

value from the opposite direction and adds it to its accumulated average. Four million

arithmetic operations are computed in the time normally required for four.

VLSI Simulation: One Processor per Transistor

The image processing example works out nicely because the structure of the problem

matches the communication structure of the cells. The application is two-dimensional,

the hardware is two-dimensional. In other applications the natural structure of the

problem is not nearly so regular and depends in detail on the data being operated

upon. An example of such an application outside the field of artificial intelligence

is the simulation of an integrated circuit with hundreds of thousands of transistors.

11

Figure 1.3: In the VLSI simulation application a separate processor/memory cell is
used to simulate each transistor. The processors are connected in the pattern of the
circuit.

Such problems occur regularly in verifying the design of a very large scale integrated
circuit. Obviously, the calculation can '>e done concurrently since the transistors do it
concurrently, A hundred thousand transistors can be simulated by a hundred thousand
processors. To do this efficiently, the processors would have to be wired into the
same pattern as the transistors. (See Figure 1.3.) Each processor would simulate
a single transistor by communicating directly with processors simulating connected
transistors. When a voltage changes on the gate of a transistor the processor simulating
the transistor calculates the transistor's response and communicates the change to
processors simulating connected transistors. If many transistors are changing at once,
then many responses are calculated concurrently, just as in the actual circuit. The
natural connection pattern of the processors would depend on the exact connection
pattern of the circuit being simulated.

Semantic Networks: One Processor per Concept

The human brain, as far as we know, is not particularly good at simulating transistors.
But it does seem to be good at solving problems that require manipulating poorly struc-
tured data. These manipulations can be performed by processors that are connected

12

into patterns that mimic patterns of the data. For example, many artificial intelligence

programs represent data in the form of semantic networks. A semantic network is a

labeled graph where each vertex represents a concept and each edge represents a re-

lationship between concepts. For example, Apple and Red would be represented by

nodes with a Color-of link connecting between them. (See Figure 1.4.) Much of the

knowledge that one might wish to extract from such a network is not represented ex-

plicitly by the links, but instead must be inferred by:searching for patterns that involve

multiple links. For example, if we know that My-Apple is an Apple, we may infer that

My-Apple is Red from the combination of the Is-a link between My-Apple and Apple

and the Color-of link between Apple and Red.

In a real-world database there are hundreds of thousands of concepts and millions

of links. The inference rules are far more complex than simple Is-a deductions. For

example, there are rules to handle exceptions, contradictions, and uncertainty. The

system needs to represent and manipulate information about parts and wholes, spatial

and temporal relationships, and causality. Such computations can become extremely

complicated. Answering a simple commonsense question from such a database, such as

"Will my apple fall if I drop it?" can take a serial computer many hours. Yet a human

answers questions such as this almost instantly, so we have good reason to believe that

it can be done concurrently.

This particular application, retrieving commonsense knowledge from a semantic

network, was one of the primary motivations for the design of the Connection Ma-

chine. There are semantic network-based knowledge representation languages, such as

NETL [Fahlman], which were specifically designed to allow the deductions necessary

for retrieval to be computed in parallel. In such a system each concept or assertion

can be represented by its own independent processing element. Since related concepts

must communicate in order to perform deductions, the corresponding processors must

be connected. In this case, the topology of the hardware depends on the information

stored in the network. So, for example, if Apple and Red are related, then there must

be a connection between the processor representing Apple and the processor repre-

senting Red so that deductions about Apples can be related to deductions about Red.

Given a collection of processors whose connection pattern matches the data stored in

the network, the retrieval operations can be performed quickly and in parallel.

There are many more examples of this sort. For each, extreme concurrency can be

achieved in the computation as long as the hardware is connected in such a way to match

the particular structure of the application. They could each be solved quickly on a

machine that provides a large number of processing memory elements whose connection

13

-A

ICOLOR

ACOLOR

Figure 1.4; In a semantic network one processor/memory cell is used to represent each
concept and the connections between the cells represent the relationships between the
concepts.

14

pattern can be reconfigured to match the natural structure of the application.

1.4 Deducing the Requirements From an Algorithm

We will consider a specific concurrent algorithm in detail and use it to focus on the

architectural requirements for a parallel machine. Finding the shortest length path

between two vertices in a large graph will serve as the example. The algorithm is

appropriate because, besides being simple and useful, it is similar in character to the

many "spreading activation" computations in artificial intelligence. The problem to be

solved is this:

Given a graph with vertices V and edges E C V x V, with an arbitrary

pair of vertices a, b E V, find the length k of shortest sequence of connected

vertices a,v1 ,v 2 7 ,...b such that all the edges (a,vx),(vI,v2), ... (vk - 1, b) E E

are in the graph.

For concreteness, consider a graph with 10 vertices and an average of 102 randomly

connected edges per vertex. (For examples of where such graphs might arise, see

[Quillian], [Collins, Loftus], [Waltz]). In such a graph, almost any randomly chosen

pair of vertices will be connected by a path of not more than three edges.

The algorithm for finding the shortest path from vertex A to vertex B begins by

labeling every vertex with its distance from A. This is accomplished by labeling vertex

A with 0, labeling all vertices connected to A with 1, labeling all unlabeled vertices

connected to those vertices with 2, and so on. (See Figure 1.5.) The process terminates

as soon as vertex B is labeled, The label of B is then the length of the shortest

connecting path. Any path with monotonically decreasing labels originating from B

will lead to A in ths number of steps. A common optimization of this algorithm is to

propagate the labels from A and B simultaneously until they meet, but for the sake of

clarity we will stick to its simplest form.

Ideally we would be able to describe the algorithm to the computer something like

this:

Algorithm I: "Finding the length of shortest path from A to B"

1. Label all vertices with +joo.

2. Label vertex A with 0,

3. Label every vertex, except A, with 1 plus the minimum of its neighbor's labels

and itself. Repeat this step until the label of vertex B is finite.

15

3

W4

Figure 1.5: Algorithm I finds the length of the shortest path from vertex A to vertex
B by labeling each point with its distance from A.

16

4. Terminate. The label of B is the answer.

We will use this path-length algorithm as an example to motivate the structure of

the Connection Machine.

Algorithms of this type are slow on a conventional computer. Assuming that each

step written above takes unit time, Algorithm I will terminate in time proportional to

the length of the connecting path. For the 10 4 vertex random graph mentioned above,

Step 3 will be repeated two or three times, so about six steps will be required to find

the path length. Unfortunately, the steps given above do not correspond well with the

kinds of steps that can be executed on a von Neumann machine. Direct translation of

the algorithm into Lisp gives this a very inefficient program. The program runs in time

proportional to the number of vertices, times the length of the path, times the average

degree of each vertex. For example, the graph mentioned above would require several

million executions of the inner loop. Finding a path in a test graph required about an

hour of CPU time on a VAX-11/750 computer.

Besides being slow, a serial program would implement the dissimilar operations with

similar constructs, resulting in a more obscure rendition of the original algorithm. For

example, in the algorithm, iteration is used only to specify multiple operations that

need to take place in time-sequential order, which is where the sequencing is critical

to the algorithm. In a serial program everything must take place in sequence. The

iteration would be used not only to do things that are rightfully sequential, but also to

operate all of the elements of a set and to find the minimum of a set of numbers.

A good programmer could, of course, change the algorithm to one that would run

faster. For example, it is not necessary to propagate labels from every labeled vertex,

but only from those that have just changed. There are also many well-studied opti-

mizations for particular types of graphs. We have become so accustomed to making

such modifications that we tend to make them without even noticing. Most program-

mers given the task of implementing Algorithm I probably would include several such

optimizations almost automatically. Of course, many "optimizations" would help for

some graphs and hurt for others. For instance, in a fully connected graph the extra

overhead of checking if a vertex had just changed would slow things down. Also, with

optimizations it becomes more difficult to understand what is going on. Optimization

trades speed for clarity and flexibility.

Instead of optimizing the algorithm to match the operation of the von Neumann

machine, we could make a machine to match the algorithm. Implementing Algorithm

I directly will lead us to the architecture of the Connection Machine.

17

Requirement 1: Many Processors

To implement the path-length algorithm directly, we need concurrency. As Algorithm I
is described, there are steps when all the vertices change to a computed value simul-

taneously. To make these changes all at once, there must be a processing element

associated with each vertex. Since the graph can have an arbitrarily large number of

vertices, the machine needs an arbitrarily large number of processing elements. Un-

fortunately, while it is fine to demand infinite resources, any physical machine will be

only finite. What compromise should we be willing to make?

It would suffice to have a machine with enough processors to deal with most of the
problems that arise. How big a machine this is depends on the problems. It will be a

tradeoff between cost and functionality.

We are already accustomed to making this kind of tradeoff for the amount of memory

on a computer. Any real memory is finite, but it is practical to make the memory large
enough that our models of the machine can safely ignore the limitations. We should be

willing to accept similar limitations on the number of processors. Of course, as with

memory, there will always be applications where we have to face the fact of finiteness.
In a von Neumann machine we generally assume that the memory is large enough to

hold the data to be operated on plus a reasonable amount of working storage, say in

proportion to the size of the problem. For the shortest path problem we will make
similar assumptions about the availability of processors. This will -be the first design

requirement for the machine, that there are enough processing elements to be allocated

as needed, in proportion to the size of the problem.

A corollary of this requirement is that each processing element must be as small

and as simple as possible so that we can afford to have as many of them as we want.
In particular, it can only have a very small amount of memory. This is an important

design constraint, It will limit what we can expect to do within a single processing

element. It would not be reasonable to assume both "there are plenty of processors"

and "there is plenty of memory per processor." If the machine is to be built, it must use

roughly the same number of components as conventional machines. Modern production

technology gives us one "infinity" by allowing inexpensive replication of components.
It is not fair to ask for two.

Requirement II: Programmable Connections

In the path-length algorithm, the pattern of inter-element communication depends on

the structure of the graph. The machine must work for arbitrary graphs, so every

18

processing element must have the potential of communicating with every other pro-
cessing element. The pattern of connections must be a part of the changeable state

of the machine. (In other problems we will actually want to change the connections

dynamically during the course of the computation, but this is not necessary for the

path-length calculation.)
From the standpoint of the software the connections must be programmable, but

the processors may have a fixed physical wiring scheme. Here again there is an analogy

with memory. In a conventional computer the storage elements for memory locations 4
and 5 are located in close physical proximity, whereas location 1000 may be physically

on the other side of the machine, but to the software they are all equally easy to access.
If the machine has virtual memory, location 1000 may be out on a disk and may require
much more time to access. From the software this is invisible. It is no more difficult

to move an item from location 4 to 1000 than it is from 4 to 5. We would like a
machine that hides the physical connectivity of the processors as thoroughly as the von

Neumann computer hides the physical locality of its memory. This is an important
part of molding the structure of our machine to the structure of the problem. It forms

the second requirement for the machine, that the processing elements are connected by
software.

This ability to configure the topology of the machine to match the topology of the
problem will turn out to be one of the most important features of the Connection

Machine. (That is why it is called a Connection Machine.) It is also the feature that

presents the greatest technical difficulties. To visualize how such a communications
network might work, imagine that each processing element is connected to its own

message router and that the message routers are arranged like the crosspoints of a grid,
each physically connected to its four immediate neighbors (Figure 1.6). Assume that

one processing element needs to communicate with another one that is, say, 2 up and
3 to the right. It passes a message to its router which contains the information to be
transmitted plus a label specifying that it is to be sent 2 up and 3 over. On the basis
of that label, the router sends the message to its neighbor on the right, modifying the
label to say "2 up and 2 over." That processor then forwards the message again, and
so on, until the label reads "0 up and 0 over." At that point the router receiving the
message delivers it to the connected processing element.

In practice, a grid is not really a very good way to connect the routers because

routers can be separated by as many as 2(g'n) intermediaries, It is desirable to use

much more complicated physical connection schemes with lots of short-cuts so that the

maximum distance between any two cells is very small. We also need to select the

19

Figure 1.6: A simple (but inefficient) communications network topology

routing algorithms carefully to avoid "traffic jams" when many messages are traveling

through the network at once. These problems are discussed in detail in Chapter 4.

The important thing here is that processing elements communicate by sending mes-

sages through routers. Only the routers need to worry about the physical connection

topology. As long as two processing elements know each other's address, they can

communicate as if they were physically connected. We say there is a virtual connection

between them, The virtual connection presents a consistent interface between proces-

sors. Since the implementation details are invisible, the software can remain the same

as technology changes, wires break, and hardware designers think of new tricks.

In the path-length algorithm, a vertex must communicate with all of its neighbors.

The fanout of the communication is equal to the number of neighbors of the vertex.

Since a vertex may have an arbitrary number of connected edges, the fanout of a
processing element must be unlimited. Similarly, a vertex may receive communication

from an arbitrarily large number of edges simultaneously. A processing element must

be able to send to and receive from an arbitrary number of others.

Does this mean that each processing element must be large enough to handle many

messages at once? Will it need arbitrary amounts of storage to remember all of its

connections? Providing large amounts of storage would contradict the need to keep the

processing elements small. Fortunately there is a better method: fanout trees.

20

Trees Allow Arbitrary Fanout

The term "fanout tree" comes from electrical engineering. A related fanout problem

comes up electrically because it is impossible to measure a signal without disturbing it.

This sounds like a mere principle of physics, but every engineer knows its macroscopic

consequences. In standard digital electronics, for instance, no gate can directly drive

more than about ten others. If it is necessary to drive more than this then it can be

accomplished by a tree of buffers. One gate drives ten buffers, each of which drive ten

more, and so on, until the desired fanout is achieved. This is called a fanout tree.

There is a software equivalent to this in languages like Lisp, where large data struc-

tures are built out of small, fixed-sized components. The Lisp "cons cell" has room for

only two pointers. Sequences of arbitrary many elements are represented by stringing

together multiple cons cells. Lisp programmers use linear lists more often than trees,
because they are better suited for sequential access. Balanced trees are used when the

time to access an arbitrary element is important.

The use of trees to represent a network with fanout is illustrated in Figure 1.7. No-

tice that each node is connected to no more than three others. (Lisp gets away with two

because the connections are not bidirectional, so it does not store the "backpointers.")
Since a balanced tree with N leaves requires 2N - 1 nodes, the number of 3-connected

processing elements required to represent any graph is equal to twice the number of
edges minus the number of vertices. The tree structure "wastes" memory by storing

the internal structure of the tree, just as the Lisp list "wastes" a factor of two in storage

oy storing the links from one node to the next. But because each vertex of the graph is

represented by a tree of processing elements rather than by a single processing element,
there is storage and processing power at each vertex in proportion to the number of

connected edges. This solves the problem of how to handle multiple messages arriving

at once. Each processing element only needs to handle a maximum of three messages.

It also keeps the elements small since each needs only the addresses that correspond

to three virtual connections. There is a cost in time: a vertex must communicate data

through its internal tree before the data can be communicated out to the connected

vertices. This internal communication requires O(log V) message transmission steps,

where V is the degree of the vertex.

1.5 The Connection Machine Architecture

in the preceding sections we have identified two requirementz for a machine to solve

the path-length problem:

21

Representation cf
A Simple Virtual Copy Network

IS-A

LEMON SOUR

Figure 1.7: Use of trees to represent a network with fanout (this is the representation

of the semantic network shown in Figure 1,4)

22

* Requirement I: There are enough processing elements to be allocated as needed,
in proportion to the size of the problem.

* Requirement II: The processing elements can be connected by software.

The Connection Machine architecture follows directly from these two requirements.

It provides a very large number of tiny processor/memory cells, connected by a pro-

grammable communications network. Each cell is sufficiently small that it is incapable
of performing meaningful computation on its own. Instead multiple cells are connected
together into data-dependent patterns called active data structures which both repre-
sent and process the data. The activities of these active data structures are directed
from outside the Connection Machine by a conventional host computer. This host com-
puter stores data structures on the Connection Machine in much the same way that a
conventional machine would store them in a memory. Unlike a conventional memory,
though, the Connection Machines has no processor/memory bottleneck. The memory
cells themselves do the processing. More precisely, the computation takes place through
the coordinatea interaction of the cells in the data structure. Because thousands or
even millions of processing cells work on the problem simultaneously, the computation
proceeds much more rapidly than would be possible on a conventional machine.

A Connection Machine connects to a conventional computer much like a conven-
tional memory. Its internal state can be read and written a word at a time from the
conventional machine. It differs from a conventional memory in three respects. First,
associated with each cell of storage is a processing cell which can perform local com-
putations based on the information stored in that cell. Second, there exists a general
intercommunications network that can connect all the cells in an arbitrary pattern,
Third, there is a high-bandwidth input/output channel that can transfer data between
the Connection Machine and peripheral devices at a much higher rate than would be
possible through the host.

A connection is formed from one processing memory cell to another by storing a
pointer in the memory. These connections may be set up by the host, loaded through

the input/output channel, or determined dynamically by the Connection Machine itself.

In the prototype machine described in Chapter 4, there are 65,536 processor /memory
cells, each with 4,096 bits of memory. This is a small Connection Machine. The block

diagram of the Connection Machine with hosts, processoi /memory cells, communica-

tions network, and input/output is as shown in Figure 1.8.
The control of the individual processor/memory cells is orchestrated by the host

of the computer. For example, the host may ask each cell that is in a certain state

23

Host Memory Bus

65536 cells
- --- x 4096 bits/cells --

32 M bytes memory

Micro- ---- --- ---- ---- ----

controller

Connection Machine

1/0
500 M bits/sec

Figure 1,8: Block diagram of the CM-1 prototype Connection Machine

24

to add two of its memory locations locally and pass the resulting sum to a connected

cell through the communications network. Thus, a single command from the host may

result in tens of thousands of additions and a permutation of data that depends on the

pattern of connections. Each processor/memory cell is so small that it is essentially

incapable of computing or even storing any significant computation on its own. Instead,

computation takes places in the orchestrated interaction of thousands of cells through

the communications network.

1.6 Issues in Designing Parallel Machines

The remainder of the thesis is devoted primarily to the dual questions of how to use

the architecture to solve problems and how to implement the architecture in terms of

available technology. In other words, how do we program it, and how do we build it?

First we must establish that we are programming and building the right thing, Parallel

processing is inevitable. But what form will it take? So little is known about parallel

computation that informed intelligent architects will make very different decisions when

confronted with the same set of choices. This section will outline three of the most

important choices in designing any parallel machine:

* General versus fixed communication;

" Fine versus coarse granularity; and

* Multiple versus single instruction streams.

Although each issue may be characterized by the extreme schools of thought, each

offers a spectrum of choices, rather than a binary decision. Each choice is relatively

independent, so in principle there is a different type of computer architecture for each

combination of choices.

Fixed versus General Communication

Some portion of the computation in all parallel machines involves communication

among the individual processing elements. In some machines, such communication

is allowed in only a few specific patterns defined by the hardware. For example, the

processors may be arranged in a two-dimensional grid, with each processor cornnected

to its north, south, east, and west neighbors. A single operation on such a machine

could send a number from each processor to its northern neighbor, Proposed con-

nection patterns for such fixed-topology machines include rings, n-dimensional cubes,

25

and binary trees. The alternative to a fixed topology is a general communications

network that permits any processor to communicate with any other. An extreme ex-

ample of an architecture with such a general communications scheme is the hypothetical

"para-computer," [Schwartz, 1980] in which every processor can simultaneously access
a common shared memory. In a para-computer, any two processors can communicate

by referencing the same memory location.

Depending on how a general communications network is implemented, some pairs of
processors may be able to communicate more quickly than others, since even in general
communications schemes the network has an underlying unchanging physical pattern
of wires and cables, which can be visible to the programmer in different degrees. At
the other extreme, a fixed-topology machine may be programmed to emulate a general
machine with varying difficulty and efficiency.

The primary advantage of fixed-topology machines is simplicity. For problems where
the hardwired pattern is well matched to the application, the fixed-topology machines
can be faster. Examples of such matches are the use of a two-dimensional grid pattern
for image processing, and a shuffle-exchange pattern for Fast Fourier Transforms. The
general communications machines have the potential of being fast and easier to program
for a wider range of problems, particularly those that have less structured patterns of

communication. Another potential advantage is that the connection pattern can change
dynamically to optimize for particular data sets, or to bypass faulty components.

Coarse-Grained versus Fine-Grained

In any parallel computer with multiple processing elements, there is a trade-off between
the number and the size of the processors. The conservative approach uses as few as
possible of the largest available processors. The conventional single processor von
Neumann machine is the extreme case of this. The opposite approach achieves as
much parallelism as possible by using a very large number of very small machines.
We can characterize machines with tens or hundreds of relatively large processors as
"coarse-grained" and machines with tens of thousands to millions of small processors

as "fine-grained." There are also many intermediate possibilities.

The fine-grained processors have the potential of being faster because of the larger

degree of parallelism. But more parallelism does not necessarily mean greater speed.
The individual processors in the small-grained design are necessarily less powerful, so

many small processors may be slower than one large one. For almost any application

there are at least some portions of the code that run most efficiently on a single pro-

cessor. For this reason, fine-grained architectures are usually designed to be used in

26

conjunction with a conventional single-processor host computer.
Perhaps the most important issue here is one of programming style. Since serial

processor machines are coarse-grained, the technology for programming coarse-grained
machines is better understood. It is plausible to expect a Fortran compiler to optimize
code for, say, sixteen processing units, but not for sixteen thousand. On the other
hand, if the algorithm is written with parallel processing in mind from the start, it
may be that it divides naturally into the processors, of a fine-grained machines. For
example, in a vision application it may be most natural to specify a local algorithm to
be performed on each point in an image, so a 1000 x 1000 image would most naturally
fit onto a million processor machine.

Single versus Multiple Instruction Streams

A Multiple Instruction Multiple Data (MIMD) machine is a collection of connected
autonomous computers, each capable of executing its own program. Usually a MIMD
machine will also include mechanisms for synchronizing operations between processors
when desired. In a Single Instruction Multiple Data (SIMD) machine, all processors
are controlled from a single instruction stream which is broadcast to all the processing
elements simultaneously, Each processor typically has the option of executing an in-
struction or ignoring it, depending on the processor's internal state. Thus, while every
processing element does not necessarily execute the same sequence of instructions, each
processor is presented with the same sequence. Processors not executing must "wait
out" while the active processors execute.

Although SIMD machines have only one instruction stream, they differ from MIMD
machines by no more that a multiplicative constant in speed. A SIMD machine can
simulate a MIMD machine in linear time by executing an interpreter which interprets
each processor's data as instructions. Similarly, a MIMD machine can simulate a SIMD.
Such a simulation of a MIMD machine with a SIMD machine (or vice versa) may or
may not be a desirable thing to do, but the possibility at least reduces the question
from one of philosophy to one of engineering: Since both types of machines can do the

same thing, which can do it faster or with less hardware?
The correct choice may depend on the application. For well-structured problems

with regular patterns of control, SLMD machines have the edge, because more of the
hardware is devoted to operations on the data, This is because the SIMD machine,
with only one instruction stream, car share most of its control hardware among all
processors. In applications where the control flow required of each processing element
is complex and data-dependent, MIMD architecture may have an advantage. The

27

shared instruction stream can follow only one branch of the code at a time, so each
possible branch must be executed in sequence, while the uninterested processor is idle.

The result is that processors in a SIMD machine may sit idle much of the time.
The other issue in choosing between a SIMD and a MIMD architecture is one

of programmability. Here there are arguments on both sides. The SIMD machine
eliminates problems of synchronization. On the other hand, it does so by taking away
the possibility of operating asynchronousiy. Since either type of machine can efficiently
emulate the other, it may be derirable to choose one style for programming and the
other for hardware.

Gordon Bell [BellJ has characterized SIMD and MIMD machines as having differ-
ent characteristic "synchronization times" and has pointed out that different MIMD
machines have different characteristic times between processor synchronization steps
varying from every few instructions to entire tasks. There are also SIMD machines
that allow varying amounts of autonomy for the individual processing elements and/or
several instruction streams, so once again this issue presents a spectrum of possible
choices.

1.7 Comparison With Other Architectures

Different architectures make different choices with respect to the key decisions outlined
above. In this section, we contrast the Connection Machine architecture with some
other approaches to building very high performance computers. The most important
distinguishing feature of the Connection Machine is the combination of fine granularity
and general communication. The Connection Machine has a very large number of very
small processors. This provides a high degree of parallelism and helps solve resource-

allocation problems. Also, the communications network allows the connectivity of these
processors to be reconfigured to match a problem. This ability to "wire up" thousands
of programmable processing units is really the heart of the Connection Machine con-
cept. Below we summarize some of the approaches taken by other architectures. For
references to specific examples see the bibliographic notes at the end of the chapter.

Fast von Neumann Machines

There are a large number of ongoing efforts to push the performance of conventional
serial machines. These involve the use of faster switching devices, the use of larger
and more powerful instruction sets, the use of smaller and simpler instruction sets,
improvements in packaging, and tailoring the machines to specific applications. Even

28

if the most exotic of these projects are completely successful, they will not come close

to meeting our performance requirements. When performing simple computations on

large amounts of data, von Neumann computers are limited by the bandwidth between

memory and processor. This is a fundamental flaw in the von Neumann design; it
cannot be eliminated by clever engineering.

Networks of Conventional Machines

Other researchers have proposed connecting dozens or even hundreds of conventional

computers by shared memory or a high bandwidth communications network. Several

of these architectures are good candidates for machines with orders of magnitude in

increased performance. Compared to the Connection Machine, these architectures have

a relatively small number of relatively large machines. These machines have a much

lower ratio of processing power to memory size, so they are fundamentally slower than

the Connection Machine on memory intensive operations.

Machines with Fixed Topologies

Much closer to the Connection Machine in the degree of potential parallelism are the

tessellated or recursive structures of many small machines. The most common topolo-

gies are the two-dimensional grid or torus. These machines have fixed interconnection

topologies, and their programs are written to take advantage of the topology. When the

structure of the problem matches the structure of the machine, these architectures can

exhibit the same or higher degree of concurrency as the Connection Machine, Unlike

the Connection Machine, their topologies cannot be reconfigured to match a particu-

lar problem. This is particularly important in problems such as logic simulation and

semantic network inference, for which the topology is highly irregular.

Database Processors

There have been several special-purpose architectures proposed for speeding up database

search operations. Like the Connection Machine, these database processors are de-

signed to perform data-intensive operations under control of a more conventional host

computer. Although these machines are designed to process a restricted class of queries

on larger databases, they have many implementation issues in common with the Con-

nection Machine. The study of these architectures has produced a significant body of
theory on the computational complexity of parallel database operations.

29

Marker Propagation Machines

The Connection Machine architecture was originally developed to implement the marker-

propagation programs for retrieving data from semantic networks [Fahlman, 1979).

The Connection Machine is well suited for executing marker-type algorithms, but it

is considerably more flexible than special-purpose marker propagators. The Connec-

tion Machine has a computer at each node which can manipulate address pointers and

send arbitrary messages, It has the capability to build structures dynamically. These

features are important for applications other than marker-passing.

Cellular Automata and Systolic Arrays

A systolic array is a tessellated structure of synchronous cells that perform fixed se-

quences of computations with fixed patterns of communication. In the Connection

Machine, by contrast, both computations and the communications patterns are pro-

grammable. In the Connection Machine, uniformity is not critical. Some cells may

be defective or missing. Another structure, similar to the systolic array, are cellular

automata. In an abstract sense, the Connection Machine is a universal cellular au-

tomaton, with art additional mechanism added for non-local communication. In other

words, the Connection Machine hardware hides the details. This additional mechanism

makes a large difference in performance and ease of programming.

Content Addressable Memories

The Connection Machine may be used as a content addressable or associative memory,

but it is also able to perform non-local computations through the communications

network. The elements in content addressable memories are comparable in size to

connection memory cells, but they are not generally programmable. When used as a

content addressable memory, the Connection Machine processors allow more complex

matching procedures.

1.8 The Rest of the Story

The remainder of this document discusses in detail how to program and build Con-

nection Machines. Chapter 2 describes a programming language based on Lisp which

provides an idealized model of what a Connection Machine should do in the same sense

that a conventional programming language provides an idealized model of a conven-

tional machine. Chapter 3 discusses some of the issues that arise in implementing the

30

architecture and hardware. Chapter 4 describes the details of an actual prototype.

Chapter 5 is a discussion of active data structures and ;D description of some of the

fundamental algorithms for the Connection Machine. Chapter 6, on storage allocation,

shows how these data structures can be built and transformed dynamically. It also
discusses the related issue of why a Connection Machine can work even when some of
its components do not. The final chapter, Chapter 7, is a philosophical discussion of

computer architecture and what the science of computation may look like in the future,

Most of the references to related works have been moved out of the text and into the
Bibliographic Notes at the end of each chapter. There is also an annotated bibliography

at the end of the document which gives for each reference some justification of why it
might be worth reading in this context.

1.9 Bibliographic Notes for Chapter 1

The quest to make a thinking machine is not new. The first reference of which I
am aware in the literature is in The Politic [Aristotle], where Aristotle speaks of au-
tonomous machines that can understand the needs of their masters as an alternative to
slavery. For centuries this remained only a dream, until the 1940's, when an increased

understanding of servo-mechanisms led to the establishment of the field of cybernetics

[Wiener, 1948], [Ashby, 1956). Cybernetic systems were largely analog. Soon after-

ward the development of digital computing machinery gave rise to comparisons with

the symbolic functions of the mind [Turing, 1950], [von Neumann, 1945], which led, in

the early 1960's, to the development of the field of artificial intelligence [Minsky, 1961),
[Newell, 1963]. For a very readable history of these developments see [Boden, 1977].

For insight to the motivation of the two-part von Neumann design (including some

amusing predictions of things like potential applications and memory sizes), I suggest

reading some of the original documents [Burks, 1946-1957), |Goldstein, 1948], [von
Neumann, 1945). For a good ,.ief introduction to semantic networks see [Woods, 1975).
For examples of specific semantic network representation schemes see (Brachman, 1978],
[Fahlman, 1979], [Hewitt, 1980], [Shapiro, 1976], [Szolovitz, 1977], and in particular for

semantic networks designed to be accessed by parallel algorithms see IQuillian, 1968],

[Fahlman, 1979], [Woods, 19781. For discussions of the semantics of semantic networks

see [Brachman, 1978], [Hendrix, 1975], [Woods, 1975]. There are many other knowledge

representation schemes in artificial intelligence that were designed with parallelism in

mind, for example, "connectionist" theories [Feldman, 1981], k-lines [Minsky, 1979],
word-expert parsing [Small, 1980), massively parallel parsing [Waltz, 1985], and schema

31

mechanisms [Drescher, 1985], classifier systems [Holland, 19591. It may also be that

parallelism is applicable to the access of the highly-structured knowledge in expert

systems [Stefik, 1982]. One of the most exciting potential'application areas of the

machine is in systems that actually learn from experience. Such applications would be

able to use to advantage the Connection Machine's ability to dynamically change its

own connections. For examples of recent approaches to learning see [Winston, 19801,

[Hopfield, 1982), [Minsky, 1982).

For a recent survey of parallel computing see [Haynes, 1982] and [Bell, 1985]. My

discussion of the issues in this chapter follows the taxonomy introduced in [Schwartz,

1983]. For a fun-to-read paper on the need for raw power and parallelism see [Moravec,

1979]. The phrase "von Neumann bottleneck" comes from Backus's Turing Lecture

[Backus, 1978], in which he eloquently sounds the battle cry against word-at-a-time

thought.

For examples of alternative parallel architectures the reader is referred to the anno-

tated bibliography at the end of the thesis. The references therein may be divided as

follows. Large- to medium-grain machines: [Bell, 1985], |Bouknight, 1972], [Buehrer,

1982), [Chakravarthy, 1982), [Davidson, 1980, [Gajski, 1983], [Gottlieb, 1982, 1983,
[Halstead, 1978, 1979, 1980, [Hewitt, 1980, [Keller, 1978, 1979], [Kuch, 1982], [Lund-

strom, 1980], [Rieger, 1979, 1980, [Schwartz, 1980, [Shin, 1982], [Slotnick, 1978,

[Stolfo, 1982], [Sullivan, 1977], [Swan, 1977], [Treleaven, 1980], [Trujillo, 1982], [Ward,

1978], [Widdoes, 1980). Small-grain machines: [Batcher, 1974, 1980], [Browning,

1980], [Burkley, 1982), [Carroll, 1980), [DiGiacinto, 1981], [Fahlman, 1981), [Gilmore,

1982], [Gritton, 1977], [Holland, 1959, 1960, [Lee, 1962, [Mago, 1979, [Schaefer,

1982], [Shaw, 1982], [Snyder, 1982], [Surprise, 1981]. Database machines: [Copeland,

1973], [Hawthorn, 1982], [Kung, 1980, [Ozkarahan, 1974. Data flow: [Arvind, 1978,

1983], [Dennis, 1977, 1980]. Special purpose machines: |Chang, 1978], [Forster, 1982],

[Hawkins, 1963], [Kung, 1980], [Lipovski, 1978], [Meadows, 1974], [Parhami, 1972],

[Reeves, 1981], [Siegel, 1981]. Content addressable memories: [Lee, 1962, 1963).

For some comparisons of the performance of various machines see [Dongarra, 1984],

[Tenenbaum, 1983], and [Hawthorn, 1982]. Not all computations can be speeded up by

parallel processing. For an example beyond help see [Hillis, 1983].

32

Chapter 2

How to Program a Connection Machine

2.1 Connection Machine Lisp Models the Connection Machine

It is easy to forget how closely conventional languages correspond to the hardware of a

conventional computer, even for "high-level" languages like Lisp. The control flow in

Lisp, for example, is essentially an abstract version of the hardware instruction fetching

mechanism of a serial machine. Objects are pointers, CAR and CDR are indirect address-

ing. Function invocation is a subroutine call. Assignment is storing into memory.
This close correspondence between Lisp and the machine on which it is implemented

accounts for much of the language's power and popularity. It makes it easy to write

compilers. It makes the language easier to think about and, more important, it allows

the performance of algorithms to be compared and estimated without reference to the

details of a particular machine. The language captures what is common and essential

to a wide range of serial computers, while hiding the details that set them apart.

Connection Machine Lisp (CmLisp) is an extension of Common Lisp, designed to

support the parallel operations of the Connection Machine. It is intended to be for the

Connection Machine architecture what Lisp is for the serial computer: an expression of

the essential character of the architecture that leaves out the details of implementation.

In the sense that Fortran or Lisp are abstract versions of a conventional computer, Cm-

Lisp is an abstract version of the Connection Machine. Just as these languages hide

such details of the computer as word length, instruction set, and low-level storage con-

ventions, CmLisp hides the details of the Connection Machine. Just as conventional

languages reflect the architecture of conventional computers, CmLisp reflects the archi-
tecture of the Connection Machine. The structure of the language follows the structure

of the hardware.

An example of this correspondence is the relatively conventional control structure

of Cmbisp, which is very similar to languages like FP and APL. in CmLisp, as in

the Connection Machine itself, parallelism is achieved through simultaneous operations

over composite data structures rather than through concurrent control structures. in

this sense Cmbisp is a relatively conservative parallel language, since it retains the

program flow and control constructs of a normal serial Lisp, but allows operations to

33

be performed simultaneously across each element of a large data structure. This mirrors
the hardware of the Connection Machine, where the top level control is orchestrated
by a conventional serial computer, with thousands of values simultaneously calculated

by the individual processor/memory cells.

Why Lisp?

Lisp was chosen as a base for developing a Connection Machine language for a com-
bination of technical and social reasons. On the technical side, Lisp is extensible, has
dynamic storage allocation, and is generally good for symbol manipulation. In addition,
excellent Lisp programming environments already exist. On the sociological side, most
members of the artificial intelligence community, for whom the Connection Machine
was originally designed, are already familiar with Lisp. The supporting infrastructure
for their environments - documentation, primers, software libraries and programmiig

cliches - have taken years to develop and years to learn, so it makes sense to build
onto what already exists.

Most of the ideas in the language are actually relatively independent of Lisp, and
would be equally applicable to Connection Machine versions of Algol, C, or even For-
tran.

This chapter describes CmLisp. It is an introduction to the language, intended for
readers who are already familiar with ordinary Lisp. It is not a programming manual.
For a more detailed specification of the language see "The Connection Machine Lisp
Manual."

Xectors

All concurrent operations in CmLisp involve a simple data structure called a zector
(pronounced zek'tor). A xector corresponds roughly to a set of processors with a value
stored in each processor. Since a xector is distributed across many processors it is
possible to operate on all of its elements simultaneously. To add two xectors together,
for example, the Connection Machine directs each processor to add the corresponding
values locally, producing a third xector of the sums. This requires only a single addition

time, even though the xector may have hundreds of thousands of elements.

CmLisp supports many potentially concurrent operations to combine, create, mod-
ify and reduce xectors. These operations could be implemented on a conventional

computer, but they would be much slower, perhaps tens of thousands of times slower,
than they are on the Connection Machine. CmLisp also allows the programmer to

34

define new xector operations that execute concurrently. This is the source of its power,

It would be inelegant to force the CmLisp programmer to think in terms of proces-

sors and memory locations. The xector data structure provides a cleaner abstraction

that can be simply translated into these machine-dependent concepts. Each xector is

defined by three components: a domain, a range, and a mapping between them. The

domain and range are sets of Lisp objects, and the mapping assigns a single object in

the range to each object of the domain. Each object in the domain is called an indexr

of the xector. Each object in the range is called a value. An index/value pair is called

an element, In mathematical terms, a xector is a set of elements with unique indices,
or equivalently, a function from Lisp objects to Lisp objects.

On a serial machine a xector could be implemented as some kind of lookup table with

each index used as a key to find its corresponding value. In the Connection Machine

each element of the xector is stored in a separate processor and the index is the name

of the processor, an address in the memory of the host machine. A programmer does

not really need to know this, but it helps in visualizing how it works.

Xector Notation

To write a xector we list the elements surrounded by set braces. For each element we

show the index and value, connected by an arrow. For example, the following expression

denotes a xector that maps the symbols SKY, GRASS, APPLE onto the symbols BLUE,

GREEN, RED, respectively:

{SKY-+BLUE GRASS--+GREEN APPLE--+RED}

This is the most general form of a xector. There are also some important special

cases that deserve their own refinements of the notation,

One such special type xector is one in which each index maps onto itself, This is

used to represent a set, namely the set of indices. In this case where the index and the

value are the same, we may omit the arrow and write the value only once. Here is an

example (the symbol "E" denotes equivalence):

{A-+A 1-1 2-2} E {A 1 2}

Another important special case is when the domain of the xector is a sequence of

integers starting from zero. In this case, we use a bracket notation suggestive of a

vector:

{0-tA 1--B 2-tC 3-tD) E [A B C DJ

35

The final special case is a constant xector which maps every possible index into a
single value. In this case, the value is written only once, with the index left unspecified.
For example:

{f-3}

This denotes the constant xector that maps every object onto the number three.
All of these notational conventions are recognized by the CmLisp reader and gen-

erated by the CmLisp printer,

Creating, Referencing, and Modifying Xectors

Xectors are normal Lisp objects. They can be printed, bound to variables, stored in
arrays, returned from functions and so on, just as one would expect with any first-class
Lisp object.

The easiest way to create a xector is to type it explicitly to the reader. Here is an
example (the symbol "=>" denotes evaluation):

(SETQ COLOR-OF '{SKY-BLUE APPLE-+RED GRASS-tGREEN})
=> {APPLE-RED GRASS-tGREEN SKY-+BLUE}

The expression above sets the value of the symbol COLOR-OF to the example xector.
Notice that when the xector is printed the elements are shown in a different order.
CmLisp will always reorder the elements of a xector according to a canonical ordering
of the indices. This ordering is the same for all xectors. Integer indices will always be
in monotonically increasing order, but otherwise the canonical ordering is unspecified,
and may vary from implementation to implementation.

The values of a xector can be referenced by the function XREF, which will find the
value of a xector corresponding to a given index. If the index is not specified by the
xector XREF will signal an error. For example,

(XREF COLOR-OF 'APPLE) => RED

(XREF COLOR-OF 'COW) => error

Similarly, the values of a xector may be changed with the XSET function:

36

(XSET 'BLUE COLOR-OF 'GRASS)

COLOR-OF {APPLE-+RED GRASS-BLUE SKY->BLUE)

XSET will also signal an error if the index is out of range, but the function XMOD will
add a new index/value pair if necessary;

(XMOD 'GREEN COLOR-OF 'GRASS)

=> {APPLE-+RED GRASS-iGREEN SKY-+BLUE}

(XMOD 3 '{ONE-d1 TWO-42} 'THREE)

=> {ONE->1 TWO->2 THREE-+3)

Since xectors represent functions, CmLisp uses some of the terminology of functions
to refer to their parts and properties. The set of indices over which a xector is defined
is called the domain. The set of values into which it maps is called the range. If all the
values are unique, then the xector is invertible, in which case the inverse is the xector
that maps each value back to its corresponding index.

(RANGE COLOR-OF) = {RED GREEN BLUE)

(DOMAIN COLOR-OF) 4 {APPLE GRASS SKY)

(INVERSE COLOR-OF) => {RED-APPLE GREEN--+GRASS BLUE-+SKY}

Xectors can be created using conventional Lisp objects as templates. Similarly,
Lisp objects can be created from xectors. The following functions are used to convert
between xectors on other data structures:

ALIST-TO-XECTOR XECTOR-TO-ALIST

HASHTABLE-TO-XECTOR XECTOR-TO-HASHTABLE

PLIST-TO-XECTOR XECTOR-TO-PLIST

LISTS-TO-XECTOR XECTOR-TO-LISTS

ARRAY-TO-XECTOR XECTOR-TO-ARRAY

LIST- TO -XECTOR XECTOR-TO-LIST

SEQUENCE-TO'-XECTOR XECTOR-TO-SEQUENCE

The last three pairs of functions convert between ordered sequences and xectors.
In these cases, the sequences are created with the values in the canonical order of the

37

xector. The xectors are created with the zero-based sequence of integers as indices,
Here are some examples:

(xector-to-list '{A-+x B-*y}) = (x y)

(alist-to-xector '((A.x) (B.y))) = {A-.x B-.y)

(list-to-xector '(A B C)) => (A B C]

There are also functions to produce a set, or identity xector, from lists, strings, or
arrays.

Xectors as Sequences

Like a string or a list, a xector contains an ordered sequence of elements. Such an
object is called a sequence in Common Lisp, and the language provides many generic
functions that will operate on any type of sequence, In CmLisp these functions will work
on xectors also, using the canonical order of the indices as the order of the elements.

As illustrated in Table 2.1 below, many of the generic sequence operations can
execute more quickly on xectors than on lists or vectors. This is because the Connection
Machine can operate on all of the elements in a xector simultaneously. Operations like
SEARCH and DELETE, which can be performed on each element independently, execute in
a fixed time no matter how many elements are in the xector. Operations which involve
reducing, counting, or numbering the elements take place in logarithmic time, because
they are implemented by algorithms on balanced trees.

These "canned" operations are convenient, but they are not strictly necessary. All
of the functions in the table could be written in terms of lower-level parallel primitives.
In the next section we will show how.

2.2 Alpha Notation

This section introduces a way of describing the simple "all-at-once" parallelism that
occurs in operations like vector addition where all elements can be processed indepen-
dently. It is called alpha notation, and it requires extending the normal Lisp version
of FUNCALL to a version that allows a xector of functions to be concurrently called on
xectors of arguments. This is similar to Lisp mapping except that it is done in parallel.

38

Table 2.1: Worst case running times for

various sequence operations for sequences of length N.

VECTOR

ELT

LENGTH

SUBSEQ

COPY-SEQ

FILL

REMOVE

DELETE

REPLACE

COUNT

REVERSE

POSITION

REDUCE*

SORT*

MERGE*

SEARCH

0(1)

0(1)

0(1)

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0 (NLogN)

0(N)

0(N)

LIST

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0(N)

0(NLogN)

0(N)

0(N)

XECTOR

0(1)

0(LogN)

0(LogN)

0(1)

0(1)

0(1)

0(1)

0(LogN)

0(LogN)

0(LogN)

0(1)

0(LogN)

0(Log 2N)

0(LogN)

0(1)

*These functions take an arbitrary function as one of their parameters. For the purpose
of the table it is assumed that this function can be executed in unit time on both the

host and the Connection Machine.

The numbers reflect the assumption that communication and access of memory take
place in unit time. A more accurate model would count both these times as logarithmic

in the total size of the memory, for vectors, lists, and xectors.

39

In CmLisp the Greek letter alpha (a) is used to represent the conversion of a value

into a constant xector, that is, into a xector which maps everything onto that value.

In implementation terms, this is the equivalent of loading a value into every processor.

When the symbol "a" precedes an expression, the expression is interpreted as a xector

with the constant value of the expression. Here are some examples:

a3 = {-+3}

a(+ 1 2) => {-+3}

a+ => {-+t}

The last example is a xector of PLUS functions. A xector of functions has a special

meaning when it occurs in the functional position of a CmLisp expression. When an

expression is being evaluated a zector of functions is applied by concurrently mapping

the zector across its arguments; that is, each element of the function xector is applied

to the values of argument elements with corresponding indices, The result returned is

a xector of the individual results, For example:

(a+ '{a--d b-+2} '{a-3 b-+3}) => {a--4 b-+5}

(aCONS '{a-e1 b-t2} '{a-+3 b--3}) = {a-(1 . 3) b-+(2 . 3)}

Any index which does not occur in all elements is ignored:

(a+ '{a-t1 b--i2 c-+3} '{a--3 b--+3}) = {a-4 b-b)

(aCONS '{a-+1 b-2}) => '{a--+(1 . 9) b-+(2. 9)}

Alpha notation has some nice algebraic properties. Notice that the alpha can be

factored outside an expression or it can be distributed across the components:

a(+ 1 2) =(at al a2)

Both of the expressions above will evaluate to the xector {-+3). The factored form

of an alpha expression is generally more concise. This is especially true of more complex

expressions with many nested subcomponents. Unfortunately, the alpha can only be

factored if every subexpression is multiplied by an alpha, This is not normally the case,

40

Most CmLisp alpha expressions contain some subexpressions which evaluate to
xectors, and do not need to be alpha converted. To allow the use of the factored form
in this more general case we introduce another symbol "e" which cancels the effect of
an alpha. Within an expression that is multiplied by alpha, the dot can be placed in
front of subexpressions which are not to be converted by alpha. The symbol has no
meaning when it occurs outside such an expression that is multiplied by alpha. Here
are some examples of how it works (assume x is bound to a xector):

a(+ ex 1) (a+ x cl)

a(+ (* ex 2) 1) (a+ (a* x a2) al)

a 33

.3 => error

Using dots the programmer can specify different combinations of mapped and un-
mapped arguments to a function. For example, if A is the xector (A B Cl and X is the
xector [X Y Z], then:

(CONS A X) = ([A B C] . [X Y Z])

a(CONS sA oX) => [(A . X) (B . Y) (C . Z)]

a(CONS A eX) -f [([A B C) . X) ([AB C] .Y)(A B CJ .Z)]

One informal way to think of alpha is that it means "give me a zillion" of whatever
is inside the expression, where a zillion is however many are needed. Alpha will produce
a zillion additions, a zillion threes, or whatever. The dot symbol is a way of marking
those subexpressions that already have a zillion.

The xector of functions in an alpha funcall does not necessarily have to be a constant
xector. Different operations may be performed on different indices:

(Funcall '[+ - - +] ' [12 34) a1) => [2 12 5)

Since this is implemented by different operations being performed in different pro-
cessors, this use of xectors is related to the SIMD/MIMD distinctions in hardware

41

discussed elsewhere. On a MIMD machine xector-mapped funcall of this sort is essen-
tially a synchronization primitive, since the different component functions may take

different amounts of time to execute. Full MIMD operation corresponds to aEVAL,

applied to the xector of programs.

2.3 Beta Reduction

Alpha takes a single thing and makes many copies of it. Another common type of
operation is to take many things and combine them into one. For this we use Beta.
Beta converts a two-argument function into a function that reduces the elements of a
xector into a single value. This reduction is performed in parallel in logarithmic time.
Beta reduction uses only the values of the elements and ignores the indices. Here are
some examples:

(#+ '{A-1.i B-2 C-3}) 6

(#AND [T T NIL TJ) NIL

(#MAX {1 3 6 7})7

Alpha and beta can be combined to produce many useful functions:

(DEFUN XECTOR-LENGTH (x) (#+ a(PROG2 ex 1))

(DEFUN MAGNITUDE (x) (SQRT (#+ (a* x x))))

(DEFUN ALL-SAME (x y) (#AND (a= x y))

Beta can also be used with two arguments to construct a new xector from a given
a range and domain. Here is an example:

(0 '{A-+1 B-+2} '{A-+X B-*Y}) 4 {X-1 Y-2}

This may seem like a completely different use of Beta, but they are really two special
cases of a more general operation. This is explained in the optional section below.

2.4 Defining Data Structures with Defstruct (Background)

DEFSTRUCT is the Lisp mechanism for defining structures with named components. DEF-

STRUCT is really a part of Common Lisp, not the CmLisp extension. It is described here

42

because it is a relatively recent addition to Lisp, and it is important for programming
the Connection Machine. The reader who is already familiar with DEFSTRUCT may wish

to skip to the last paragraph of this section.

A structure is a composite object with named components. DEFSTRUCT is a mech-

anism for defining new types of structures. It allows the programmer to effectively
create new datatypes with Lisp functions for accessing and modifying their compo-

nents. Given the name of the type and the names of the stots, DEFSTRUCT will define

all these accessors automatically, along with a function for creating new instances of

the structure,

As an example of how this works, assume that we are defining a new datatype

called PIXEL to represent a dot on a color screen. Assume that each pixel has three
components: RED-INTENSITY, GREEN-INTENSITY, and BLUE-INTENSITY.

(DEFSTRUCT (PIXEL)

RED-INTENSITY

GREEN-INTENSITY

BLUE-INTENSITY)

Evaluation of this form will define four functions: MAKE-PIXEL, RED-INTENSITY,

GREEN-INTENSITY, and BLUE-INTENSITY. The function MAKE-PIXEL will create and
return a new instance of a PIXEL structure each time it is invoked. For example,

evaluating:

(SETQ P (MAKE-PIXEL))

will set the value of P to a newly created PIXEL structure.

The functions RED-INTENSITY , GREEN-INTENSITY, BLUE-INTENSITY are three "ac-

cessor functions" that are defined by DEFSTRUCT to access the components of any PIXEL

structure. They may also be used to modify the object via SETF. For example, if P is

a pixel, then

(RED-INTENSITY P)

will return the red intensity of P, and:

(SETF (RED-INTENSITY P) 3)

will rn edify P so that its red intensity is three. This is demonstrated in the following

sequence:

43

(SETQ P (MAKE-PIXEL))

(SETF (RED-INTENSITY P) 3)

(RED-INTENSITY P) => 3

DEFSTRUCT will also define various other useful functions including PIXEL-P (for
testing if a giver object is a PIXEL) and COPY-PIXEL (for creating a new PIXEL with
the same components as an old one). These are only the basics. For a complete
description of DEFSTRUCT and its many wonderful features, see Common Lisp, The
Language [Steele].

Connection Machine Lisp adds one additional feature to DEFSTRUCT. It provides a
":CM" option that allows the programmer to specify that all structures of a particular
type are to be stored on the Connection Machine, For example:

(DEFSTRUCT (PIXEL :CM)

RED-INTENSITY

GREEN-INTENSITY

BLUE-INTENSITY)

This will cause MAKE-PIXEL to store new pixel structures on the Connection Machine.
The components of this Connection Machine pixel structure can be accessed and mod-
ified just as before. The only differen:e is that each pixel structure will be stored in its
own processor/memory cell. This allows parallel xector operations to be performed on
the structures or their components, for instance, the xector of all pixels or the xector
of all red intensity.

2.5 An Example: The Path-Length Algorithm

We now have enough of the language defined to give a non-trivial example of CmLisp
programming. We will define, as an example, a function for finding the shortest length
path between two vertices in a large graph, using the algorithm discussed in Chapter
1.

Algorithm I used simple breadth-first search, searching all possible paths in parallel.
To find the shortest path from vertex A to vertex B, every vertex is labeled with its
distance from A. This is accomplished by labeling vertex A with 0, labeling all vertices
connected to A with 1, labeling all unlabeled vertices connected to those vertices with

44

2 and so on. The process terminates as soon as vertex B is labeled. The label of B is

then the length of the shortest connecting path.

Here is the informal description of Algorithm 1:

Algorithm I: "Finding the length of shortest path from A to B"

1, Label all vertices with +oo.

2. Label vertex A with 0.

3. Label every vertex, except A, with 1 plus the minimum of its neighbor's labels.

Repeat this step until the label of vertex B is finite.

4. Terminate. The label of B is the answer.

Here is the algorithm as expressed in CmLisp. Notice that there is one expression

corresponding to each line in Algorithm 1. It finds the length of path from vertex A to
vertex B in graph G.

(DEFUN PATH-LENGTH (A B G)

a(SETF (LABEL eG) +INF)

(SETF (LABEL A) 0)

(LOOP UNTIL (< (LABEL B) +INF)

DO a(SETF (LABEL *(REMOVE A G))

(1+ (#MIN a(LABEL e(NEIGHBORS .G))))))

(LABEL B))

To understand the program it is necessary to understand the representation used

for the graph, The graph is represented as a set, specifically a set of vertices. Each
vertex has two components: a label and a set of neighboring vertices. All of these sets

are represented by xectors. The vertices are represented by structures, which could

have been defined by the following expression:

(DEFSTRUCT (VERTEX :CM)

LABEL

NEIGHBORS)

45

The graph G that is passed to PATH-LENGTH is a xector of these vertex structures

that have been set up in such a way that the NEIGHBORS of each vertex is some set of

other vertices in the graph. In other words, the expression a(NEIGHBORS *G) evaluates

to a xector of xectors, representing the set of neighborhoods.

The first line of the program sets the label of every vertex in G to +INF, which is

some large positive number. The next line sets the label of vertex A to zero. Notice

that these first two lines have exactly the same form, even though one sets a single

value, and the other sets ten thousand. The only difference is the alpha.

The third expression in the program is the loop that does the real work. The loop

will be executed k times, where k is the length of the shortest connecting path. In the

example graph with 104 vertices and 106 edges, k is about 3. The looping terminates

when B is labeled with a value smaller than +INF. On each iteration every vertex in

G, except A, is set to one plus the minimum of its neighbors' labels. The vertex A is

removed from the set being labeled, so its label will remain fixed at zero.

The expression for computing the minimum of the neighbors' labels requires some

explanation, since it is operating on a xector of xectors. Consider first how to express

the minimum of the neighbors' labels of a single vertex V:

(#MIN a(LABEL *(NEIGHBORS V)))

The NEIGHBORS of V is a xector of vertices, and alpha is used to map LABEL across

all the elements, to produce a xector of labels. This xector is then reduced by the #MIN
operation to a single number. The expression in the example program works in exactly

the same way, except that it is applied to a xector of vertices rather than to a single

vertex. The final line of the program returns the label of B, which is the answer.

The CmLisp program corresponds very closely to the informal description in "Al-

gorithm I."

2.6 Generalized Beta (Optional Section)

The simplest use of beta is to reduce a xector to a single value. This is actually a special

case of a more general operation which reduces portions of xectors and associates the

results with other indices. This more general beta operation corresponds very closely to

the action of the message routers, in the same sense that an alpha operation corresponds

with the actions of the processors. It is a powerful programming tool that may be used

to express some of the most basic functions of Cmbisp, such as the inversion of xectors.

46

The general form of beta takes as arguments a combining function and two xectors.
It returns a third xector whose values are created from the values of the first xector
and whose indices are taken from the values of the second xector. In other words,
it sends the values of the first xector to the indices specified by the second xector.
The combining function specifies how collisions are handled. In the simplest case no
combining function is specified and any collision results in an error. This corresponds
to the simple two-argument beta used to create a xector with a specified range and
domain:

(# '[1 2 6] '[X Y Z]) = {X-+1 Y-2 Z-+5}

(# '[1 2 5] [X Z ZJ) =t error

When a combining function is specified it is used to reduce colliding values into a
single value:

(#+ [1 2 5) ' [X Z Z]) {X-1 Z-7}
(fl* '[1 2 5] '*[X Z ZI) 4 {X-1i Z-+10}
(#PROG2 ' 1 2 5] '[X Z Z]) = {X-+1 Z-5}

In the last example, the function PROG2, which returns the second of two arguments,
is used to make an arbitrary choice among the possible values. Since the order of
reduction is unspecified the expression could returned a xector with Z mapped to either
2 or 5.

In the case where the second xector argument is unspecified it is taken to be a
constant xector, so that all values in the xector are reduced to a single value, which is
returned as the value of the expression. This special case is the single-argument beta
operation that was originally introduced.

The general two argument form of beta may be used to define xector inverse as
follows:

(DEFUJN INVERSE (X)

(# (DOMAIN X) X))

Since the Beta is used without a combining function, this version of inverse will
produce an error if the xector is non-invertible.

47

Here is an example that uses both the general and single-argument forms of Beta
reduction to calculate the maximum number of occurrences of any single value within
a xector:

(DEFUN ARITY (X)

(#MAX (+ al X)))

(ARITY [A B A C A B]) => 3

(ARITY {A B C D}) = 1

2.7 CmLisp Defines the Connection Machine

CmLisp was designed to give the programmer an expressive tool that is close to the
operation of the machine, yet hides most of the details of implementation. In fact,
CmLisp is a good definition of what a Connection Machine really is: a Connection
Machine is the direct hardware embodiment of the alpha and beta operators. Processors
are alpha, routers are beta. The contents of the memory cells are xectors.

This view of the architecture gives us a way of measuring success of an imple-
mentation: A good Connection Machine is one that implements CmLisp quickly and
economically. In the following chapters we show how this can be done.

2.8 Bibliographic Notes for Chapter 2

For a general introduction to Lisp see [Winston, 19811. The Common Lisp dialect of
Lisp on which Connection Machine Lisp is based is documented in detail in [Steele,
1984], which in turn was based on MAC-LISP [Moon]. For an even nicer version of
Lisp see [Steele, 1978]. For a discussion of how Lisp can be compiled into machine

language see [Steele, 1978]. For a general introduction to the terms of graph theory see

[Harary].
Connection Machine Lisp is a relatively conservative language for the Connection

Machine. For a more radical departure from conventional languages see [Bawden, 1984
and 1984]. It may also be desirable to program Connection Machines in completely
other types of languages; for example, functional languages [Backus], constraints [Born-
ing], [Sussman, 1981], [Sutherland], actors [Hewitt], [Goldberg], [Cannon], [Weinreb],

48

[Lieberman], combinators [Turner, 1979 and 1979], set operations [Schwartz, 1973],
communicating sequential processes IHoare], or database languages [Codd], [DateJ. For
another attempt to add vector-like function calling to Lisp see [Friedman, 1975).

Many of the constructs of CmLisp were in collaboration with Guy Steele, who is
responsible for the first implementation.

49

Chapter 3

Design Considerations

In this chapter we discuss some of the issues and alternatives that arise in implementing

a Connection Machine. We will, for the most part, ignore implementation issues which

are not particular to the Connection Machine architecture. We will instead concentrate

on those considerations which follow from the unusual aspects of the architecture, the
fine-grain size and the general communications network.

Very few parallel computers have actually been built with either fine-grain size or
general communications, much less the combination, Many of the lessons learned in
implementing existing machines are misleading if extrapolated to a machine of this
type. In this chapter we try to outline the most important implementation issues
and identify some of the tradeoffs that are different for the Connection Machine, We
also identify some simple measures of performance that allow a would-be Connection

Machine designer to measure the success of a particular implementation, In the next

chapter we will describe a specific design that is currently being built and show how it
measures up under these criteria.

The issues discussed in this chapter fall roughly into three categories: the design

of the processor/memory cell, the design of the communications network, and the
design of the system level control. The most important issue in the design of the
processor/memory cell is making a reasonable tradeoff between the number and the
size of the processors. This can be broken down into several questions: How many
processors do we need? How big does each processor have to be? How simple can we
or should we make the individual processing element? For the communication network
the important decision is the choice of the physical wiring pattern or topology of the
routing network, There is also a question of what type of control mechanisms are to

be used to route the messages. In the control area there is a question of how much
autonomy should be given to the individual processing elements and how to manage
the interaction between the Connection Machine and the host. There are also a set

of system issues that occur in the design of any computer, but that have a different
set of tradeoffs for the Connection Machine. These include clocking disciplines, fault

tolerance, scalability, and input/output. The final section discusses the methods of

measuring performance.

50

3.1 The Optimal Size of a Processor/Memory Cell

The total size and cost of Connection Machine can be controlled by varying three inde-
pendent parameters: the number of processing/memory cells, the amount of memory
per processor, and the size of the individual processor. From a performance standpoint,
we would like all of these parameters to be simultaneously as large as possible. The
three goals are mutually conflicting, since cost is always a limiting factor. How do we
make the tradeoff? Given a fixed cost and, say a fixed processor size, we can adjust the
ratio of computing power to memory size by varying the number of processors. Alter-
natively, we could fix the memory size and vary the number of processors by varying
processor size. Which makes sense? How do we maximize the cost/performance ratio
of the total machine?

The point of building a fine-grain machine in the first place was that with smaller
processors it is possible to have more of them. The argument that this increases per-
formance seems at first straightforward: If there are more processors more operations
can be performed simultaneously, so the total time required for the computation is less.
The argument, as given, does not hold up since the operations of a fine-grain processor
are generally less powerful than their coarse-grain counterparts, For example, the fine-
grain processor may use a simple, one-bit-wide arithmetic unit. Performing a 32-bit
addition on such a machine requires 32 machine cycles; on a coarse-grain machine with
32 bit data paths the addition requires only a single cycle, Thus, even if it were possible
to have 32 times as many of the fine-grain bit serial processors, there might be no speed
advantage at all in the fine-grain machine, The machines would be equivalent if all of
the operations being performed were 32 bits wide and if the cycle times of the two
machines were identical. The real speed arguments for fine-grain machines are more
subtle. They hinge on the suppositions that the cost of the processor is reduced by
more than the power of the instruction set and that it is possible to build fine-grain
machines with faster cycle times.

The width of the processor data paths, and consequently the size of the processor
is a non-linear term in our cost/performance equation. This gives us a place to start
in making a tradeoff. We will first decide the optimal processor size, the size with
the maximum cost/performance ratio. Then we will pick a memory size that matches
the smallest units into which it can reasonably decompose a problem. The size of

the problem will then determine the number of cells. These parameters will define a
machine with optimal performance to solve the problem, If the cost of the machine is

too great, we can decrease the number of cells and proportionally increase the amount

51

of memory per processor. In other words, we can let one processing unit do the work
of several. In this way we can make a linear tradeoff between cost and performance.

This is all, in privciple, very precise. But in practice it requires a great deal of guess

work and judgment. We will try to outline here some of the considerations that arise.

Serial versus Parallel Data Paths

One of the most important parameters governing the size of the processing element is
the number of bits in the arithmetic unit, memory and the connecting data paths. Here

the designer can trade off one type of parallelism for another: the parallelism inherent

in a wide word operation versus the parallelism of more processors. The optimal trade-

off will depend partly on what applications are introduced by the machine. In symbol

processing applications the narrow data paths become more favorable because opera-
tions are performed in small fields representing boolean values, type codes, characters,

and flags. A conventional wide word machine spends a relatively large percentage of

its time packing and unpacking these fields into words. In addition, when operating on

short fields with a parallel arithmetic unit most of the hardware is wasted.

Even in long fixed-length arithmetic operations a single-bit arithmetic logic units

can be faster, assuming that it is possible to use proportionally more of them, The
reason is the speed-determining path for a parallel arithmetic unit is typically the
propagation of the carry bit, In serial addition the carry bit only needs to propagate

over one bit per cycle, so the cycle can be faster.

The faster-cycle argument only holds to the degree that carry propagation is the

critical path. If the memory access time is the determining factor for the cycle time of

the machine, then it makes sense to use g wider arithmetic unit so that its bandwidth

is matched with the bandwidth of memory. Another argument in favor of wider data

paths is that there is a portion of the processor logic which does not scale with the
data path width. Processors with wide paths are able to spread this fixed overhead

cost across a larger number of bits,

Memory Size

How much memory does a processor really need? For a Connection Machine the answer

is very different than for other computers because data structures are not held within

a single processor, Instead they are built up by tying multiple processors together. An

atomic object, such as an integer, symbol, or cons-cell, is held within a single processor.

For the Connection Machine the question of how much memory is needed in a processor

52

becomes: How much data is needed to store and process a single atomic data object?
Since many data structures are built from trees, each atomic object needs enough

storage to store connection pointers to at least three other cells. We know from Lisp
that two-pointer "cons-cells" can be connected together to form arbitrarily complex
structures. Actually, each Lisp cons is "connected" to at least three other objects: its
CAR, its CDR, and the object that points to it. Two connections are not sufficient
since the only structure that could be formed would be linear chains.

The number of bits in each of these pointers depends on the address space of the
machine and the mechanism for storing the type of the object. But let us say for the
purpose of calculations that it is 32 bits. Besides its structure pointers, a cell must
also store a type code indicating what type of cell it is. Let's say this is another 32
bits. Thus, 128 bits is probably sufficient to store the internal structure of an atomic
object. But we also need room to compute. Let us say that during the course of a
computation an object needs to hold a temporary value for each of the three objects to
which it points, plus one for itself. This doubles the amount of required storage to 256
bits. If we add another 32 bits for storing miscellaneous flags and conditions, the total
comes to just under 300 bits. This is comparable to the number of bits of temporary
registers that we are accustomed to in most serial machines. Since the communications
network effectively allows the use of the rest of the machine as "main memory," this is
a good indication that the calculated number is correct.

According to the argument given above, a cell should require only a few hundred bits
of local memory. On the other hand, the more conservative argument says "the more
memory the better." This point of view has good historical support, since computer
architects have almost always made the mistake of not including enough memory on
their machines. But there is some ambiguity about how this lesson should be interpreted
in the case of the Connection Machine. Is the important parameter the amount of
memory per cell, or the total memory on the machine? If it is the total memory on the
machine that matters then if may be best to solve the problem by having more cells
rather than fewer larger ones.

Virtual Processors

Part of the reason for the Connection Machine architecture was that problems can be
broken down into natural structural units for concurrent execution. Does the grain
size of the hardware processor/memory cell need to exactly match the grain size of the
natural problem unit? Fortunately, it does not. We can allow the hardware to support
virtual processors that are larger or smaller than the physical processors of the hardware.

53

Virtual processors larger than the hardware processors are supported by connecting

multiple hardware processors together. Virtual processors smaller than the hardware

processors are supported by dividing the memory space of each physical processor

into multiple memory banks and executing each instruction multiple times, once for

each bank. This gives a linear tradeoff between speed and number of processors. The

possibility of virtual cells allows the speed/size tradeoff to be made by the programmer

rather than the designer of the hardware. By using multiple virtual cells per physical

cell or vice versa the programmer can choose a cell size appropriate to the application.

In the final analysis, the size of a Connection Machine is likely to be about the size

and cost of a conventional computer. If the design is reasonably well-balanced, about

half the hardware will be devoted to memory, and half to processing and communi-

cations. Connection Machines with tens to hundreds of megabytes of memory and a

few million processors should be about the size and cost of a conventional mainframe

computer.

Machines of about this size work out nicely for many problems that come up in
artificial intelligence. For example, a thousand by thousand visual image has a million

picture elements so it fits naturally on a million cell machine. Most large Al programs

written in Lisp use a few hundred thousand to a million cons cells. One would pre-

sumably use a comparable number of processor/memory cells. The largest semantic

networks, say those used in medical diagnosis, contain a few hundred thousand links, so
again the numbers are in the right range. Of course, in the long run, as more becomes

possible, the size of the problems will grow. The beauty of this architecture is that,
unlike its serial counterparts, the Connection Machine will be able to grow also.

3.2 The Communications Network

The most difficult technical problem in the design of a Connection Machine is the design

of the general interconnection network through which the processors communicate. The

communications network represents most of the cost of the machine, most of the power

dissipation, most of the wiring, and most of the performance limitations. This is in part
because we have relatively little experience in designing such networks, so our methods

are far from optimal. But it is also because designing such networks is fundamentally

hard; the communications network is doing most of the computation.

General communication is particularly difficult to achieve on a fine-grain archi-

tecture because there are more processors. This limits the choice of interconnection

technologies. With only a few hundred processors to connect it would be plausible to

54

implement a full crossbar with a direct connection between every pair. With a million

element Connection Machine such a crossbar would require a million squared, or 1012

switch points. This is well beyond the range of current technologies. For a Connection

Machine the number of switching elements must scale more favorably with the number

of processors.

The building blocks from which the interconnection network is constructed are

autonomous switching elements called routers. The routers are wired in some relatively

sparse pattern called the topology of the network. In other words, not every router

is connected to every other. Processors communicate with one another through the

routers, with the routers forwarding messages between processors just as the post office

forwards mail from one branch to another. There are two issues in the design of such

a system: one is choosing the topology for connecting the routers, and the other is

choosing the algorithm for routing the messages.

3.3 Choosing a Topology

In choosing a topology, the goals can be divided roughly into two categories; cost and

performance. On the performance side, we will look for a combination of the following:

* Small Diameter - The diameter is the maximum number of times that a message

must be forwarded between routers when travelling from one processor to another.

If this distance is small, then processors are likely to be able to communicate more

quickly.

* Uniformity - It is desirable that all pairs of processors can communicate with

equal ease or at least that the traffic patterns between all pairs of routers is

reasonably balanced, This ensures that there are no bottlenecks.

" Extendability - It should be possible to build a network of any given size or,

as a minimum, it should be possible to build an arbitrarily large version of the

network.

* Short Wires - If the network can be efficiently embedded in two or three di-

mensional space such that all of the wires are relatively short, then the physical

distance between routers can be small. This means that information can propa-

gate quickly between routers.

* Redundant Paths -- If there are many possible paths between each pair of pro-
cessors a partially defective network may continue to function. Also, if a path is

55

blocked because of traffic a message can be directed along another route.

On the cost side we look for the following:

* Minimum Number of Wires - Each physical connection costs money. So if the

number of wires is small the cost is likely to be small also.

* Efficient Layout - If the topology can be tightly and neatly packed into a small

space, the packaging job becomes easier.

* A Simple Routing Algorithm - Since the routers are locally controlled, this keeps

down the cost of the routers.

* Fixed Degree - If each router connects to a fixed number of others, then one

router design will serve for all sizes of networks.

* Fit to Available Technology - If the topology can be built easily with available

components, it will be less expensive.

Notice the wish list contains contradictions; for example, for minimum number of
wires and redundant paths or for fixed degree, small diameter, and short wires. Any
decision will be a compromise. Deciding which performance factors are most important

is not easy. On the cost side most of the factors are difficult to measure, and even more
difficult to rationally trade off against one another. 'The fit to available technology,

often turns out to be one of the most important. For example, if chips come in packages

with a hundred pins, a topology that will require 101 pins per chip will be extremely
undesirable. Printed circuit boards may cost much more if they are more than 24 inches
long or may be limited to a thousand off-board connections per board. On the other

hand, if someone invents a new connector or a new method of manufacturing circuit

boards, the rules change. The constraints are extremely volatile. So the correct choice
of topology and routing algorithm will change from year to year.

3.4 Tour of the Topology Zoo

The literature offers the would-be Connection Machine designer a rich choice of pos-
sible interconnection topologies, which is, of course, the last thing that the designer
wants. There are grids, trees, hypercubes, omega-networks, delta-networks, indirect-

binary-n-cubes, Banyan-networks, hyper-toruses, twisted-toruses, k-folded-toruses, x-

trees, shuffle-exchanges, k-way shuffles, Batcher networks, Clos networks, De Brujn net-

works, reverse exchanges, butterfly networks, and so on. Proponents of each abound.

56

How do we choose? Many of these networks are closely related to each other. In fact,
several networks that have been analyzed in the literature have turned out to be ex-
actly isomorphic. In the sections below we will review the major categories. Which
network is optimal will depend upon the assumptions about requirements and available
technology. References to the topologies described, and machine that have used them,
can be found bibliographic notes at the end of the chapter.

Crossbars And Clos Networks

The simplest and most obvious network topology is to connect every node to every
other node. When N is small, say less than a hundred, this is a practical solution. In
the most straightforward implementation a full crossbar requires N 2 switches, but in
cases where the connections are one-to-one it has been shown that multi-stage networks
with the capabilities of a crossbar can be constructed with many fewer switches, These
are called Clos networks. A five-stage Clos network, for example, with 1000 input ports
requires only 146,300 switches, as opposed to the 1,000,000 required by a full crossbar.

Rings

The opposite extreme of the cost/performance tradeoff is the ring topology. This is
the minimal extensible topology with fixed degree. The disadvantage of these networks
is that the diameter increases linearly with the number of processors, so again the
topology is only practical for small N. They do layout well in two or even one dimension,
They also have an extremely simple routing algorithm.

Trees

Another relatively inexpensive topology is the m-ary tree, where m is most commonly 2.
The advantages of trees include low diameter (order log N), fixed degree, and efficient
layouts in two dimensionL, The primary disadvantage is the communications bottleneck
at the root of the tree, but there are many algorithms with local communications

patterns that do not run into this problem. Another approach has been to augment
the tree with additional connections to prevent congestion at the root. x-trees, for
example, add conniections that jump from one branch to another. Fat-trees add parallel
connections to increase the capacity of links near the root.

57

Grids and Toruses

The two-dimensional layout of most implementation technologies naturally suggest a

two-dimensional grid topology. Although the grid topology has a relatively large di-

ameter (2/N), its topology is well matched to many problems, in particular, prob-

lems closely matched to the geometry of physical space. Examples of such problems

include simulations in hydrodynamics, aerodynamics, electrodynamics, quantum chro-

modynamics, image processing, wire routing, and graphics. In each of these examples,

calculations are often done on an n-dimensional lattice. The cor4,munications patterns

are local on the lattice. Although technical constraints force a two-dimensional, or at

most a three-dimensional, network high dimensional lattices can be efficiently projected

onto such a grid. A simple and relatively common trick is to connect opposite edges,

keeping the maximum wirelength short by interleaving the front and back of the torus.

Shuffle-Type Topologies

This family of networks is characterized by diameters that scale logarithmically with N.

One form of this family is the "butterfly" communications pattern used in computing

the Fast Fourier Transform. If the nodes of the butterfly network are rearranged so

that each layer is drawn in the same pattern, the network is called an omega network.

A single layer of the omega network is sometimes called a "perfect shuffle" or a "shuffle

exchange" although the term is often used for the entire omega network. To make

matters worse, there is also the network formed by connecting log N omega networks

in series, that is, capable of relaying any permutation. This is also sometimes called

an omega network. Also, a somewhat more general form of the omega network was

proposed independently in the telephone literature, where it is referred to as the Benes

network.

A slightly repackaged form of the omega network is called the boolean n-cube or

hypercube, because of the graph formed by the corners and edges of an n-dimensional

hypercube. Here n = logN. The n-cube pattern may be formed by redrawing the

butterfly pattern so that one corner of the cube corresponds to a row of the butterfly.

A generalization of the omega or, more precisely, of the shuffle-exchange stage, is the k-

way shuffle, which for k > 2 has a smaller diameter. Other variations or isomorphisms

of the omega network include the "reverse exchange," and the "De Brujn" network.

One reason that the omega-network and its relatives are so popular is that there

exist simple local algorithms for routing messages through them. It is also uniform, has

a reasonably small diameter, and contains redundant paths. Perhaps most importantly,

58

it is well studied and relatively easy to visualize. One disadvantage of the n-cube version
of the networks is that the degree per node does grow with log N. A fixed degree version
of the n-cube replaces each vertex with a ring of trivalent nodes. This version is called
"cube connected cycles."

Banyan And Delta Networks

One claimed advantage of the n-cube network is the presence of redundant paths. This
is also a disadvantage in the sense that redundancy adds to cost. The SW-Banyan
networks are a class of logarithmic networks that contain exactly one path between any
input/output pair. Delta networks are a subclass of Banyan network with particularly
simple routing.

Hashnets

A final proposed answer to the question of network topology is to give up and connect
everything randomly. A random network performs relatively well compared to other
proposed networks, which indicates how poor our current understanding actually is.
The primary advantage of hashnets, as random interconnection network have been
called, is that they can be analyzed probabilistically. There is still a problem when
such a network is used in multiple passes. They are also fault tolerant.

3.5 Choosing A Routing Algorithm

Along with choosing a topology for the network, we must choose an algorithm for
moving information through it. This is called the routing algorithm, One important
decision here is whether the network is to be "packet-switched" or "circuit-switched,"
The difference here is like the difference between the post office and the telephone
system. The post office corresponds to packet switching where users of the network
communicate by transmission of addressed packets, The routing and flow of the pack-
ets at any given time depends on the pattern of communication. In a circuit-switched
system, like the telephone system, two users establish a connection and are then free to
communicate for as long as the connection remains established, In a circuit-switched
system the routing algorithm is executed relatively rarely, when new connections are
created. Connections, once established, stay in place whether the cells are actively ex-
changing messages or not. In a packet-switched system a new route is chosen each time
a message is transmitted, so the same cells may communicate over different routes at
different times. The primary advantage of circuit-switched systems is that the routing

59

algorithm is run relatively rarely, so the routing overhead may be less. The primary
advantage of a packet-switched system is that a connection consumes network resources
(wires and routers) only when a message is actually being sent.

Another choice in routing algorithms is adaptive versus non-adaptive algorithms.
The issue here is whether the path of a message through the network is determined
solely by its source and destination (non-adaptive), or whether it can be influenced
by the presence of other messages in the network (adaptive). Adaptive algorithms
have, at least potentially, higher performance because they are operating under fewer
constraints. But they are usually more complex and more difficult to analyze.

One additional consideration in choosing a routing algorithm is ease of analysis.
Again this tends to be in conflict with some of the other goals. Many of the networks
that appear to work well in practice or simulation seem difficult to study with analytical
tools. Worst-case performance, which is is usually the easiest to calculate, is often
misleading because the worst case happens so seldom as to be unimportant. Random
case analysis is also unenlightening, since the patterns of communication that occur
in practice are highly non-random. The typical case depends on the problem being
solved, so it is hard to even characterize, much less analyze.

One example of the tradeoff between ease of analysis and performance is the choice
of adaptive versus non-adaptive algorithms. Another example is Valiant's method of
probabilistically converting all patterns to the random case, at a factor of two cost in
speed. This is accomplished by sending first to a random location, and then from there
to the final destination, If the communications pattern has any locality, this random.
ization will destroy it, so the cost may be far more than a factor of two. Applying the
randomization transformation will create a network that is easy to analyze, but more
than twice as slow.

3.6 Local versus Shared Control

Another implementation question in designing a Connection Machine is how much
memory and control logic should be duplicated in each processor/memory cell as op-
posed to being shared centrally. The two extreme answers can be characterized as mul-

tiple instruction multiple data (MIMD) and single instruction multiple data (SIMD),
but there are many intermediate possibilities. The Connection Machine was originally
conceived as a MIMD machine, but the first prototype is SIMD. The differences are
less profound than they might at first appear.

In a SIMD machine there is a single instruction stream which is broadcast to all of

60

the processor/memory cells simultaneously. Each processor has the option of executing

the instruction or ignoring it, depending on its own internal state. Thus, while every

processing element does not necessarily execute the same sequence of instructions, each

processor is presented with the same sequence. Processors not executing must "wait

out" while the active processors execute. In a MIMD machine, each processor has its

own independent instruction stream.

It is clear that a SIMD implementation of a Connection Machine can do anything

that a MIMD implementation can and vice versa. The question is which is faster for a

given amount of hardware. This depends on what level of instructions are being issued

from the host computer or, to put it another way, on how much work each processor does

between synchronization steps. For simple operations, say "a+" in Connection Machine

Lisp, the instruction issued by the host may correspond directly to the instruction

executed by the processor. This is the SIMD case. An intermediate case would be

a function like "aCONS" which would require some independent interpretation on the

part of each processor. In the extreme MIMD case, the host would issue a very high

level command, like "aEVAL," which could cause each processor to execute a completely

different computation. Part of the tradeoff between shared and local control depends

on which programming style is more common.

To execute a command from the host like "aEVAL," each processing cell would ef-

fectively need its own program to interpret. This could be stored locally or accessed

through the communications network. Different processors would have different pro-

grams. Each processing element would use a location in its local memory to point to

the portion of the program being executed. In a SIMD implementation, the shared

instruction stream would direct each processing element to fetch the expression being

evaluated, and then broadcast the sequence of instructions necessary to evaluate every

possible type of expression. In a MIMD implementation, each processor would only

need to execute the sequence of instructions relevant to its particular expression.

Even for this interpretation task, it is not clear which type of implementation would

have the advantage, A full MIMD machine would need to fetch fewer instructions per

processor, but would require either a separate program memory for each processing

element, or alternatively, it would need to move the instructions through the switching

network. The former solution is extremely costly; the latter is slow. Even paying

the cost of duplicated control memory does not necessarily result in a machine that

is faster than its SLMD counterpart. In order to preserve memory, a MIMD machine

would have to place a much higher premium on the space efficiency of the code. This

leads to a greater execution time. For example, the prototype Connection Machine,

61

a SIMD implementation, uses a 96-bit-wide instruction word. A million cell MIMD

machine with this wide an instruction would require more than 10' bits of instruction

to be transferred through the interconnection network on each instruction cycle. This

would be extremely inefficient if the 96-bit instruction were to specify, say, only a single

bit operation, Most of the memory bandwidth, and thereby most of the power of the

machine, would be used in fetching instructions. The only way a MIMD machine would

be practical is with more powerful and more compact instructions. This would incur a

cost in both the speed and the complexity of the processor. The argument holds even

if the memory is shared and accessed through the communication network, although

in this case the scarce resource is communications bandwidth rather than memory.

One potential problem with a simple-instruction wide-word SIMD implementation,

is that the host may not be able to provide instructions as quickly as the processors

can execute them. This problem can be alleviated by placing a special purpose micro-

controller between the host and the Connection Machine itself. The microcontroller

effectively acts as a bandwidth amplifier for the instruction stream by interpreting

relatively high level instructions from the host and converting them to sequences of

the simpler instructions that are executed directly by the processors. For example,

on a Connection Machine with serial ALUs, the host might specify a 32-bit addition

sequence by a single command to the microcontroller, which would translate into the

32 individual bit operations to be executed directly by the cells. The microcontroller

also allows critical control functions to be implemented in shared hardware rather than

by repeated hardware in the individual processors or by the software in the host.

3.7 Fault Tolerance

Since a Connection Machine can potentially have an extremely large number of compo-

nents, much larger than a conventional machine, even the high reliability of available

microelectronic components may not be sufficient to ensure the overall reliability of

the system. A machine with, say, 100 billion active components cannot reasonably be

expected to operate reliably without some form of fault tolerance. There are really two
issues here: "soft failures" and "hard defects," Soft failures are dynamic errors in the

system that occur during the course of a computation. An example of a commonly
used method for identifying and correcting soft failures is the error correction circuitry
used on dynamic memory. These methods are applicable to the Connection Machine

also, Hard defects are nonfunctional components created by burnouts or manufacturing
errors.

62

Since the Connection Machine architecture has natural units of redundancy in the

processor/memory and router cells, implementations can be constructed with the ca-

pability of reconfiguring so as to continue operation even when cells fail. To implement

such a system each processor would need the ability of testing its neighboring pro-

cessors and associated routers. Once a defective processor or router was identified it

could be effectively isolated from the system by adjusting the behavior of all the router

cells through which the defective cell communicates. A processor could be isolated,
for example, by ignoring all messages that come from it. The system would also need

to ensure that the isolated processor/memory cell was not built into any active data

structures, so the storage allocation mechanism would have to take into account the

presence of defective cells. This will be discussed in more detail in Chapter 6. Similar

techniques may be used to isolate defective routers or wires. In this case all routers

that communicate with the defective component must not only ignore any messages

that come from it, but also ensure that any message that would normally pass through

it are redirected. This assumes, of course, that the topology of the communications

network includes redundant paths.

3.8 Input/Output and Secondary Storage

As in a conventional machine, it is important that a Conn%_ tion Machine implemen-

tation support a balance of processing and input/output. For some applications, in-

put/output bandwidth may actually dominate the performance of the machine; for

example, in simple image processing of high resolution satellite or radar data. In other

applications it may critical to move data in and out of secondary storage; as, for exam-

ple, in a database retrieval system. The success of an implementation depends on how

well it fits all aspects of the application, not just the processing. The input/output per-

formance can become extremely important, particularly if this portion of the machine

is poorly designed.

Fortunately, the Connection Machine architecture provides two natural possibili-

ties for high-bandwidth input/output ports: through the communications network or

directly to the individual processors. The former solution is more flexible, the lat-

ter simpler. Even with a one-bit channel per processor, a reasonable size Connection

Machine can transfer data at a rate much higher than can be supported by conven-

tional peripherals, so the difficult problem is in the design of the peripherals. This goes

beyond the scope of this discussion.

63

3.9 Synchronous versus Asynchronous Design

In most modern machine designs the operation of all components is synchronized to

a single central clock. The primary reason for this is simplicity of design. One prob-

lem with synchronous clocking is that as machines grow physically larger it becomes

increasingly difficult to synchronize the components in different parts of the machine.

The signal propagation skews between one part of the machine and another becomes

significant. Also, there is some time penalty for synchronization, since all components

must operate at the speed of the slowest. An additional argument against synchronous

design is that it is fundamentally impossible to incorporate asynchronous real world

input without introducing the possibility of synchronizer failures.

How does the Connection Machine architecture affect the issue of synchronous ver-

sus asynchronous design? On one hand, it raises the possibilities of running into some

of the limitations of synchronous design by allowing the possibility of constructing arbi-

trarily large machines. On the other hand, it alleviates some of these problems through

the uniformity of its architecture. Although a Connection Machine may be very large,

the local neighborhoods over which synchronization must be maintained are limited by

the topology of the communications network, synchronization needs only to be main-

tained locally, between directly communicating components, rather than globally over

the entire machine. Also, since all components are essentially identical, operating at

the speed of the slowest is no great penalty. These factors seem to favor synchronous

design.

3.10 Numeric versus Symbolic Processing

What is the difference between a "number cruncher" and a computer designed for

processing symbols? There is a real distinction here, since many architectures operate

extremely well for one type of operations and poorly for the other, and a few perform

reasonably well at both. All data operated upon by a computer is internally represented

as numbers, so it is not exactly a distinction between numbers and symbols, but between

different types of numbers and different mixes of operations upon them. Number

crunchers are optimized primarily for arithmetic operations on large, usually floating

point, numbers. in a typical symbolic application, multiplies and divides are rare and

floating point numbers are even rarer. Symbolic processors are optimized instead for

memory reference, flow control, and secondarily for logical/arithmetic operations upon

small variable-length fixed-point numbers. In a typical symbolic application a large

percentage of the machine's time is spent in the overhead of subroutine calls, set up

64

for nonlocal exits, context switching, and other operations of control.
There is also a difference between symbolic and numeric computation in the com-

plexity of data structures. In symbolic applications data structures tend to be complex
linked pointer patterns, scattered through memory. In numeric applications the most
common data structure is a linearly allocated array or vector. This regularity allows
for the efficient use of vector operations.

In a Connection Machine these issues affect the optimal implementation of both the
processor/memory cell and the communications network. If the intended applications
for the machine involve intensive use of floating point numbers then the individual
processing element may require special floating point hardware. If it is intended for
symbolic applications then the ability to manipulate small variable length fields be-
comes important. These tradeoffs are very similar to those made in the conventional
computer, except that in the Connection Machine the cost of any hardware added per
processor must be multiplied by the number of processors, so the addition of each
feature is more expensive. In the communications section of the machine, the nu-
meric/symbolic distinction is significant primarily because of the relative regularity of
communications patterns that are likely to occur. The numeric patterns tend to be
more structured and the symbolic patterns tend to be more random. Some intercon-
nection network designs perform well on one type of pattern but not the other.

3.11 Scalability and Extendability

One advantage of the Connection Machine architecture is that potentially it allows sig-
nificant increases in the size of the machine without significant redesign of the compo-
nents. The architecture is scalable. It should be possible to build Connection Machines
that are ten or even hundreds of times larger than existing machines, at a comparable
increase in cost. It is even possible to build a Connection Machine that is incrementally
scalable, that is, extendable. Such a machine can be expanded by adding additional
processor/memory communications units into an existing machine in much the same
way that additional memory units may be added to a conventional computer. If the
system is designed correctly the machine could be extended in this way without even
a change in software.

Scalable and extendable machines have a potential cost advantage because they are
made of large numbers of replicated parts which can be mass produced efficiently and
also because the design cost can be amortized over larger numbers of configuration.
The disadvantage of a scalable machine is that the extra "hooks" left for expansion,

65

such as extra bits in the address space or extra connectors on the backplane add to the
cost and complexity of design.

3.12 Evaluating Success

Given this wide range of options for implementing a Connection Machine, how can
we effectively compare and evaluate various alternate designs? Part of the answer
is very hard and depends on how well the implementation matches what problems.
This question probably has no simple answer, except where one implementation can
efficiently simulate another. But there is another part of the answer that is easier
to measure. Does the implementation have sufficient raw computing power? Such
power will not be of much use if it cannot be efficiently applied to a problem, but it is
worth checking to see if the power is there to be applied at all. This section suggests
some simple measures of raw computing power. It does not attempt to answer the
application-specific questions or the more general question of range of applicability.

Measure I: Size of Memory

This should be the least controversial of the measures. A machine cannot solve a
problem if it cannot hold it. Memory is measured in bits, so a machine with 8K of
64-bit words is equivalent under this measure to a machine with 64K of 8-bit words.
The one thing that may cause evaluation problems is how to count various forms of
secondary storage. Do we count the secondary storage on a machine with virtual cells?
This decisions can be made either way, but a consistent definition of memory should
be used for all performance measures for a given machine. For most implementations
it is appropriate to count only the amount of random access memory.

Measure II: Memory Bandwidth

Having defined memory, the definition of memory bandwidth is straightforward. How
many bits can be moved to and from the memory per second? A bit counts as being
moved from the memory if it is stored in another memory, or fed to a processing cell!
Similarly, a bit only counts as moving to the memory if a new value is written over an
old one. This prevents, for example, the inclusion of refresh cycles into the memory
bandwidth calculation.

66

Measure III: Processing Bandwidth

How many bits go into and out of arithmetic-logic units per second? Here there is no

distinction as to whether the operations being performed are simple booleans or floating

point multiplies. We are not trying to measure the quality of the instruction set. Again

the count is of bits, not words, so a serial machine with a 10 nanosecond ALU cycle

time, will count the same as a 100-bit machine with a I microsecond cycle. Also all

the bits going in and out to the arithmetic-logic unit are counted, so a machine that

can operate with four ALU inputs and two outputs will count as twice the measure of

a similar machine with two inputs and one output. This measure differs from memory

bandwidth only if there is some kind of local caching or registers.

Measure IV: Communication Bandwidth

For many applications, the performance of the machine is limited by the communica-

tions requirements between the individual processing elemcnts. The communications

bandwidth is intended to be a measure of this capacity. Communications bandwidth

is defined as the total memory size of the machine divided by the timc required to

perform an arbitrary permutation on all bits in the memory. For most machines this

number will depend considerably on the permutation, so it makes sense to ask to look

at both the average and the worst case. For particular applications it may also make

sense to ask about particular classes of permutations, such as two-dimensional grid

permutations, or a perfect shuffle permutation of 32-bit words.

Measure V: Input and Output Bandwidth

These are calculated in a manner analogous to memory bandwidth. Bandwidth to

secondary storage is included.

These measures provide a simple mechanism for comparing one Connection Ma-

chine implementation. They may even provide a way of comparing computers in gen-

eral, especially parallel computers. Notice that all of the measures may make sense

even for a single processor machine. Communications bandwidth, as defined, would be

proportional to memory bandwidth for a conventional processor. For idealized paral-

lel machines with shared memory, like Schwartz's "Paracomputer," [Schwartz} all the

numbers would scale linearly with the number of processors. This fits well with our

intuitive measure of computing power. Unfortunately, these measures do not address

the more interesting and difficult questions of "How well can this power be applied to a

given application?" or "Over what range of applications is the architecture efficient?"

67

Simple answers to these questions will be hard to find.

3.13 Bibliographic Notes for Chapter 3

For a general review of circuit connection topologies see [Broomell, 1983], [Thompson,

1978], or [Benes, 1965] (from the standpoint of telephone switching systems). For anal-

ysis of logarithmic-type networks see [Lang, 1976) (shuffle-exchange), [Lawrie, 1975]

(omega networks), [Pease, 1968] (perfect shuffle), [Pease, 1977] (indirect n-cube), [Wit-

tie, 1981] and [Valiant, 1982] (n-cubes), [Kruskal, 1982] (Banyan networks), [Schwartz,

1980] (perfect shuffle) and [Benes, 1965] (Benes networks and Clos networks). For a

demonstration of the equivalence of many of these see [Parker, 1980] and [Snir].
For networks based on tree structures see [Browning, 1980), [Goodman, 1980] (hy-

pertrees), [Sequin, 1982 and 1978] (augmented trees). Also [Leiserson, 1985] introduces

a structure called fat trees which can efficiently simulate any other physically realiz-

able topology. For a discussion of communication in grid-like machines see lOrcutt,

1976). Another intriguing possibility for switching topologies which are optimal in a

certain sense are Moore graphs [Hoffman, 1960]. For a discussion of the topologies in

the human brain see [Sholl, 19561.

[Wu, 1981] gives an analytic comparison of trees and n-cubes. For analysis of various

topologies in the context of a specific database problem see [Goodman, 1980]. [Garner,

1963] compares n-cubes and two-dimensional grids.

For introductions to queueing theory see [Gross, 1974], [Kleinrock, 1973 and 1976].

For specific analyses see [Kleinrock, 1964] and |Ziegler, 1971] (grids). For actual mea-

surements of queueing delays see [Cole, 1971]. For a specific application or another

specific example of queueing see [Gerla, 1973].

For a discussion of the merits of synchronous versus asynchronous design and the

local synchronization see [Seitz]. The relative merits of SIMD versus MIMD versus

multiple SIMD are discussed in [Siegel, 1981].

68

Chapter 4

The Prototype

This chapter describes a specific Connection Machine implementation, a 64K prototype

machine currently being constructed at Thinking Machines Corporation, Cambridge,

Massachusetts. The prototype is called the CM-1. Its primary purposes are to evalute

the Connection Machine architecture and to provide a tool for the development of

software. Speed of operation was not a primary design goal; instead, the emphasis

was on flexibility. We were interested in evaluating the architecture, not the quirks

of a particular implementation. Many of the functions were implemented in a general

elegant form, even at a cost in speed.

The CM-1 contains 64K (216) cells, each with 4K (212) bits of memory and a simple

serial arithmetic logic unit. The processors are connected by a packet-switched network

based on a boolean n-cube topology, using an adaptive routing algorithm. All proces-

sors execute instructions from a single stream, generated by a microcontroller under

the direction of a conventional host. The machine, including the microcontroller, pro-

cessor/memory cells, and communication network are all packaged into a cube roughly

1.3 meters on a side.

In conventional terms, the machine has a peak instruction rate (32-bit additions)

of about 1000 MIPS (millions of instructions per second). In terms of the evaluation

criteria set forth at the end of the last chapter, the machine measures as follows:

* Size of Memory: 2.5 x 108 bits

e Memory Bandwidth: 2.0 x 10" bits per second

e Processor Bandwidth: 3.3 x 10" bits per second

* Communications Bandwidth:

- Worst Case: a 3.2 x i07 bits per second

- Typical Case: a 1.0 x io9 bits per second

- 2-D Pattern: e 3.3 x 1010 bits per second

- FFT Pattern: ~ 5.0 x 1010 bits per second

69

9 Input/Output Bandwidth: 5.0 x 108 bits per second

This chapter will describe in detail the design of the processor/memory cell and

the design of the interconnection network. It will also describe the operation of the

microcontroller and give an overview of the packaging of the system.

4.1 The Chip

The key component from which CM-1 is constructed is a custom designed VLSI chip

which contains 16 processor cells and one router unit of the packet switch communi-

cations network. It contains three principal sections: the control unit, the processor

array, and the router. The control unit decodes nano-instructions coming in over the

instruction pins and produces signals that control the operation of the processor and

the router. All actions of the control unit are synchronized to an externally supplied

clock. There are 16 individual serial processing units on the chip. Under direction of

the control unit these processing elements take data from external memory, perform

arithmetic and logical operations on the data, and store the results back in memory.

All transfers to and from memory take place over the bidirectional memory pins. Each

processor has its own set of internal flags for storing intermediate bits of state during

a computation.

The router is responsible for routing messages between chips and delivering them

to the destination specified by the address. The router communicates with the routers

of other chips through the bidirectional cube pins. The router has three sections: the

injector which transmits new messages into the network, the heart which forwards

messages between chips, and the ejector which receives and delivers messages to the

appropriate processing element. The router also has a direct connection to the off-chip

memory, through the memory pins, which it uses for buffering messages. All operations

of the router are controlled by the control unit.

There is also a second grid-like communications system provided on the chip for

local or highly-structured communications patterns. This communication system does

not involve the router. Instead each processor communicates directly with its North,

East, West and South neighbors. On-chip the processors are connected in a 4 x 4 grid.

This two-dimensional grid pattern may be extended across multiple chips by connecting

the NE WS pins of adjacent chips.

The chip provides two different mechanisms for returning information to the mi-

crocontroller. First, the external memory may be read back over the instruction pins.

Second, any of the 16 processing elements may assert a signal to be sent back over the

70

global pin or the error pin. The signal sent off the chip is the logical OR of the asser-

tions of the individual processors. In addition to the main blocks described above, the

chip also contains circuitry for checking various parities, correcting errors in memory,

and diagnosing faults within the chip.

The processor/router chip is implemented on CMOS die about one square cen-
timeter in area. There are approximately 50,000 active devices. The chip dissipates

approximately one watt of power running at a clock rate of four megahertz. It is
packaged in a 68-pin square ceramic carrier.

Each Connection Machine chip has associated with it 4K x 4 static memory chips.
This unit of one Connection Machine chip and four memory chips accounts for more
than 90 percent of the circuitry of the Connection Machine. Thirty-two of these units
are packaged onto a single printed circuit board, called a module. Each module contains
512 processor/memory cells. The modules are plugged into backplanes of 16 modules
each. And two of these backplanes are mounted into a single rack. Four racks are
placed together into roughly the shape of a cube to form the 64K-processor machine.

The hierarchy of the packaging follows closely the topology of the boolean n-cube.
The first five dimensions of the cube are connected within a module, the next four within
a backplane, and the final three within the racks. Each of the twelve edges of this top-
level cube consists of 8,192 signal ground pairs. These signals are run on controlled
impedance flat cables. The remaining dimensions are connected on the printed circuitry
of the modules and backplanes. The machine is air-cooled and dissipates about 12,000

watts when operating on a four megahertz clock.

4.2 The Processor Cell

The individual processing cell of the CM-1 is extremely simple. It has only 8 bits of
internal state information (flags). All of its data paths are only one bit wide. A block
diagram of the processing element is shown in Figure 4.1.

The basic operation of the processing element is to read two bits from the external

memory and one flag, combine them according to a specified logical operation producing
two bits of results, and write the resulting bits into the external memory and an internal

flag respectively. This sequence of operations requires three clock cycles, one for each

reference to the external memory. During these three clock cycles the microcontroller

specifie3 the following parameters of the operation.

* A -address (12 bits) specifies the external memory address from which the first

71

Figure 4.1; Block diagram of a single Connection Machine processing element

72

bit is read. This is also the address to which the memory output of the Arith-
metic/Logic Unit is written.

* B-address (12 bits) specifies the external memory address from which the second
bit is read.

* Read-Flag (4 bits) specifies one of the 16 (8 general purpose, 8 special purpose)
flags from which the "F" input of the Arithmetic/Logic Unit is to be taken.

* Write-Flag (4 bits) specifies one of the 16 flags to which the flag output of the
Arithmetic/Logic Unit is written,

" Condition-Flag (4 bits) specifies which of the flags is to be used to conditionalize
the operation (see "Conditionalization").

" Condition Sense (1 bit) selects either the "1" or the "0" condition for instruc-
tion execution.

" Memory Truth Table (8 bits) specifies which of the 256 possible boolean func-
tions is to be used to compute the memory output from the three inputs to the
Arithmetic/Logic Unit,

" Flag Truth Table (8 bits) specifies which of the 256 possible boolean func-
tions is to be used to compute the flag output from the three inputs to the
Arithmetic/Logic Unit.

" NEWS Direction (2 bits) specifies whether data is to move across the two-
dimensional grid in a North, East, West, or South direction during this instruc-
tion. (This path is used for input/output.)

The parameters listed above may be specified in any combination.'This results in
an extremely simple but overly general instruction set. For example, it is possible to
specify any of the 65,536 (23) possible Arithmetic/Logic Unit functions for three inputs

or two outputs by giving the truth tables for the memory and flag outputs. This allows

not only the specification of the standard arithmetical and logical functions, such as

add, subtract, and or and xor, but also thousands of relatively useless variants, Thi5
is an example of the kind of generality provided by the prototype. Rather than try to
guess which operations would be most useful, we have included them all. Obviously
this type of generality incurs a cost, in this case in the speed of the Arithmetic/Logic
Unit and in the width of the microcode (pins and wires). On future machines it will

73

probably be desirable to optimize with a more restricted instruction set. Notice that

with the current scheme, however, that the Connection Machine processor cell is the

ultimate reduced instruction set (RISC) computer, with only one extremely powerful

instruction.

Conditionalization

All processors receive the same instruction from the control unit but a processor has

the option of executing an instruction or not, depending on the internal state of one of

the processor flags9 The CONDITION-FLAG parameter specifies which flag is to be

used for this purpose and the CONDITION-SENSE parameter specifies how this flag

is to be interpreted. If the condition sense parameter is a "0," then the flag must be

a "0" in order for the instruction to be executed. If the condition sense is "1," then

the flag must be "1" also. Conditionalization is done on a per processor basis, so that

some processors may write a new value, while others do not.

The Flags

There are sixteen flags associated with each processor. Eight of these flag are general

purpose one-bit registers. They have no predefined function imposed by the hardware

and are typically used for storing things like the carry bit between successive cycles of

a serial addition operation. The other eight flags in the processing element have special

purposes assigned by the hardware. Some can be read and written, like the general

purpose flags. Others can only be read. These flags provide the interface between

the processing element and the router and between processing elements via the North,

East, West, South (NEWS) connections.

The following flags have special functions:

* NEWS Flag: This flag contains information written from the FLAG OUTPUT
of the Arithmetic/Logic Unit of the North, East, West, or South neighbor. Which
one depends on the NEWS-DIRECTlON parameter to the instruction.

* Cube Flag: This flag reads directly off one of the cube pins connecting to
other chips. This allows the programmer to bypass the router and access ni-

cube neighbors directly in much the same way as the NEWS flag accesses the

two-dimensional neighbors. This is used primarily for diagnosis.

* Router-Data Flag: This flag is used for sending data to and receiving data
from the router, The format of the message passing through this flag is essentially

74

address followed by data (see "The Router").

* Router-Acknowledge Flag: This read-only flag is a handshaking bit sent back

from the router to acknowledge the successful transmission of a message,

* Daisy-Chain Flag: This read-only flag reads the flag output of the proces-

sor ahead on the on-chip daisy chain. It effectively allows the 16 on-bit pro-

cessor/memory on a chip to be connected together into a single 16-bit proces-

sor/memory cell.

* Long-Parity Flag: This writable flag automatically keeps track of the parity

of the data in a processor's external memory. It is used in conjunction with the

short parity bit stored in external memory to allow single bit error correction

within the memory.

* Input Flag: Reads the reserved input pin of the chip.

* Zero Flag: This read-only flag will always read a "0." By convention, operations

which do not write a flag specify the zero flag in the write flag parameter.

These special purpose flags and the eight general purpose flags are accessible to the

programmer through microcode, but are not visible from the macro-code.

4.3 The Topology

Each router handles the messages for 16 processing cells. The communications network

of the CM-1 is formed by 4,096 routers connected by 24,576 bidirectional wires. The

routers are wired in the pattern of a boolean n-cube.

The address of the routers within the network depend on their relative position

within the n-cube. Assume that the 4,096 routers have addresses 0 through 4,095.

Then the router with address i will be connected to the router with address j if and

only if Ji - j| = 2k, for some integer k. In this case, we say the routers are connected

"along the k-th dimension." Geometrically, the boolean n-cube may be interpreted as

a generalization of a cube to an n-dimensional euclidean space. Each dimension of the

space corresponds to one bit position in the address. An edge of the cube pointing

along the k-th dimension connects two vertices whose addresses differ by 2k, that is,

they differ in the k-th bit of the address! Since any two 12-bit addresses differ in no

more than 12 bits, then any vertex of the cube can be reached from any other by

travelling over no more than 12 edges9 Any router is no more than 12 wires away from

75

any other router, Smaller networks may be constructed by deleting nodes from the

12-cube. Networks with more than 2" nodes would require a larger router, although

it would be a simple extension of the current design.

The operations of the router may be divided into five categories: injection, delivery,

forwarding, buffering, and referral, The 16 processors which a router serves may send

new messages into the network by the process of injection. Messages may also come in

from other routers. Some of these messages may be destined for other procesors served

by the router. The process by which a router removes a message from the network

and sends it to the processcr for which it is destined is called delivery. If an injected

message is going somewhere outside the cluster of 16, it must be forwarded. Incoming

messages may also need forwarding. If several messages want to be forwarded over the

same wire they may need to be buffered by the router. Buffering may also be necessary

if several messages need to be delivered at once. If the buffer is full, then the router

may need to refer a message to another router. This process is similar to forwarding

except that it may not bring a message closer to its final destination.

The algorithm used by the router may be broken into repeating cycles called petit

cycles. Each petit cycle may be further composed into 12 dimension cycles, one for

each dimension of the router. During a petit cycle, messages are moved across each of

the 12 dimensions in sequence. Each of these motions along a single dimension is called

a dimension cycle. In a boolean n-cube a message can be no more than one step away

from its destination per dimension, so all messages will be delivered within a single

petit cycle unless they are delayed by traffic. Messages that are delayed by traffic will

be delayed by at least one full petit cycle, since there is only one chance to move along

each dimension during a petit cycle.

The injection process involves a simple handshake between processor and router.

A processor initiates a message by sending a valid message packet to its router data

flag in the format shown in Figure 4.2, consisting of an address, followed by a "1" for

formatting, followed by the data, followed by a parity bit. The data portion of the

message may be of any length as long as the lengths of all the messages simultaneously

in the network are the same. The router may accept or reject a message based on its

current loading. This information is then transmitted back to the processor via the

router acknowledge flag. If a message is rejected then the processor will attempt to

retransmit it at a later time.

Message injection can be initiated by a processor at the beginning of each petit

cycle. The number of messages accepted by a router during a petit cycle will depend

on the number of buffers that it had free at the begining of the petit cycle. A router

76

P data (m bits) I address (12 bits)

Figure 4.2: Message format

will accept no more messages than it has free buffers, and in no case will it accept no

more than four messages in a single petit cycle.

The address of a message may be divided into three portions:

" the address of the processor within a router cluster,

" the address of the router, and

* the address of the memory within the processor.

Except for delivery, the router is only concerned with the router portion of the

address. This portion is specified relative to the address of router in which the message

currently resides. For example, when the address is "0" then the message is to be

delivered to one of the directly connected processors. If the address is "000001000100"

then it must move across two wires to reach its destination. Each time a message

is moved from one router to another, the address is updated to maintain its relative

address with respect to its destination. Since each bit of the address corresponds to

one dimension of the n-cube, each time a message moves along a dimension, one bit of

the address must change. When the address becomes "0," the message has arrived.

During the first dimension cycle the router may choose a single message to be sent

across the wire corresponding to dimension "0." In general, during the k-th dimension

cycle each node chooses a message to be sent across the k-th wire. A node makes this

choice by looking at the k-th bit of each message. Any message with a "1" in the

k-th bit needs to move along the k-th dimension. The router searches all messages it

has, including newly injected messages, messages buffered from a previous petit cycle,

and messages that arrive during earlier dimension cycles of the current petit cycle. The

router searches them in order so that if there are several messages with the k-th address

bit set, the one that has been at the node the longest will have the highest priority.

The chosen message, if there is one, will be sent along the wire k-th direction, with the

k-th address bit complemented to preserve address relativity.

During a petit cycle this process of choosing a message is repeated 12 times, once

for each dimension. All messages will be taken to their final destinations unless they

are delayed by traffic. For example, if there were only one message, it would never be

77

delayed and would always reach its destination in a single petit cycle. When there are
many messages in the network, several messages will often need to travel over the same

wire. All but one will be delayed, so it may take some messages several petit cycles
to reach their destinations. If a message is blocked along some dimension, it can make
progress along other dimensions during the same cycle, but since a message may only
move along the k-th dimension during the k-th dimension cycle, a blocked message
must be delayed by at least a full message cycle. (Remember that the dimensions are
completely orthogonal, so that no amount of motion in other dimensions can compen-
sate for a missing step along a particular direction. A blocked message will have to
wait for the next opportunity to move in the blocked dimension, which comes a full
petit cycle later.)

Each message is checked for a zero router address at the end of a petit cycle.
Messages with zero addresses have arrived and are delivered to the processor. If a node
has messages with non-zero addresses, or if it has too many zero-addressed messages to
deliver at once, these messages are held in a buffer until the next petit cycle. Messages
delayed by higher priority messages during the preceding petit cycle will have non-zero
addresses.

As we have described the algorithm so far, a message can only move towards its
destination. Since at least one message at each node is guaranteed to make progress
each cycle (the message of highest priority) the network as a whole will always make
progress. It is easy to see that if we stop injecting new messages into the network
all pending messages will be delivered within a number of cycles proportional to the
number of pending messages. Assume there are k messages in the network, The
maximum distance between routers in the network is 12, so the total distance of all
messages from their respective destinations cannot be greater than 12k. Since messages
never move away from their destinations and since at least one message per occupied
router must make progress each cycle, total distance must decrease by at least one
message each cycle. Within 12k cycles it must reach zero, in which case all messages
must be at their destination.

A problem with the algorithm as described so far is that there is no obvious bound
on the number of messages that may need to be buffered at a node between petit cycles.
The router is hardware-limited to a fixed buffer capacity. The number of buffers (seven
in the GM-I) is large enough that the router will almost never run short of storage, but
an additional mechanism has been provided for dealing with the overflow case when
it happens. This mechanism is called referral. When a router's buffers become full,
excess messages are referred over unused wires to adjoining routers. Since there are as

78

many outgoing as incoming wires it is always possible to find an unused wire on which
to refer a message.

The referral process works like this. During a petit cycle a node may receive up to
12 incoming messages, one during each dimension cycle. The algorithm assumes that
this worst case will happen. Let k be the number of empty buffers at the beginning of
the petit cycle. As long as at least 12 - k messages are sent away from the router it
will be able to buffer the remainder. The router can receive messages during the first
k dimension cycles without danger of overflow, since it will always have the option of
forcing out a message during each of the 12 - k remaining cycles. Let j be the number
of messages the router sends out during these k cycles. These transmissions allow the
router to wait an additional j dimension cycles before forcing messages. More messages
may be transmitted during these j cycles, postponing the problem even further.

In general, the router is safe on the i-th cycle if the number of free buffers plus the
number of messages it has sent out is greater then 12 - i. Whenever this condition
fails, the router must send a message out every wire on every dimension cycle for the
remainder of the petit cycle. This is accomplished by forcing out the lowest priority
message the message that most recently arrived, whenever none of the other messages
need to move over the current dimension. In other words, the lowest priority message
may be referred to another router. The referred message will still contain the address
of its intended destination, so it will be delivered.

The referred message will have an address bit complemented from a "0" to a "1." In
other words, the message moves one step farther from its destination. Simulations indi-
cate that this occasional backstep is not a significant performance problem. However,
it does invalidate the argument for a linear time bound given above, which depends
on the monotonic property of the routing algorithm. We leave this as an unsolved
problem.

The same mechanisms that route a message around a busy wire can be used to
delete defective nodes and wires from the system. All wires leading to a deleted node
are simply declared to be permanently busy by its neighbors. Any transmissions coming

from the deleted node are ignored. We must also assume that there are no messages
destined for the deleted node. Under this assumption, any message that wishes to travel
over one of the falsely-busy wires will also have other directions in which it wishes to
travel, so it will not get stuck. The referral mechanism continues to work, because
although we have removed a possible direction of referral, we have also removed a
source of messages. Defective wires may also be effectively deleted by deleting a node

at one end of the wire.

79

When a message finally reaches its destination router it is delivered to the appro-
priate processor by writing into the processor's memory. The number of messages that
a router can deliver during a single petit cycle depends on how multiple messages trav-
elling to the same memory are to be combined. If no two messages are destined to the
same address, or if it is acceptable to combine the data of colliding messages by an
inclusive-or operation, then up to seven messages may be delivered simultaneously. If
some other combining function is desired, for example, adding the data fields, then the
router will only deliver one message at a time. Both modes of operation are supported.

4.4 Routing Performance

The performance of the routing algorithm is dependent on the number and pattern
of messages. The traffic on the wires between the routers tends to be the limiting
factor, although for extremely local message patterns the communications bandwidth
may be limited by the maximum rate of injection; and near the end of a delivery cycle
the maximum rate of delivery becomes important. We will discuss the three cases
separately.

Bandwidth Limited Message Patterns

In the case of random or non-local message patterns, the average delivery rate will
be slightly less than two messages per node per petit cycle. It may be shown that
it cannot be greater than this by counting the number of wires used, The distance
that a message must travel in the network is equal to the number of "1" bits in the
relative address. A random message will contain n/2 "1"s in the addresses where n is
the number of address bits and N = 2" is the number of routers.

A maximum of one message can travel over a wire each petit cycle, and only one bit
in the address of a message can change per wire over which it travels. Since there are
nN = n2' wires, the maximum rate at which the network can change "1"s into "O"s
is n2" bits per petit cycle. Since the network has limited storage, the number of "1"s

cannot grow arbitrarily large, so after some startup time the maximum injection rate
of "1"s cannot be greater than n2"' per cycle, or nt per node per cycle. Since a random
message has an average of n/2 "1" bits, there must not be more than two injected per
cycle.

We may use this number to calculate the maximum sustained bandwidth of the
network for random messages. A petit cycle for a k-bit message requires k machine
cycles, plus some overhead. By making the messages long, we may make the overhead

80

insignificant. (Even for the smallest messages it is less than 50 percent). A machine
cycle takes about 5 x 10-7 seconds. Since a maximum of 2 x N = 2 nt1, k-bit mes-
sages are passing into the network each petit cycle, the maximum steady-state network
bandwidth is:

bits k x 2n+1 2n+1

seconds k x 5 x 10-7 5 x 10-7

This upper bound does not take into account two potential inefficiencies. First,
it may be impossible to use every wire in every cycle. Second, if the buffers fill, a
message will actually have to take a step away from its destination. We may make
this arbitrarily unlikely by deliberately running the network lightly loaded, Including a
loading factor in the calculation also takes into account the unused wires, Experiments
show that a realistic loading factor is 50 percent. That is about half of the wires unused
on each cycle. Thus, the true bandwidth is more like 106 x 2"-1:

.5 x i2+j1 = 106 x 2n+1 bits/second
15 X 107

Thus, for the 4K-router prototype, sustained random-message bandwidth is about
1010 bits per second. This number fits well with the results of the simulation.

Local Message Patterns

If the messages tend to be local, that is, if the average number of "1"s per address is less
than n/2, the bandwidth may be increased. If it increases sufficiently the maximum
rate of message injection per node may become a limiting factor. In the prototype, the
maximum injection rate is limited to no more than four messages per node per cycle.
Since wire loading is not the limitation, we do not need to add in an inefficiency factor
as in the random case, so we might expect the sustained bandwidth to be about four
times higher for local message patterns. Again, this agrees well with the simulation.

Since the local message pattern has higher bandwidth, it may be desirable, when
possible, to allocate storage in such a way as to localize communication. Several of the

storage allocation schemes discussed in Chapter 6 tend to do this. It is not, however,
always possible. The local neighborhood of a node is very small compared to the size
of the network. Almost all of the potential storage is an "average" distance away. The
number of nodes at distance d is (Q, so most of the nodes are at d = n/2.

Local message patterns do occur quite frequently in particular algorithms. For

example, in beta reduction each message has only a single "1" in the address. This

type of communications pattern is particularly simple, and is limited strictly by the

81

injection rate to four messages per cycle. Many other patterns, including two- and
three-dimensional grids, butterflies, and trees have local embedding on an n-cube.

The Tail Message Pattern

The limitations on bandwidth given by the wire and injection limits apply when the
router is in a steady state. A typical message cycle involves sending a burst of messages.
There are two times when the interconnection network is not at all steady: at the
beginning and at the end of the burst. (See Figure 4.3.) During every start of a cycle
when the messages are entering an empty network the statistics of wire use and blockage
are favorable as compared with the steady state. Since this period does not last long, it
does not significantly affect the total time of the burst. The more important effect is at
the tail. Here the network is essentially delivery rate limited. The entire network waits
while the last few stragglers find their way home. The length of this tail will depend
on the total number of messages delivered to a node during a burst. Fortunately, in
regard to this statistic, even a "random" message pattern of the Connection Machine is
not truly random. This is because each router node serves a fixed number of processing
elements and each processing element only receives one (or sometimes two) messages
per burst. Thus the "random" message pattern is restricted to a pattern of messages,
called an h-permutation [Valiant], where no node can receive more than h messager, per
burst. Using this fact, it is easy to put an upper limit on the number of petit cycles in
the tail:

<mh
Tal< d

where m is the number of processors per node (16), h is the maximum number of
messages destined to each processor (typically one), and d is the maximum number of
deliveries per node per cycle (seven). We are assuming here that the wires are not a
limit, which is a realistic approximation during the lightly loaded tail period.

If we assume that the number of messages scale with the size of the network, for

a sufficiently large network bad cases are almost guaranteed to happen, If there are ni

processors per chip, each of which can receive a message with independent probability
F, then the probability P (tail kc) that one chip out of N will receive at least /k
messages is:

P(tail>2k)=1)- p(1- p)") Ne N)p

82

Loading

Injection Wire
Limited

Delivery
Limited

Time

Figure 4.3: A typical pattern of loading in the network over time during one delivery

cycle

83

Thus, a bad case will almost always occur if:

tt:z)PVP > N

For the prototype n = 16 and N = 4096.

It is therefore relatively easy to estimate the delivery time for a large random

permutation of M messages by adding the steady state or injection time and the tail

time.

4.5 The Microcontroller

The host talks to the processor/memory cells through a microcontroller. The purpose

of the microcontroller is to act as a bandwidth amplifier between the host and the

processors. Since the processors execute an extremely simple bit-at-a-time instruction

set, they are able to execute instructions at a higher rate than the host would be

able to specify them. Instead, the host specifies higher level macro-instructions, which

are interpreted by the microcontroller to produce nano-instructions. It is the nano-

instructions that are executed directly by the processors. The instructions executed

by the microcontroller that specify how this interpretation is to take place are called

micro-instructions.

Thus, there are four instruction sets to be kept straight:

" host-instructions (executed by the host),

" macro-instructions (interpreted by the microcontroller),

* micro-instructions (executed by the microcontroller), and

* nano-instructions (executed by the individual processor memory cells).

The relationships for these four instruction sets are summarized inl Table 4.1. Only the

nano-instruction set is described in this document,

Between the host and the microcontroller are a pair of First-in/First-out buffers

(FIFO's) that buffer macro-instructions going to the microcontroller and data return-

ing to the host. These buffers allow the Connection Machine to operate asynchronously

from the host, They also allow the host and Connection Machine to maintain a higher

average instruction bandwidth when executing a mixture of simple and complex macro-

instructions. This is because simple macro-instructions can be executed by the Connec-

tion Machine more quickly than they can be generated by the host, whereas the reverse

84

Table 4.1

Section Executes Produces

Host Host Code Macro Code
Microcontroller Micro Code Nano Code
CM Cell Nano Code Bits

is true for complex macro-instructions. The FIFO's allow the Connection Machine to
be kept busy as long as the average generation rate is as great as the average execution
rate.

Some macro-instructions return data to the host. Such data is returned from the
cell array over either the direct memory access path or the GLOBAL line, either of
which can be driven directly by any cell in the array. All data returning to the host
passes through the output FIFO. If the sequence of macro-instructions ever branches
on the returning data, then the FIFO's must empty before the branch can take place.

4.6 Sample Operation: Addition

A typical macro-instruction sent from the host to the microcontroller is the ADD instruc-
tion, which specifies the addition of two contiguous variable length fields within each
processor. In this section we show how this is converted by the microcontroller into
nano-instructions. The example is typical in its use of flags, memory, Arithmetic/Logic
Unit operations, and iterations.

To execute an ADD macro-instruction, the host places four 16-bit integers into the
input FIFO of the microcontroller. These integers specify, respectively, the op-code
of the ADD instruction, the start-address of the source field, the start-address of the
destination field, and the length of the fields to be added. The destination field is also
used as a source.

Assume that the 8-bit number in memory locations 1000 through 1007 is to be
added to the 8-bit number in locations 2000 through 2007, and that the carry-bit is
to be left in flag 1. This operation is specified by the host by the instruction "ADD
2000, 1000, 8." This is converted by the microcontroller into the sequence of eight
nano-instructions shown in Table 4.2.

Each bit in the source and destination is addressed in sequence, starting with the
least significant bit. These two bits are added together with the flag bit taken from

85

Table 4.2

A- B- Read- Write- MEM- Flag- Cond- Cond-
address address Flag Flag ALU ALU Flag Sense

2000 1000 Zero-Flag 1 AEBeF AB+BC+AC Zero-flag 0
2001 1001 1 1 A@BEF AB+BC+AC Zero-flag 0
2002 1002 1 1 AEBEF AB+BC+AC Zero-flag 0
2003 1003 1 1 AGBEF AB+BC+AC Zero-flag 0
2004 1004 1 1 AeBeF AB+BC+AC Zero-flag 0
2005 1005 1 1 AEBEF AB+BC+AC Zero-flag 0
2006 1006 1 1 AEjBEF AB+BC+AC Zero-flag 0
2007 1007 1 1 A®B$F AB+BC+AC Zero-flag 0

flag 1 where it was stored on the previous cycle. On the first cycle there is no incoming
flag, so it is taken from the zero flag, which is always "0." The zero flag is also used for
conditionalization, with a COND-sense of "0," since this operation is to be performed
by all of the processing elements.

The function for the memory is the exclusive-or function of the three inputs, which
is "1" whenever an odd number of the inputs is "1," otherwise "0." The flag is the
majority function of the three inputs which is "1" whenever two or more of the inputs
are "1." This sequence of nano-instructions would be generated by the microcontroller
by way of a simple microcoded loop which increments the address of the memory
locations.

86

Chapter 5

Data Structures for the Connection

Machine

5.1 Active Data Structures

On a conventional computer, a data structure is a passive object. It is intended to
be operated upon, manipulated, and processed. On the Connection Machine data is
stored in somathing that we will call an active data structure. An active data structure
is a machine. It is a special purpose processing device, wired to operate on one par-
ticular piece of data, optimized for the operations it performs. The bost controls the
Connection Machine not by operating upon the data, but by telling the data what to
do, Because the structure must process as well as represent the data, data structures
designed for the Connection Machine are very different than those on a conventional
computer. In this chapter we discuss various active data structures and give examples
of what kinds of things they can do. We describe sets, trees, butterflies, strings, arrays,
and graphs. Each of these has a natural representation on the Connection Machine in
terms of cells connected by pointers, In addition, many of these data structures have
a second representation that does not use pointers, in which the connections between
component cells of the data structure are implied by the addresses of the cells. This
is called the address-induced representation of the data structure, connected by virtual
pointers. Both normal and address-induced representations of various data structures
are discussed in this chapter. Since they are active data structures, we show not only
how they are represented, but also what types of computations they can perform. In
the final section we will show how each of these structures corresponds to a type of
xector.

5.2 Sets

Just as the simple, fundamental operations on a conventional computer involve opera-
tions on numbers, the fundamental operations on the Connection Machine involve sets.
Set operations like union and intersection are just as easy on the Connection Machine as
the traditional unit-time operations of addition and subtraction are on a conventional

87

computer. Just as the preferred iteration construct for serial computers is "for i = 1 to
N," the most natural thing to do on the Connection Machine is to apply an operation
to each member of a set. This is not to say that set operations cannot be formulated
in terms of arithmetic or vice versa, but the easiest way of thinking about these things,
the way that corresponds most closely to what is going on in the hardware, is different
for the two types of computing machines.

When the Connection Machine deals with sets, it represents them as sets of pro-
cessor/memory cells. The set is essentially the domain of a xector. The values of the
xector, which might be edges of a graph, tuples of a relation, momenta of particles,
or regions of an image are stored in the memories of the cells. There are three differ-
ent methods of explicitly representing such domain sets in the Connection Machine:
bits, tags and pointers. All three methods involve placing some form of marker on
every member of the set, so that a cell's membership in the set is determined by the
presence of the marker. Any of the normal set operations, such as intersection, union,
labeling, and comparison, may be performed on any of the different representations of
set, although sometimes the operations involve converting from one form to another.
The three set representation schemes (bits, tags, and pointers) are discussed separately
below.

5.3 Bit Representation of Sets

The simplest way to represent a set is to allocate one bit in every cell to indicate whether
that cell is a member of the set. When cells are represented in this manner, the set
operations correspond to simple boolean operations applied to the corresponding bits
in every cell. For example, assume that each member cell of set A is marked by a
"1" in the i-th bit of the cell's memory, and that membership in set B is similarly
indicated by the j-th bit. Then, we may form C = A fl B by having each cell store
into the bit corresponding to C the logical AND of the i-th and j-th bit. In the same
way the boolean AND operation corresponds to intersection, OR corresponds to union,
NOT corresponds to the complement, and so on. Since the Connection Machine can
apply a boolean operator to each cell simultaneously, these set operations take place in
constant time, no matter how large the set. This bit-per-cell representation of a set is
so easy to manipulate that other marking schemes are generally converted to the bit

representation to perform these operations.

88

5.4 Tag Representation of Sets

One disadvantage of the bit-per-cell marking scheme is that representing a set requires

allocating one bit in the memory of every cell in the machine, whether the cell is a
member of the set or not. Since memory in each cell is limited, this is a significant
disadvantage. One situation in which sets can be represented with greater memory
efficiency is when a group of sets is known to be disjoint. An important example of this
occurs when storing the sets of objects of different data types. Since each object is of no
more than one data type, the sets do not intersect. In cases like this it is advantageous
to use a tag marking system.

Using bit labels, representing k sets requires k bits per cell. If we know that each
cell is a member of no more than one of the k sets, then it is possible to represent all
the sets using a total of [log 2 (k + 1)1 bits per cell. (The "+1" is to cover the case

where a cell is not a member of any of the sets. If we know that each cell is a member
of exactly one set, the sets can be represented with [log 2 k] bits per cell. In this case,

the k sets form a partition on the set of all cells. Since army set of disjoint sets can be
turned into a partition by adding a "none of the above" set, this is the case that will
be discussed below.)

The [log(k)] bits in each cell are used to store a tag indicating in which of the k
sets of the partition the cell belongs. log(k) bits are required so that there will be a
distinct tag for each of the k sets. Since each cell belongs to exactly one set, storing a
single tag is sufficient.

An important advantage of partitions is that within different portions of the parti-
tion, different storage conventions may be used to represent subpartitions or subsets of
the partition. For example, assume that each cell represents an animal, a vegetable, a
mineral, or nothing. The cells that represent animals may represent dogs, cats, people,

kangaroos, warthogs, and lizards. Assume that the plants also partition into subcate-
gories, say seven of them. Minerals do not divide into subcategories but may belong to
any combination of the following sets which may only contain minerals: igneous, crys-

talline, and metallic. Using the bit label representation would require 3+6+7+3 = 19
bits per cell. Taking advantage of the hierarchy of disjoint sets, we may represent the

sets by storing fields in each cell according to the convention in Table 5.1. This scheme

uses a total of five bits per cell.

The example is contrived, but it is common in almost any program to divide objects
into non-overlapping "types" which have different storage conventions, The ability to
take advantage of this in representing sets is important. In addition, the trick can be

89

Table 5.1

fin

2 bits deZoded as follows:

0 animals 1 vegetables

2 minerals 3 none of the above

3 bits decoded as follows:

In animals:

0 dogs 1 cats 2 people

3 kangaroos 4 warthogs 5 lizards

In plants:

0 trees 1 shrubs 2 grass 3 cacti

4 lichens 5 algae 6 mushrooms 7 halophiles

In minerals:

the first bit indicates membership in IGNEOUS

the second bit indicates membership in CRYSTALLINE

the third bit indicates membership in METALLIC

applied recursively so that subtypes of type use different storage conventions.

5.5 Pointer Representation of Sets

Neither the bit representation nor the tag representation is efficient when a set is small.

This is because both schemes require the allocation of storage in every potential member

of the set. If most of the potential members are not included, most of the storage will

be wasted. A better way to store sparse sets in the Connection Machine is to connect

all the members by pointers. This method of set representation was introduced in

Chapter 1 in the context of representing the graph. In the graph, a balanced binary

tree was used to represent the set of vertices connected by edges to a given vertex.

The normal way to represent a set by pointers is to choose one identified cell, the

root cell, and to connect all members of the set to that cell by pointers. The pointers

point from the root cell, to the member cells. Since it is often not possible to store as

many pointers in the cell as there are members of the set, the root cell normally points

to a few fanout cells which in turn may point to set members, or to further fanout

cells. As mentioned earlier, the depth of such a fanout tree, if it is kept balanced,
is proportional to the logarithm of the number of leaves. In this case each leaf cell

represents a member of the set.

One advantage of the pointer representation of a set over the bit and tag represen-

tations is that it is possible to store a pointer to the set by storing a pointer to the

root cell. This capability is important when a set is to be included as a substructure

of another data structure. For example, we can represent a set of sets by representing

(with bits, tags or pointers) the set of root cells of the member sets. Whenever we speak

of a "pointer to a set" we will mean a pointer to the root cell of a pointer-represented

set.

To perform set operations on a pointer-represented set, we generally first convert

the set to bit-representation. This is accomplished by propagating a marker from the

root cell, through any fanout cells, to the member cells. As will be seen, this kind

of information spreading is one of the most important operations in the Connection

Machine. It is another place where balanced fanout trees help out. With fanout trees

it is possible to mark a tree by marking each of the sub-trees concurrently. This allows

the entire set to be marked in time proportional to the depth of the tree, that is, in

logarithmic time. Marking all members of a set pointed to by a single node would

require linear time. This can make the difference between 20 steps and a million. (We
will give a more detailed analysis of the time required to mark trees in Section 5.8.)

91

Since set operations on pointer-represented sets involve converting to bit-representa-
tion, and since converting to bit representation requires logarithmic time, set operations
on pointer-represented sets require logarithmic time. Performing the set operation it-
self requires only one single operation, for example, logical AND for intersection. This
leaves the result in bit-representation. If the result is required in pointer representa-
tion, it must be converted. This conversion of bit to pointer representation involves
storage allocation and will be discussed along with other storage allocating procedures
in Chapter 6.

The pointer method may also be used to represent ordered sets, or sequences. When
representing a sequence, the two pointers pointing out from a fan cell are treated
asymmetrically. The first one points to the items in the first half of the subsequence
and the second to the second. This method of representing the order of a set requires
no additional overhead.

5.6 Shared Subsets

The efficiencies of the various methods of representing pointer structures are discussed
later, but in general, the pointer representation of a set will require about Ck log N
bits of storage for a set with k elements chosen from N potential elements, where C is
a constant that depends upon the details of implementation.

There are, however, situations in which the storage required to store multiple sets
is much less than the sum of the storage of the individual sets. This is possible when
the sets have common subsets. In this case the tree structure representing the common
subsets needs to be stored only once. It can be shared among the super-sets. This type
of sharing is familiar to any Lisp programmer, and it has the same advantages and
perils as shared list structures in Lisp. The primary disadvantage is that an operation
that modifies the structure of one set will affect other sets that share its structure. For
example, inserting an item into one set may cause it to "magically" appear in another,
While this effect may sometimes be advantageously used, it is generally considered
undesirable.

There is also another problem with the use of shared tree structures which does not
cause problems in Lisp. The depth of a balanced tree is the logarithm of the number of
leaves. The depth of an extremely unbalanced tree, a linear list, for example, is about

equal to the number of leaves. In Lisp the elements of a list are usually accessed in

sequence, so the total depth of the tree does not usually matter. In the Connection
Machine, on the other hand, all the items are generally being accessed in parallel, so the

92

access will take time proportional to the depth of the deepest item. In a well-balanced

tree the depth is minimized because the deepest elements are essentially at the same

level. This is why it is useful to keep trees balanced on the Connection Machine.

Unfortunately, it is not always possible to keep trees reasonably balanced while sharing

structure.

5.7 Trees

The most important Connection Machine data structure is the tree. Trees are used

by themselves, and as components of other data stuctures such as graphs, arrays,

and butterflies. We have already used them as a method of representing sets. Trees

are useful because they provide a fast way of collecting, combining and spreading

information to and from the leaves. In this section we will show algorithms on trees

that add the leaves, count them, sort them and number them. These algorithms all

follow a pattern of recursion that is common in Connection Machine programming.

Trees were used to represent sets so that the leaf cells, the members of the set, could

be reached quickly from the root. This was used to convert from pointer-representation

to bit-representation by marking the root and recursively marking the subtrees until

all of the leaves were marked. This is an example of a marker propagation algorithm.

Marker propagation is a very common way to distribute data on the Connection Ma-

chine. In the set example, the marker was a single bit, but it can also be a number or

a pointer. Markers can also propagate simultaneously within multiple trees.

In addition to spreading information, it is often necessary to concentrate it. This

requires pointers not only from the root to the leaves, but also from the leaves to the

root. These back pointers also pass through the fanout cells so that in a binary tree no

cell is pointed to by more than two others. This is important for the collection process.

Imagine that we have a set of numbers at the leaves of a tree, and that we would like

the sum at the root. This can be accomplished by the spreading algorithm in reverse.

(See Figure 5.1.) Each leaf cell sends its number up to the cell above, which adds the

numbers from the left and right branches and sends up the sum. This is repeated until

all of the numbers are collected into a single sum at the root. Again, the algorithm

takes time proportional to the depth of the tree and can be performed on many trees

simultaneously. Similar algorithms work with any associative two-place function, such

as the associative boolean functions (like AND and OR), multiplication, maximum or

minimum. One slight variation of this is to count the leaves of a tree by starting out

with each number as a "1," and then summing them. Another variation is to check

93

1 25 1 0 11 1

Figure 5.1: Computing the sum of the numbers at the leaves of a tree in logarithmic

time

for equality of all the numbers by sending up the message from the left branch if both

messages are equal and the special symbol FALSE if they are not. If the root sends

any message other than FALSE, all items at the leaves of the tree are equal. This last

algorithm works with any equivalence predicate.

The use of maximum and minimum in place of addition in the collection algorithm

gives an N log(N) time sort, where N is the number of leaves, Using the mar operator,

we can move the largest leaf to the top of the tree in log(N) time. The operation is

then repeated with the largest element removed and so on until all of the elements

are removed, Since this requires N cycles of log(N) steps each, the total running time

is N log(N). This can be improved by a factor of almost log(N) by using a more

complicated algorithm, since it is only necessary to pay the log(N) transit-time for the

tree once for the entire sort, rather than once for each element. This is accomplished

by storing two elements at each node, one for each subtree, and sending up the greatest

element as soon as there is room for it above. The root node accepts the items one by

one, in sorted order. In this algorithm a node with a free slot must indicate this to the

corresponding node below, which then must send the data up. Therefore, each step of

94

the algorithm requires two communication steps. Since log(N) steps are required to
fill the tree at the beginning, the entire procedure takes 2N + log(N).

A faster version of the algorithm can be used when the order of the leaves can be
predetermined. This is used, for example, to move the label of each of the leaves, in
left to right order, to the root of the tree. Each cell can keep a counter and can then
send up an item at the appropriate time without the need for the signaling used in the
sort. The number of communication steps in this method of generation is N + log N.

Another logarithmic algorithm can be used to number the leaves of the tree from 0
to N - 1. The first phase is identical to the counting algorithm. This tells each node
in the tree the number of leaves on the left and on the right. The second phase begins
by sending a "0" to the root. When a node is sent a number, it sends the number to
its left branch, and the number plus the number of nodes in its left branch to its right
branch. When a leaf receives a number, that is its number. This algorithm will number
the nodes from left to right, 0 to N - 1.

There are many more algorithms for trees [Brown], IChristmanl. The ones discussed
here are typical of the kinds that occur repeatedly in the Connection Machine. Notice
that most run in logarithmic time. Since all logarithms on, say, a million cell machine,
are less than 20, these algorithms are fast. They are sufficiently fast that they may be
safely counted as constant-time operations when they are used as building blocks for
more complex algorithms.

5.8 Optimal Fanout of Tree

There is no real reason to stick to binary trees. Trees with higher fanout would use
fewer nodes, and the distance between top and bottom would be shorter. On the other
hand, the nodes would need to be larger and each would have to handle more messages
simultaneously. How do we trade these factors off against one another? What is the
optimal fanout? We will consider two different measures of optimality, minimal storage
and minimal time.

First we will consider what is optimal fanout for minimizing storage space. It is
easiest to calculate the optimal fanout for large trees, that is, trees with arbitrarily

many leaf nodes. Assume the tree has N leaves, for some large N. We call a tree
balanced if the sizes of the subtrees of every node differ by no more than one, and if
all the subtrees are balanced. This definition implies that only leaf nodes are unfilled.

Let S(N,kI) be the number of cells required to represent a balanced tree with N leaves
and fanout kc.

95

N N N ks[og N]
S(Njk) = [-] + [--] + (-1 +--+1 mzkk g ks k-

Each node has k entries each, so the total storage required to represent the tree will
be k x S(N,/k).

Storage = k x S(N,k) /Iogk NJ+1

k - 1
This is minimized when k is large, so to minimize storage we must maximize fanout,

at least in the case of very large trees. This is fairly obvious since there is overhead
storage used in storing the internal structure of the tree. Notice, however, that the
storage penalty for using a non-optimal fanout is small. Even the simplest binary (k
= 2) structure only uses twice the storage of the optimal (k = N) large fanout node.
So there is not much to be gained by being optimal. This is especially true for small
trees, where the overhead of keeping the tree balanced can be significant. For some
sizes of trees, a tree with a small fanout may actually require fewer nodes than a tree
with a slightly larger fanout. For example, a balanced tree with eight leaves requires
five nodes of fanout 4, but only three nodes of fanout 3. (See Table 5.2.) If we take into
account the increased storage required for the larger nodes, the larger fanout becomes
even less efficient. Unless the number of leaves is close to an even power of k, large
nodes will waste storage. Table 5.2 shows the number of nodes in small balanced trees
with various maximum fanouts.

96

Tahie 5.2: Choosing an Optimal Fanout. Memory Locations Required
to Represent a Balanced Tree of N Nodes with Maximum Fanout k

n k=2 k=3 k=4 k=8 k=16

2 2 3 4 8 16

3 4 3 4 8 16

4 6 6 4 8 16

5 8 9 8 8 16
6 10 12 12 8 16

7 12 12 16 8 16

8 14 12 20 8 16

9 16 12 20 16 16

10 18 15 20 24 16
11 20 18 20 32 16

12 22 21 20 40 16

13 24 24 20 48 16

14 26 27 20 56 16
15 28 30 20 64 16

16 30 33 20 72 16

17 32 -36 24 72 32

18 34 39 28 72 48

19 36 39 32 72 64

20 38 39 36 72 80
21 40 39 40 72 96

22 42 39 44 72 112

23 44 39 48 72 128

24 46 39 52 72 144

25 48 39 56 72 160

26 50 39 60 72 176
27 52 39 64 72 192

28 54 42 68 72 208

29 56 45 72 72 224

30 58 48 76 72 240

31 60 51 80 72 256
32 62 54 84 72 272

97

The second consideration in choosing a fanout is time. We wish to minimize the time

required to operate a tree, for example, the time to send data from the root to every

leaf. For the purpose of selecting the time-optimal fanout, we will use a very simple

measure of time. Assume each message requires exactly one time unit for transnission.

During each unit time cycle a node may send no more than one message. Any number

of nodes may send a message simultaneously. When a node receives a message at the

end of a time cycle, it may respond by sending a message at the beginning of the very

next cycle. Under these assumptions, the time required to make a large balance(tree,

T(N, k), is the depth of the tree times the fanout, minus a small correction for the

unfilled nodes at the bottom of the tree.

T(N,k) = kx[logk N] - 'dT(N, k)= logN-
dk (log, k

The correction factor, C, is the maximum difference between k and the actual

fanouts of the unfilled nodes in the bottom layer of the tree. Since C is necessarily less

than k, it may be neglected for sufficiently large trees. The time cost is at a minimum

for k = e ~ 2.7, the base of the natural logarithms. The closest integer is 3. As may

be seen in Table 5.2, both 2 and 4 are also very good maximal fanouts for this; simple

measure of time.

In retrospect, 2 is actually not a bad choice for maximum fanout, although 3 is

slightly better from a time standpoint, and 4 is better from a space standpoint. Since

the time costs of 2-ary (binary) and 4-ary trees are essentially the same and since the

4-ary tree always requires fewer nodes, k = 4 is probably a better choice. In some

special applications involving large trees, higher maximum fanouts may make sense.

98

Table 5.3: Choosing an Optimal Fanout Time

(time required to mark leaves of trees)

n k=2 k=3 k=4 k=8 k=16

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 4 4 5 5 5

6 5 5 5 6 6

7 5 5 5 7 7

8 6 5 6 8 8

9 6 6 6 9 9

10 6 6 6 9 10

11 6 6 6 9 11

12 7 7 7 9 12

13 7 7 7 9 13

14 7 7 7 9 14

15 7 7 7 9 15
16 8 7 8 10 16

17 8 7 8 10 17

18 8 8 8 10 17

19 8 8 8 10 17

20 8 8 9 10 17

21 8 8 9 10 17

101 6 6 6 9 10

102 13 12 13 17 22

103 19 19 19 25 35

104 26 25 26 34 50

99

Figure 5.2: The butterfly pattern as used in the computation of a Fast Fourier Trans-

form

5.9 Butterflies

A single tree shrinks exponentially from the leaves to the root. This is fine for algo-

rithms, such as the leaf scanning algorithm, where the amount of data also shrinks

exponentially toward the root. Many useful computations are not of this type. Sorting

is an example. In sorting, all of the input data must be in the output, so that the

amount of data that must pass through each level is constant. The root of the tree

becomes a bottleneck. We can fix this problem by using multiple trees that share the

same leaves.

A structure that is built by sharing leaf nodes between two trees will have as many

nodes at the second level as at the leaves. This construction may be applied recursively

to the two trees, so that the number of nodes at k levels remains constant through the

use of 2" trees. The resulting structure is called a butterfly. In a different context,

discussed in Chapter 2, it is also called many other things, including an omega network

and a perfect shuffle. It is familiar to many as the pattern of communication used in

computing the Fast Fourier Transform iCooley, 1965). (See Figure 5.2.)
Because most of the cells in a butterfly are shared between multiple trees, the

100

structure requires only N log N cells, or twice as many cells as a single binary tree.

In some applications it is possible to reuse the same cells at each level, so that each

cell occurs log2 N times in the structure. The version of the butterfly where the same

cells are used for each level is called a boolean n-cube, for n = log 2 N. This structure is

isomorphoric to an n-dimensional hypercube. We may therefore number the N corners

of a n = log2 N dimensional hypercube in such a way that the edges of the cube

correspond directly to the links in the butterfly, with two numbers directly connected

if and only if their n-bit binary representations differ in exactly one bit. Each number

corresponds to the n-tuple of "I"s and "O"s that form the binary representation of the

number. This n-tuple specifies the coordinates on the n-cube, with each dimension

corresponding to one bit position.

This n-cube structure is useful when it is necessary to collect information at every

node in a tree, instead of just at the root. On the n-cube version, the N roots are

identical with the N leaves. For example, if the leaf scanning algorithm is applied to a

butterfly structure or n-cube instead of to a tree, the sum will be generated at each of

the N roots.

5.10 Sorting On A Butterfly

A butterfly structure with N = 2k leaf nodes is capable of sorting N numbers in time

proportional to k2 . For large N, this is considerably faster than the N +k time required

on the tree. The method described here, Batcher's Bitonic Sort [Batcher, 1968), is based

on repeated merging of successively larger sorted sequences.

A sequence of numbers is bitonic if it changes directions only once, that is, if it

consists of a strictly non-decreasing subsequence followed by a strictly non-increasing

one, or vice versa. Batcher noticed that any bitonic sequence may be sorted by in-

dependently sorting the subsequences of odd elements and even elements, interleaving

the results and then exchanging, if necessary, the first and second elements, the third

and fourth, and so on. This works (roughly) because the bitonic property guarantees

that selecting every other element will give a fair sample of large and small numbers.

Interleaving the sorted subsequences will result in a sorted sequence, except for a small

sampling error which can be fixed by one exchange. Since any subsequence of a bitonic

sequence is also bitonic, the method may be used to recursively sort~ the odd and even

subsequences. The recursion stops at subsequences of length one, which are already

sorted.

The pattern of comparisons in the Bitonic Sort fits well with the butterfly structure.

101

During the i-th step of the sort, elements j and k must be compared when j = k @ 2'.

These are exactly the pairs of elements that are connected in the butterfly at level i,

so each step of Batcher's Bitonic Sort requires exactly one communication step.

The Bitonic Sort can also be used repeatedly to sort arbitrary nonbitonic sequences.

Appending any two sorted sequences results in a bitonic sequence, so that the Bitonic

Sort may be used to combine two sorted sequences into a longer sorted sequence.

This merge operation serves as a building block for a standard merge sort. Individual

elements are merged into sorted pairs, pairs are merged into sorted groups of four, and

so on until the entire sequence is merged into a single sorted group. Since each merge

step takes time log 2 m to merge two lists of length m, the entire sort on N elements

will take:

1082 N 1082 N

Z 1log 2(2) = E m log2N
m=1 m=1 2

5.11 Induced Trees

Because the structures of trees and butterflies are so regular, it is not always necessary

to store the links explicitly. If the cells for the tree are allocated within a well-defined

portion of the address space, it is often possible to calculate the structure of the tree

or butterfly from the addresses of, the cells. An important special case of this is when

the tree spans the entire machine.

One method of inducing a tree, used on serial machines, is to connect cell i to cells

2i and 2i ± i. This will form a tree on all cells from 1 through k. Since the addresses

of the linked cells may be calculated, they need not be stored explicitly. Since these

computed addresses may be used in the same ways as stored pointers, we call them

virtual pointers. Induced structures are held together by virtual pointers just as normal

structures are held together by stored pointers.

Figure 5.3 shows an example of an induced tree for k = 3. This method of address

generation may be generalized to k-ary trees IKnuth]. For example, a ternary tree may

be constructed by connecting cell i to cells 3i - 1, 3i, and 3i + 1.

in the example, the induced tree is stored in memory locations through 9. The

tree could also be stored in any other contiguous k-long portion of address space by

adding a constant displacement offset to the addresses. Butterfly structures may also

be represented implicitly. Cells 0 through n log(n) - 1 may be connected in an n-wide

butterfly by connecting cell i to cells i + log(n), and p(i) + log(n) where:

102

Figure 5.3: An induced 3-tree

p(i) = (i + 2 1)J) mod Ioggn

A butterfly that shares the same cells at each level connects i to i and p(i). Implicit

binary butterflies also have r-ary equivalents.

Implicit trees and butterflies may be used with exdctly the same algorithms as

explicitly linked structures. The only difference is that instead of being stored, the

pointers are computed. Since the computations necessary to compute the pointers are

relatively simple, the additional overhead is not great.

Induced trees can be used to provide a secondary communications structure among

cells which are also linked by explicit pointers. For instance, assume we want to count

all of the cells in the machine with a certain property. If the cells were stored at the

leaves of a tree, this could be accomplished in log 2 N time by the counting algorithm

described earlier. If the cells are not explicitly stored in a tree, we can execute the

algorithm anyway using an induced structure. In this case, for example, we could

use an induced butterfly structure with all the nodes used at each level. Each cell

to be counted begins with a "1," the others "0" At each step each cell exchanges

information with another, adding the incoming number to its total. On the i-th step

103

the cell exchanges with the cell 2i away. At the end of log 2 N steps, all cells have the
full count.

This particular use of an induced structure, a shared butterfly ranging over the
whole machine, is called dimension projection, because it corresponds to projecting
data across each dimension of a boolean n-cube.

There is one information-gathering operation on induced trees that is so common
that the Connection Machine provides special hardware to speed it up. This is the
global OR operation, used to check if there is any cell in the machine that has a given
property. This check could be performed by using a standard OR-to-root calculation
on an induced tree covering the whole machine, but it is such a simple and common
operation that it is worthwhile to support it in hardware. (This is called the global tree
in the prototype). Even when the calculation is done in hardware it takes logarithmic
time, although the constant is smaller.

5.12 Strings

The factors that constrain computation on a Connection Machine are different than
they are on a conventional computer. Many of our assumptions about what is difficult
and what is easy do not apply. This becomes clear in considering operations on one
of the simplest of composite data structures, the string. The string is the address-
induced version of the linear list. Instead of linking each element to the next, the
ordered elements are stored in sequential locations in memory. The sequential allocation
requirement limits the usefulness of strings in a conventional computer. For instance,
inserting an element into a string requires moving all of the elements in the rest of the
string forward in memory. Space for the string to grow must have been allocated in
advance, and if strings are dynamically created and destroyed, allocation of contiguous
memory segments becomes difficult. A common solution to these problems is to give up
on strings and pay the price of storing a full linked list, or to use some hybrid structure
such as CDR-coded lists or lists of strings. In practice, it is often necessary to use
these more complicated data structures even when the algorithms are most naturally
expressed as operations on strings.

On the Connection Machine it is possible to shift an arbitrarily large segment of
data from one block of cells to another in unit time. Insertion into a string can be
accomplished efficiently by shifting forward the entire contents of memory after the
insertion point. If there are pointers to the object that moved, they will have to be

updated by adding a constant. This update can also be accomplished in unit time,

104

assuming that pointers are identifiable by something like a type code. For example,
only the simplest text editors use this representation of memory on a serial machine
because of the computational expense of inserting and deleting characters. The simplest
data structure is rejected on the grounds of efficiency.

Searching strings is also fast. All occurrences of given substrings can be found in
time proportional to the length of the search string. Each cell in the string simulta-
neously checks to see if it matches the first item in the search string. If it matches, it
activates the cell following it in the string. All activated cells then check to see if they
match the second item in the search string. This process continues until all items in the
search string are checked, at which point all activated cells mark the end's substrings
that match the search string.

More generally, finding all occurrences of strings matching a regular expression takes
time proportional to either the maximum string satisfying the regular expression, or
the length of the searched string, whichever is shorter. This is a special case of a general
algorithm on graphs which is discussed in detail later, The outline of the algorithm
is that each element of the string simulates a finite state machine that recognizes
the regular expression. On each step all elements pass their state to the next element
forward, which performs the transition indicated by the stored symbol. This is repeated
until either each finite state machine is in the reject or the accept state or until the last
state is shifted to the end. Machines in the accept state mark matching substrings.

The ability to efficiently insert into even very long strings makes possible some
very simple data structures that would be impractical on conventional machines. For
example, in a text editor one obvious way to store the text is as a two-dimensional
string, a string of strings. On a Connection Machine the simple way would also be
efficient.

5.13 Arrays

Arrays are another type of address-induced data structure on the Connection Ma-
chine. Arrays can be any number of dimensions, but typically they are one- or two-
dimensional. (The distinction here between a one-dimensional array and a string is
how it is used. In a string we are generally interested only in the order of the elements.
In an array we are interested in the absolute indices.) Besides being particularly use-
ful, one- and two-dimensional arrays fit well with existing implementation technology.
Since integrated circuits and circuit boards are two-dimensional, the comrnunications
network is likely to exhibit a two-dimensional locality that makes these patterns of

105

-14

communication particularly efficient. (This is the case on the prototype.) This locality

is not critical for implementing arrays on the Connection Machine, but it is helpful in

practice.

The comment regarding contiguous storage allocation for strings applies to arrays

also. It is much easier to allocate contiguous blocks on a Connection Machine than on

a conventional machine, because arbitrarily large blocks of memory cells can be moved

in constant time.

A typical application of arrays is in image processing where a single cell is used

to store the pixel at each point in the image. Here the two-dimensional structure of

the array reflects the two-dimensional nature of the picture. Many image processing

algorithms, particularly the lowest level signal processing steps, are linked directly to

the two-dimensional structure of the image. For example, a typical image processing

step is computing the convolution of an image with some filter. This is a weighted

average of each pixel with its neighbors. For example, given the value of each pixel,

v(x,y), we might wish to compute the following quantity for each pixel:

V'(x, y) = CiV (X + +i, y +j)

This is called a convolution of radius r, where the C,, terms are constants represent-

ing the function with which the image is being convolved. It is essentially a blurring

step that filters out noise with spatial frequency less than r. It is a component step of

many image processing computations.

Computing the gaussian convolution of an image stored in a two-dimensional array

on the Connection Machine requires 4r 2 steps, each involving a transfer, a multiplication

and an addition. This operation is performed on all pixels simultaneously, so that the

time required for the computation is independent of the size of the image.

To transfer the value V (z + i, y + j) to the cell (z, y), each of the cells representing

a pixel sends its value through the communications network to an address that differs

from its own by some linear combination of i and j. Actually, the calculation of address

is slightly more complicated than this because of special requirements at the boundaries

of the array. If, for example, we are using periodic boundary conditions (wrapping),

then the calculation of the address is as follows:

address = base + ((x + i) mod width) + ((y + j) mod height x width)

Once the value is moved to the proper location it is multiplied by the appropriate

constant and added to the accumulated total. Again, the multiplication and addition

106

are performed simultaneously for every pixel in the image.

5.14 Matrices

Linear algebra provides one of the most concise notations for describing operations on

large data structures. The language of rectors, arrays, and tensors is a powerful tool for

representing concurrent algorithms because a single symbol can stand for an unlimited

number of primitive operations. The operations are numeric in character, but they

are often applicable to symbolic computations. Vectors can represent sets. Adjacency

matrices can represent graphs. Multiplication by a matrix can effect a permutation

and inversion can give a solution to a set of linear constraints.

Arrays are one way to represent matrices on the Connection Machine. Many of the

comments given above regarding strings apply to arrays also. It is relatively easy to

dynamically allocate contiguous storage for arrays because it is possible to concurrently

shift memory and update pointers to displaced objects. In the array representation,

multiplying an N-vector by an N x N matrix requires 2 log 2 N communication steps,

log2 N addition steps, and one multiplication step.

A matrix can be multiplied by a vector represented by an array by using induced

trees on the rows and columns of the matrix. The induced column trees are first used to

distribute each vector component to all the array elements in the corresponding column

(log N communication steps). All of the multiplications of vector elements times array

elements are then performed simultaneously. The leaf summing algorithm is then used

to add the products in each row using the induced row trees (log N communication

steps, log N addition steps). The resulting sum is for the product vector. Two N x N

matrices may be multiplied, vector by vector, in 2Nlog N time.

When a matrix is sparse, it may be faster and more storage efficient to represent

the row and column trees explicitly. This is the pointer representation of an array. The

trees contains all of the information, so it is unnecessary to store the zero elements of

the matrix.

Figure 5.4 shuws the tree representation of a small sparse matrix.

The array representation of an N x N matrix requires N 2 cells. The number of

cells required in the tree representation depends on the number and distribution of

the non-zero entries. If CX is the number of entries in column i, R?, is the number of

entries in row j, then the number of cells required to represent the N x N matrix with

k non-zero elements is:

107

0 8 0 4

0 2 7 0

0 0 3 0

6 0 0 5

Figure 5.4: A small sparse matrix

E(Cj - 1) + E(Rj - 1) + k= 3k - 2N

since

N N

(i= ZR, = k
Cj= j=1

This is more storage efficient than the array representation whenever:

k < N(N+ 2)
3

The time required to multiply a vector may also be less. 2 log N it is

max ([log Ci]) + max ([log Ri])
I<i<N I<j<N

Since Ci < N and Ri K N, this will never be greater than 2 log N.

Matrix multiplication is a special case of a more general operation with the same

spread-on-rows, collect-on-columns communications pattern. There is no need to al-

ways use sum as the collection operation and the multiply to combine entries. This

pattern of communication implements the more general inner product functions pro-

vided in the APL language.

5.15 Graphs

The most general active data structure on the Connection Machine is the graph. Graphs

can be used to represent anything, including arrays, strings and butterflies. As in

most data structures on the Connection Machine, trees play an important role in the

representation of graphs. Since graphs can be arbitrarily connected, there is generally

no simple address-induced representation of a graph.

A graph may be represented by using a tree to represent each vertex. The leaves

of the tree represent the edges leading into that vertex. If the algorithm being used

108

Figure 5.5: A graph with incidence matrix similar to array in Figure 5.4

does not require any storage or computations on the edges, then the leaves of the trees

of connected vertices may connect directly. That is, leaf cells in two trees can store

pointers to each other. If the graph edge requires storage or computation then a cell is

used to represent the edge and the connected vertex trees point to that cell. Notice that

this representation of a graph is identical to the sparse matrix representation of the

graph incidence matrix. This is not really surprising since these are just two different

ways of viewing the same mathematical object. Figure 5.5 shows the representation of

the graph whose incidence matrix is similar to the array shown in Figure 5.4.

The path-length computation discussed in Chapter 1 is an example of the kind of

computation that can be performed with a graph. Many of the operations involve

spreading and collecting data with the vertex trees. For instance, Step 3 of the path-

length calculation involves each vertex calculating the minimum of its neighboring

109

Type Pointer Address-Induced Prototypical

Representation Representation Representation Operation

set Section 2.5 - intersection

tree Section 2.7 Section 2.10 sum to root

butterfly Section 2.8 Section 2.10 sort

string - Section 2.11 search

array Section 2.13 Section 2.12 image filtering

graph Section 2.14 - path-length

labels. This is accomplished by a two-step operation. First, each vertex spreads its

label to the connecting edges. Next, each vertex uses the minimum function to combine

the labels of connected vertices. Both of these operations use the vertex trees. Both

are executed on all vertices simultaneously so they take time proportional to the depth

of the deepest tree, that is, the logarithm of the degree of the most connected vertex.

This is typical of operations on graphs.

5.16 Bibliographic Notes for Chapter 5

Many of the algorithms in this text are based on serial algorithms. For good reviews

see [Knuth, 19681, [Aho, 19741. The Fast Fourier Transform algorithm originally ap-

peared in [Cooley, 1965]. For an even simpler explanation see lBracewell, 1984]. For

a discussion of induced structures and Connection Machines algorithms in general see

[Christman, 1983] and (Bawden, 1984].

110

Chapter 6

Storage Allocation and Defect Tolerance

This chapter discusses how we build data structures on the Connection Machine. Since

the machine is accessible to the host as ordinary memory, it is possible to build data

structures by writing into the Connection Machine just as we would write into memory.

This procedure works, but it takes place at the snail's pace of the serial host. The real

question is: How during the course of executing concurrent algorithms can we build

many data structures concurrently? How can a cell, or many cells, establish connections

with unused storage and lay claim to it for building structures? How do we identify

free storage? How do we reclaim storage that has been discarded? In Lisp jargon, how

do we "cons" in parallel? These are questions that are answered in this chapter.

This is also the chapter which will face the issue of how to handle defective cells,
because the best mechanism for dealing with defects is to avoid building them into

any data structures. This will prevent them from being used in any computation.

Normally communications follow pre-established connections within data structures. If

we do not build connections to defective cells when allocating storage, then there will

be no communication with them.

We will begin by ignoring the problem of defective cells and discuss various al-

gorithms for allocating storage. Different algorithms will be appropriate in different

circumstances. We will also ignore, at first, the problem of allocating contiguous blocks

of storage for induced data structures. Instead, we will concentrate on the problem of

allocating single cells.

6.1 Free List Allocation

Before discussing methods for allocating storage in parallel, we will discuss the method

by which it is normally done serially. The algorithms discussed in this section can be

executed directly from the host computer by treating the Connection Machine as a

memory. Since only one thing is being done at once the processing cells themselves

need take no active part. The method of allocation we will discuss is called free list

allocation. It is essentially the same as is used in almost all implementations of Lisp

and other languages where resources are allocated from a "heap."

111

Figure 6.1: Balance bits allow new nodes to be added to a balanced tree

A free list is a linked data structure which contains all unused cells. The host keeps

a pointer to the first cell in the list, That cell points to the next one and so on down

the chain. The last cell has a special markei indicating that it is at the end of the

chain. How the free list gets created is an interesting and important question and

will be discussed in later sections. Let us assume for the moment that some garbage

collection process has identified all free storage and linked it together into a free list,

To allocate a cell the host takes the cell from the front of the free list, to which it has

a direct pointer, and updates its pointer to the next pointer in line. This cell can then

be dealt into new structures by building pointers to i. and modifying the pointers that

it stores internally.

A common operation in the Connection Machine is to add a node to a tree such

that the tree is kept well-balanced. How do we decide where to add such a node? There

is an elegant solution to this problem (Feynman] which involves adding one extra bit

of bookkeeping information to each cell in the tree. We will call this bit the balance

bit. The balance bit will be "1" in a particular cell if the right subtree of that cell has

one more node in it than the left subtree. If the left subtree has one more node, or

if the two subtrees are equal in size, then the balance bit will be "0," We only need

112

/

to consider these cases because we are assuming that the tree is well-balanced from

the start and that the only problem of storage allocation is to keep it that way. The

balance bits will give the storage allocator directions as to where to add a new leaf.

This works as follows. (See Figure 6.1.) Starting from the root of the tree we go down

to the left subtree if the balance bit is "1," and the right subtree if it is "0." This will

cause us to always move toward the least populated subtree. As we pass through a cell

we toggle the balance bit, changing a "1" to a "0," and a "0" to a "1," so that the next

time we go through we will reverse direction. When we reach a leaf the new storage is

allocated there. This algorithm can be extended to k-ary trees by using logk balance

bits.

6.2 Random Allocation

The tree balancing algorithm will work for deciding where to allocate the storage in

many trees simultaneously. Unfortunately, the free list will only indicate one free node

to be used at a time. Say we want to add a new leaf to each of a thousand trees simulta-

neously. How can we do this? Assume that we have used the tree balancing algorithm

on all the trees simultaneously to identify where to connect the newly allocated cells.

Let us call this set of cells which would like to connect to free storage the customers.

Let us also assume that some garbage collection process has marked all of the potential

free cells. The problem then is to get the customers and the free cells together.

The method that we use to accomplish this task will depend on what percentage of

the cells are free and what percentage of the cells are customers. Let us start with an

easy case where most of the cells are free and few of them are customers. In this case,

if each customer chooses a random cell it is likely to be free. If not, it can try again.

Random in this case does not mean independently random for each cell. In fact, it is

better if it is not independently random since it can avoid the problem of two customers

trying to connect to the same cell. Instead we will generate one single global random

number r. Each customer with address A will try to connect to the cell with address

A ± r. This guarantees that no two customers will try to connect to the same cell. If

all of the customers find a free cell at address A = r then the goal is accomplished. If

not, we repeat the process with the smaller set of unsatisfied customers using a new

random number. How many times can we expect to repeat the process before all of

the customers are satisfied? Assume that each cell has a probability P of being free,

and that the number of customers is sufficiently small that P is essentially the same

before and after the allocation. In this case the probability that the cell has made a

113

match after k trials is P (trials C k) = I - (1 - P)t. If there are c customers, then the

probability that all of the customers are satisfied after k trials, P (all < k) = (1 - (I -

P)k)e. The method works very well when P is large. As an example, consider the case

where P = 90 percent, and c = 100 customers, then the probability that all customers

are satisfied after four trials is greater than 99 percent. On the other hand, it works

very poorly when P is small. For example, if P = 10 percent, and c = 100 percent,

then 88 trials are required to reach the same 99 percent confidence level.

The method has other disadvantages as well. Since a cell is establishing a rela-

tionship with a completely random free cell, a complete stranger about which it knows

nothing, it has no way of knowing whether or not the cell it is connecting to is defective.

Another disadvantage of the scheme is that it has no tendency to connect to nearby

storage. A customer may pass over a nearby free cell to connect to a randomly chosen

one farther away. This has negative implications for the efficiency of communication

in the network. Finally, this method of allocation is incompatible with free list allo-

cation so the host and the Connection Machine cannot both allocate storage without

constantly rebuilding the free list.

6.3 Rendezvous Allocation

A method of storage allocation that fixes many of the bugs of random allocation is ren-

dezvous allocation [Christman, 1983]. In rendezvous allocation free cells and customers

are each assigned numbers. This number is then used to address a meeting place where

the free cell and the customer make contact. This meeting place need not be a free cell

as long as it has a little bit of extra storage to use for the rendezvous.

Rendezvous allocation depends on the fact that it is quick and easy to number

the elements of a set. This is accomplished by modification of the leaf numbering

algorithm, discussed in Chapter 5, on the induced tree covering the whole machine.

The algorithm works as follows. Every member of the set sends a "1" to the cell above

it on the induced tree. This cell keeps track of the numbers that it receives from its left

and right subtrees respectively. It sends the sum of these two numbers to the cell above

it on the tree. This process if repeated until the root is reached. At this point each cell

has stored the number of members of the set that are in its left and right subtrees. The

root of the tree then sends the number collected from its left subtree down to the root

of its right subtree and sends a "0," down to the root of its left subtree. The process is

then repeated by the root nodes of the two subtrees, except that before the messages

are sent they add to them the number that they received from above. The process is

114

repeated recursively until the leaf nodes themselves are sent numbers. At this point

the n members of the set will be given the numbers "0" through n - 1.

Rendezvous storage allocation may be accomplished by using this algorithm to

number the free cells and using it again to number the customers, These n numbers

then serve as addresses for the rendezvous cells at which the customers and free cells

meet. Each customer and free cell sends its own address to the cell specified by its

number. This rendezvous cell cooperates by forwarding the address of the free cell to

the address of the customer. The customer must then communicate with the free cell

to inform it that it has been allocated and is no longer free. This completes the process

of allocation.

Rendezvous allocation has an advantage over random allocation in that it continues

to work well even when the number of free cells is small. In addition, if defective cells

can be left out of the numbering process, then they can also be left out of the data

structures. (There is a complication because of the possibility of defective rendezvous

cells, but this can be fixed by using multiple rendezvous points.) The one problem that

rendezvous allocation does not fix, however, is in optimizing the locality of connections.

There is nothing in the rendezvous scheme to insure that a customer will make contact

with the nearest free cell. This problem is fixed in the wave allocation scheme, described

in the next section.

6.4 Waves

Wave allocation is a method by which a cu'stomer cell can find the nearest free cell.

Unlike most Connection Machine algorithms, wave allocation depends on the physical

topology of the communications network. This is because the locality which it is trying

to preserve is a property of the physical topology. The purpose of trying to find free

storage nearby is to reduce the load on the communications network. Wires are an

expensive, and hence limited, resource, And the performance of the communications

network is typically limited by the availability of free wires over which to send messages.

If cells tend to communicate with nearby cells, messages will travel over fewer wires to

reach their destination and the total bandwidth of the network will be greater. Since

storage allocation is the place where connections are established, this is a good place to

optimize the locality of interconnection. (It is also possible to optimize interconnection

locality post facto. This is discussed in Section 6.8.)

To make the description of the wave algorithm easier, we will assume that the

topology of the communications network is a two-dimensional grid. This is probably

115

not the case on any real network, but the algorithm that we will describe will have

its counterpart for more complex topologies. We will assume, at least for the purpose

of the illustrations, that some nodes are farther away than others. If this is not the

case, then the concept of los:ality makes no sense and we might as well use another

algorithm.

The wave allocation begins by each customer cell sending a request for free storage

to its immediate physical neighbors. This request contains the return address of the

customer. If the neighbor is free, it sends its own address in an acceptance message

back to the customer. If it is not free, then it forwards the request onto its immediate

physical neighbors. The expanding front of request messages propagates out from

the customer like a wave. Hence, the name wave allocation. Once the request wave

makes contact with the free cell, an acceptance message is sent back immediately to

the customer. This may happen at several points on the wave simultaneously. The

customer accepts the first message and rejects the rest. It must now cancel its rapidly

multiplying request for free cells. This is accomplished by sending out a "never mind"

wave, which propagates at a faster rate than the request wave, and cancels it when it

catches up. The never mind wave contains the address of the free cell to which the

customer has decided to link so that the other free cells which responded to the request

can see that they were rejected.

This wave propagation process can take place for many customers at once. Since

request waves contain the address of the originating customer, they each have their

own identity. When two request waves collide, they must "stand off" until one of the

waves is cancelled. This will guarantee that no two customers will try to connect to

the same free storage location.

Wave allocation can avoid allocating defective cells as long as the neighbors of a

defective cell know that it is defective. If this is the case, then they can refuse to

communicate with it. They neither accept messages from it, nor send messages to it.

A request wave would never be propagated to such a cell; and even if it mistakenly felt

that one was, its neighbors would refuse to forward it to the cell. This is among the

most satisfactory of the defect tolerance schemes.

The primary disadvantage of wave allocation is that it is relatively slow because

it involves sending many messages through the network. Deciding whether or not to

use wave allocation is a tradeoff between time spent during construction of storage arid

time spent on the activity of the active data structure.

There are many other algorithms for storage allocation, For example, there are

parallel versions of the free list method which use a tree of free cells. There are also

116

hybrid methods which combine waves and random allocation, free list and numbering,

etc. Which method to use will depend on the relative importance of factors like speed,

locality, and defect tolerance, and on the statistical distribution of customers and free

cells in the network.

6.5 Block Allocation

In the storage allocation algorithm so far we have dealt only with allocating single

cells. For some data structures, for example, arrays, induced trees, and butterflies, it

is necessary to have a contiguous segment of address space containing some number

of cells. The algorithm described in this section is capable of allocating many such

blocks concurrently, assuming that they are all of the same size. For the purpose of

this algorithm we will assume that the free storage contains the desirable number of

blocks of contiguous free cells of the proper size. If this is not the case, then we may

wish to rearrange the storage with compaction operation such as the one described in

Section 6.7.

The idea is first to label every free cell with the number of contiguous free cells

above, including itself. Let us assume that we are trying to allocate blocks of size k.

Notice that every contiguous block of this size must have exactly one cell whose address

is an exact multiple of k. We will call this cell the representative of the block. The first

phase of the algorithm will result in the identification of all representatives of blocks of

size k. The second phase of the algorithm involves linking these representatives with

the customers. This second phase can be accomplished by either waves or rendezvous

techniques, mentioned above. Only identifying the representatives is unique to block

allocation,

The potential candidates for representatives are all cells whose addresses are "0"

modulo k. All of the candidates that are not free cells themselves can be eliminated

immediately from consideration since they are obviously not a part of a free block of

size k. We will calculate for each of the remaining candidates two numbers. The first

number says how many contiguous free cells there are directly below the candidate in

address space. The second number says how many contiguous cells there are directly

above it. If the sum of these two numbers is greater than or equal to kc, we know that

the candidate is indeed the representative of a block of the desired size.

The calculations of the lengths of the upward and downward contiguous blocks

are carried out by similar methods. We will consider here the calculation of only the

upward block size. At the beginning of the algorithm we label each free cell with a "1"

117

and each non-free cell with a "0." For the first transmission step each cell sends its label

to the cell whose address is one less than its own. If the cell that receives the message

has a label of "0," that is, a label less than "1," it will ignore the message. Otherwise,

it will add the number in the message to its own label. On the next transmission step

of the algorithm each cell sends its label to the cell whose address is two less than its

own. If the receiving cell has a label which is less than "2," then it ignores the message.

Otherwise, it adds it to its own label. Next each cell sends its label to the cell whose

address is four less than its own. And if the cell's label is less than "4," it ignores the

message. This process repeats with each cell sending to the cell whose address is 2'

less than its own on the i-th transmission step, and each cell ignoring the message if its

own label is less than 2', otherwise, adding it to its own label. The process terminates

when i is equal to the number of bits in the address of the machine. At this point, each

cell will have a label indicating how many contiguous free cells are directly above it in

the address space.

This information may be used to choose a set of representatives. We will choose as

a representative every cell whose label is an exact multiple of the desired block size k.

This cell will represent the contiguous block of k cells starting with itself and moving

upwards in the address space. Since the label of each representative is a multiple of

k, these blocks will not overlap. The representatives may then participate on behalf

of their block in storage allocation in the same way that free cells participate in non-

blocked storage allocation.

6.6 Garbage Collection

Up until this point we have assumed that all free storage cells are marked as such.

The process of identifying and marking free storage is called garbage collection. (Oc-

casionally a computer scientist will get nervous about writing a paper or working on

a proposal having to do with garbage collection. In cases like this, the phrase storage

reclamation tends to be used. It means the same thing.) Garbage collection can be and

is done by ordinary serial machines. it is much faster and simpler on the Connection

Machine. Deciding which ceils are free is generally accomplished by eliminating all the

cells that are used. A cell is used if it can be reached by following a chain of pointers

from the host. There are basically three popular forms of garbage collection: reference

counting, mark/sweep, and copying. All three have their corresponding algorithms on

the Connection Machine.

The simplest form of garbage collection is reference counting. In a reference counting

118

scheme, each cell keeps a count of the number of cells that are pointing to it. If this

count ever goes to "0," then the cell is unused and becomes free. Reference counting

is easy on the Connection Machine if a backpointer is stored for every pointer. If this

convention is followed then wherever there are pointers from a cell, there are pointers

to it. A cell is free if and only if it contains no pointers. While this is simple in practice,

consistently maintaining this discipline of always storing backpointers is cumbersome.

It also needs to be complicated if the implied pointers of induced structures are taken

into account. Besides being cumbersome, reference counting garbage collection has a

fatal flaw. It is possible to build circular structures which point to themselves and yet

are pointed to by nothing else. The simplest case of this is a cell which simply points

to itself. In a strict reference counting scheme these structures are never identified as

free storage.

Perhaps the most popular garbage collection scheme is called mark/sweep. This is

a two-phase algorithm. The first phase marks all used storage and the second links

together all unused storage into a free list. Depending on which storage allocation

scheme we are using, we may be interested in both phases of this algorithm or only the

first. The mark phase is essentially a marker propagation starting at known objects and

following all possible pointers. For the purpose of describing this and other garbage

collection algorithms, we will assume, without loss of generality, that there is only one

"known" object, a master data structure that includes pointers to all others. Such a

master structure is often called the "oblist" in Lisp implementations. It is important

that this oblist contains pointers to all useful storage except the free list, and that it does

not contain a pointer to the free list. Anything not pointed to directly or indirectly by

the oblist will be considered unused "garbage." The mark phase of garbage collection

works as follows. A mark is placed on the oblist. All marked cells then send messages

to mark each of the objects to which they point. This step is repeated until no new cells

are marked, at which point the mark phase is completed and all unmarked cells may be

considered free storage. Notice that it is difficult for this algorithm to follow implied

pointers within induced structures. For this reason, induced structures are generally

sewn together with a tree of pointers when they are created. These pointers serve no

Sexcept to mark the structure against garbage collection.

If it is desirable to form a free list of the unmarked cells, this can be accomplished

by using the induced tree on all the elements to form free cells into a linked list. Every

unmarked cell sends its address up toward the root of the tree. If a cell receives two

pointers, it sends the pointer from the left branch to the cell pointed to by the right

branch. Then it sends the pointer from the right branch up the tree. if a cell receives

119

only one pointer, it sends it up the tree. A cell may determine that it is to receive only
one pointer either by depending on the balance of the tree or by using a "no-pointer"
message initiated by the marked cells and propagated by any cell receiving two "no-
pointers." Each time an unmarked cell receives a pointer as a message it stores it,
establishing a link to that cell. This process of sending upwards and linking is repeated
until the root node sends up a pointer, in which case that is the pointer to a linked list
of all of the free cells.

The mark phase of this garbage collection algorithm takes place in time proportional
to the maximum depth of any structure pointed to by the oblist. If all the structures
form a reasonably well-balanced tree, then the maximum depth will be on the order of
the number of address bits in the machine, or less if much of the storage is unused,

6.7 Compaction

The mark/sweep garbage collector rearranges connections only among the free cells;
it leaves existing structures intact. It is sometimes desirable to rearrange existing
structures either to shorten communication distances or to create large contiguous
blocks of storage. This can be achieved, for example, by moving all data structures
into a contiguous block at the beginning of memory and leaving the entire upper portion
of the address space full of free cells. A garbage collector which accomplishes this is
called a compacting garbage collector. The particular variant which we will describe is
called "stop and copy" [Minsky].

Any compacting garbage collector must perform two tasks. First, it must move
existing structures into a contiguous area of memory. And, second, it must update
pointers between existing structures so that they point to the structure's new location.
The second task is generally harder than the first. Before describing how the com-
pacting garbage collection algorithm works, we will digress and describe an important
subroutine, namely finding the minimal spanning tree of a graph.

Any graph will have a subgraph without cycles which includes all of its vertices.
This acyclic graph is called a "spanning tree." It is not difficult to find some spanning
tree within a graph. It is more difficult, and often impossible, to find a balanced

spanning tree, particularly if we insist on finding the tree rooted at a particular vertex.
The algorithm below finds such a balanced tree if one exists. in any case, it will find

a spanning tree of minimal depth, that is, with minimal distance from the root to the
farthest leaf. It works by building up a tree from the root and repeatedly adding all
connecting edges that do not form cycles.

120

Given a graph G and a root vertex v, we wish to find an acyclic subgraph T of
G, connecting all vertices of G, such that the maximum distance of any node in T

to v is minimized. We will begin initially with the set of vertices of T, VT, initially
containing only {V}, and the set of edges ET, equal to 4. We begin by marking every
edge connecting to a vertex in VT. For every vertex not in VT, if it connects to one or
more marked edges, we will add the vertex to VT, and choose one of the marked edges
to add to VE. This process is repeated until all the vertices of G are in VT.

As long as G is connected, the execution of the algorithm above clearly yields a
subgraph of G that connects all of the vertices. It will contain no cycles because
adding a new vertex to a graph and a single edge connecting that vertex can never
create a cycle. And this is the only way that the algorithm adds edges. We can prove
that it is of minimum depth by contradiction. Assume that there is some sequence of
edges E that connects vertex v, to the root vertex v in fewer steps than it is connected
in T. Then there must be some edge e in E, but not in T, that connects directly
between a vertex, yE, of distance D from v and T, and a vertex, vE, at a distance
greater than D + 1. If this were not the case, then the path from the root to T would
be as short as E. But, any such edge would have to be marked on the deep step of the
algorithm, and would be part of T unless VE was already in T, or there was another
edge added adjoining VE. In either case, UE would be connected in T at a distance not
greater than D + 1, which is a contradiction. Therefore, no vertex is farther from v in
T than it is in any other subgraph of G, including C itself.

The simplest way to compact the data is to label each cell with the number of free
cells that have a smaller address than it does. This can be accomplished in logarithmic
time by a variant of the counting algorithm. Once all cells are labeled in this manner,
the label can serve as an offset. Each cell calculates its new address by subtracting the
label from its current address. Each cell then copies itself by sending messages to the
new address and leaves behind a forwarding pointer (we are assuming here that there is
enough working storage within a cell to do this). The forwarding pointer is used for the
pointer updating process. This is accomplished by each cell sending a message to every
cell that it points to asking for the forwarding address, These fcrwarding addresses are

used to replace the pointers to the old objects. Once this process is complete, the old

objects no longer need to store the forwarding addresses. Notice that this method of

compaction leaves contiguous blocks of storage contiguous.

121

Figure 6.2: Data structures may exchange positions in order to shorten communications

distances

6.8 Swapping

Data structures that have been compacted in the lower portion of address space exhibit

better locality than those that have not, but they still may be far from optimal. If

backpointer structures are kept, that is, if a cell points to all cells that point to it, then

a cell may move itself as long as it informs its acquaintances where it is moving. This

allows two cells to exchange places to optimize locality. This process is called swapping.

To decide when to swap a cell communicates with each of its immediate physical

neighbors. They exchange information about which direction, if any, they would like

to move and on this basis decide whether it would be to their mutual benefit to swap

places. In general, a cell would like to move in a particular direction if it would

shorten its average communication time. How this is measured depends on the details

of the communications network. On a boolean n-cube network, for example, a good

approximate measure of communication difficulty for a cell would be the sum of the

Hamming distances between all of the pointers, i.e., contains its own address. The cell

would like to move, that is, change its address, in a direction that will decrease that

number. A simple situation in which it is Lo the benefit of both cells to swap is shown

on the left side of Figure 6.2.

If cells swap only when it is to their mutual benefit, then the optimization process

will quickly get stuck at a local optimum. Figure 6.2 shows (on the right) such a stuck

case where the middle cell is happy where it is and refuses to budge. This prevents

122

the cells on either side from exchanging places. There are several possible solutions to

this problem. One of the most elegant is called simulated annealing [Kirkpatrick]. In

simulated annealing we sometimes swap two cells even when it is not to their mutual

benefit. The probability of making such an exchange is a decreasing function of time.

This gradual reduction of randomness to find the optimal network is analogous to grad-

ually reducing the heat while growing a crystal, hence the name "simulated annealing."

In fact, the analogy can be made precise by the following formula:

P(A E) =

Here P is the probability of making a non-optimal exchange, T is the simulated

temperature, K is the Boltzman constant, and AE is a measure of the cost of the

change. This method of simulating annealing is known as the Metropolis Algorithm

[Metropolis, 1953]. To really do it right, we should make only one change at a time,

since the AE terms are not strictly local.

Another, more practical, approach is to move only some subset of the cells at a time

and to choose the subsets such that no connected cells are in the same subsets. Such

a collection of subsets is called a coloring of the graph of connected cells, and good

heuristics exist for generating good colorings, many of which are suitable for parallel

implementation.

Swapping to optimize locality cannot conveniently be done concurrently with other

computations. It is best done while nothing else is going on. Since it performs an

optional optimization, perhaps the best time to do it is while the machine is otherwise

idle. This allows the machine to dream usefully while the user decides what question

to ask next.

6.9 Virtual Cells

Up until this point we have assumed that there are enough cells in the Connection

Machine to hold the entire problem. Of course, there will always be problems too big

to hold on a physical machine. This problem comes up in conventional computers with

the size of memory. The memory problem has been alleviated to some extent through

the use of virtual memory which allows programs to be written as if physical memory

is much larger than it is. This is accomplished by actually storing the data in some

secondary storage device and bringing it into memory only when it is actually used.

Can a similar technique be used to provide virtual cello on the Connection Machine?

The biggest technical obstacle in building a virtual Connection Machine is doing

123

something sensible when a real cell sends a message to a virtual cell which has been
"swapped out" into secondary storage. There are essentially two ways to deal with this
problem. One is to bring the cell back into physical address space. The other is to save
the message.

6.10 Bibliographic Notes for Chapter 6

For a discussion of simulated annealing see [Kirkpatrick, 1983] and [White, 1984) (a de-
tailed practical analysis). The Metropolis Criterion comes from [Metropolis, 1953]. The
enumeration consing algorithms are based on those given in [Christman, 1983]. Tom
Knight first suggested the swapping method of optimizing storage in the Connection
Machine.

The classic works in fault tolerance are [Moore, 1956] and [von Neumann, 1956].
For a discussion of error correcting codes see [Peterson, 1961] and [JBobrow, 1974]. For
a specific analysis of fault tolerance and two-dimensional grids see [Manning, 1975].

124

Chapter 7

New Computer Architectures and Their

Relationship to Physics; or, Why

Computer Science is No Good

"It is therefore quite possible that we are not too far from the limits which

can be achieved in artificial automata without really fundamental insights

into a theory information, although one should be very careful with such

statements because they can sound awfully silly in five years."

- John von Neumann, 1949

Will we ever have a model of computation that is as powerful and beautiful as
our models of physics? In this final chapter I argue that the development of such a

model will be the direct consequence of the development of a new wave of computer

architectures like the Connection Machine. The chapter is divided into three parts.

The first points out that computer science is missing many of the qualities that make

the laws of physics so powerful: locality, symmetry, invariance of scale. This is why
physics is so nice and computer science is not. The second section gives an example

of physics-like laws that occur in a Connection Machine. The final section gives some

reasons for expecting more of this convergence of physical and computational law in
the future.

Why Computer Science is No Good

In the past, computer scientists have found it convenient and productive to adopt a

model of the computational universe that was very different from our models of the

physical universe. This is changing. As we build bigger computers out of smaller

components, our models of computation are forced to change. There is reason to hope
that our new models for specific systems will be similar to the models of physics.

A computer designer is constrained by mundane problems that have no counterparts

in the theoretical models of computer science: the size of connectors, the cost and

availability of components, the mechanical layout of the system. Recently these factors

125

have dictated a dramatic change in the way we design computers. Things don't look

the same. Wires cost more than gates, software costs more than memory, and the air

conditioner takes up more room than the computer. Our current models of computation

are inadequate for designing or even describing our new architectures. An abstract

model is powerful only when it allows us to pay attention to certain aspects of a

situation while ignoring others. Our current models seem to emphasize the wrong

details.

The areas where computational models are weak are often the areas where they

differ from physical models. In physics, for example, many fundamental quantities are

conserved, whereas in our old models of computation data can be created or destroyed

at no cost. This is a difference and a weak point. The big air conditioner sitting

next to the small computer is testimony to this fact. Other differences in physical and

computational models also seem to cause problems. We will point to only one sort of

difference here, the difference in locality, although similar arguments could be made for

symmetry, linearity, or continuity.

In the physical universe the effect that one event has upon another tends to decrease

with the distance in time or in space between them. This allows us to study the

motions of the Jovian moons without taking into account the motion of Mercury. It

is fundamental to the twin concepts of object and action. Locality of action shows
itself in the finite speed of light, in the inverse square law of fields, and in macroscopic

statistical effects like rates of reaction and the speed of sound. In computation, or at

least in our old models of computation, an arbitrarily small event can, and often does,
cause an arbitrarily large effect. A tiny program can clear all of memory. A single

instruction can stop the machine. In computation there is no analog of distance. One

memory location is as easily influenced as another.

Fundamental to our old conception of computation was the idealized connection,
the wire. A wire, as we once imagined it, was a marvelous thing. You put in data at
one end and simultaneously they appear at any number of useful places throughout the

machine. Wires are cheap, take up little room, and do not dissipate any power.

Lately, we have become less enamored of wires. As switching components become

smaller and less expensive, we begin to notice that most of our costs are in wires, most
of our space is filled with wires, and most of our time is spent transmitting from one

end of the wire to the other. We are discovering that it previously appeared as if we

could connect a wire to as many places as we wanted, only because we did not yet
want to connect to very many places. We have been forced to notice that we cannot

measure a signal without disturbing it; for example, we must drive a wire with power

126

proportional to the number of inputs that sense it. Of course we knew this before, but

the fact seems more significant when the number in question is ten million instead of

just ten. Also, real wires take up room. Since we are building in mere three-dimensional

space, it is impractical to connect components arbitrarily. When we were wiring up a

few hundred vacuum tubes this was not a problem, but today we need to wire together

hundreds of millions of components and we need to do it in a smaller space. Most of

the wires must be short. There is no room for anything else. (There are also similar

problems with memory locations, which are just wires turned sideways in time.)
Our models of computation do not offer much help in solving the problem. Until

recently, they abstracted the wire away into a costless and volumeless idealized connec-

tion. Our old models impose no locality of connection, even though the real world does.

This is a prime example of where our old models break down. In classical computation

the wire is not even considered. In current engineering it may be the most important

thing. Something is wrong with the theory.

7.1 Connection Machine Physics

Consider a Connection Machine with a two-dimensional communications network, as

illustrated in Figure 7.1. A message is addressed to the appropriate cell by specifying

the relative displacement in the grid of the recipient from the sender (example: up

two and over five). This does not specify the route the message is to take, just its

destination. The sender mails a message by handing it to a neighbor, and the neighbor

decides on the basis of the address which way to send the message next. If the y-

displacement is positive, it will go up. If the i-displacement is negative, it will go left.

The neighbor modifies the address by incrementing or decrementing it appropriately, so

that when the message reaches its intended destination both displacements will be zero.

For example, a communicator receiving a message addressed "two up and five over"

can change it to "one up and five over" and send the message to the communicator

above.

Delivering messages takes time, so the distance between communicating cells is

important. The metric is not the same as in euclidean space, because there are no

diagonals. The taxicab metric (A x±Ay) is closer, but even this needs some refinement.

The problem is that each cell has only a finite number of states, so it can only handle a

few messages at one time. Messages may need to sidestep congestion. It is no problem

to design local routing algorithms that will accomplish this, but the effective distance

between two objects is increased. We need a metric that takes this into account.

127

Figure 7.1: A message moving toward its destination in a two-dimensional communi-

cations network

We define the distance between two points as the average communication time

between them. In an empty cellular space this is the same as the taxicab metric. The

presence of an an intervening object distorts the metric because messages must flow

around it. The curvature of the optimum message paths (geodesics) increases with the

density of objects, The farther away the objects, the less the effect, so there is a local

distortion in the metric proportional to the density of objects,

This distortion is not quite the same as physical gravity, and we will not suggest that

the causes of the two are similar, but it is interesting to find an effect in computation

that is so similar in form to one in physics.

Here is another one. Imagine that two cells are sitting next to each other in the

grid, Imagine that the left cell communicates mostly with cells off to the right and

the right cell communicates with cells to the left. It would be advantageous (in the

sense of minimizing communication time) if the cells were to exchange places, bringing

each of them nearer to the cells with which they communicate. The hardware of the

cell cannot move, but two cells can exchange all internal state. The effect is the same.

The computation object that was in the right cell moves to the left cell, and vice versa.

(Interested parties must be informed of the change of address, but this turns out to be

easy on the Connection Machine.)

By this mechanism, with some refinements, the hardware of the machine causes

each cell to migrate in the direction in which it sends most of its messages, Groups of

intercommunicating cells will tend to cluster. In such a system paths of communication

128

act like attractive forces which bind the cells together. On a larger scale the clusters

act like objects. They have strong internal forces and weaker interactions with other

objects. Communication between two clusters tends to pull them together. This motion

is a cumulative effect of the local behavior of the individual cells, but it can be analyzed

as a macro-force between two objects. There is no need to pay attention to the detailed

interactions of the individual cells.

We could give specific local rules that cause the macro-forces to behave like F = Ma,
but that would miss the point. The point is not that this is a good model of physics (it

isn't), but that the laws that describe its behavior will be similar in form to physical

laws. Remember that the purpose of the machine has nothing to do with physics. It

was designed the way it was for good, hard engineering reasons: the cost of connectors,
the need to dissipate heat, the volume of wires. Any similarity to physics, living or

dead, is purely unintentional; but not coincidental.

7.2 New Hope for a Science of Computation

Progress in physics comes by taking things apart; in computation, by putting things

together. We might have had an analytic science of computation, but as it worked out

we learned more from putting together thermostats and computers than we did from

taking apart monkey brains and frog eyes. The science of computation, such as it is,

is synthetic.

The respective models of physics and computation reflect the difference in approach.

For example, in classical physics most quantities are continuous. As physicists probe

deeper into lower and more fundamental levels of reality, things begin to look discrete.

The physicist of yesterday measured. The physicist of today counts. In computation

things are reversed. We have begun in the other direction and, because we have begun

only recently, we have not gone far. This is one of the reasons that computer science

seems to be "no good": we have not gotten beyond counting. Knowing the lowest level

rules is good, but it is in no way sufficient. Quantum chromodynamics is not much use

in designing bridges. Computer science is not much use in designing computers.

I am not discouraged. While physics is looking down into lower and lower levels,

computer science is looking up. It is looking up because systems are becoming large

enough to exhibit the kind of simple, continuous behavior that we are accustomed to

in everyday physics, large enough that the behavior of the system can no longer be

dominated by the behavior of any single component. There is beginning to be a forest

to see through the trees.

129

There are two sorts of things that could be called computational models, and I would
like to make clear which one I am talking about. By "computational model" we could
mean a model of all possible computational worlds. There have been a few important
steps toward such a meta-computational theory (theories of servomechanisms, Turing
computability, information theory), but so far a complete and coherent model is still
beyond sight. The second sense of "computational model" is a model of a particular
computational system. Physics may be such a model. Physical law does not need to
describe what might happen in any possible universe, just this one. In computation
the distinction is more important because we design our own worlds. The Connection
Machine is an example of such a world.

We see no way to predict the development of a generalized theory of computation,
but we do see reasons to expect good, clean, useful models of specific computational
systems - models that will look like physics. The first reason is that physical law itself
seems to be such a model. If the universe is a computing machine, then we know that
at least some computing machines have elegant laws. This view of the universe is well
represented elsewhere jLandauer, 1967], [Toffoli, 1977], jWolfram, 1984], and we will
not dwell upon it.

The second reason for believing in physical/computational model convergence is
more profound, and therefore more likely to be wrong. Both sciences study large
systems of weakly interacting components. Such systems, with local rules of interaction,
often seem to have simple macro laws. This may be due to some "Law of Large Systems"

corresponding to the statistical "Law of Large Numbers." The statistical law says that
the sum of many random variables always has a simple gaussian distribution, whatever
the distributions of the variables. A sum represents less information than its addends,
and the gaussian distribution has minimum information. In the same way, when we
add together the individual behaviors of components we lose information. Only the
simple linear properties show through. Classical physics is simple because only simple
additive properties, like momentum, remain visible at the macro scale.

The final reason for expecting physics-Like behavior in computational systems is

that all of our computing machines must be implemented in the physical world. As
our components become smaller and more efficient, they must inherit some of the
constraints of the physical laws. Machines will have three-dimensional connectivity
because space is three-dimensional, They will have limited propagation rates because

space has a finite speed of light. As less is wasted between function and implementation,

the physics begins to show through.

These conjectures will be tested because in the future we will be building even larger

130

computing machines out of even smaller components. Perhaps we will grow crystals

with each lattice site pointing to a processor. What will computation look like with

a mole of processors? Much like physics, I think. When this happens, we can look

forward to new models of computation, models that may inherit some of the power and

the beauty of physical law.

7.3 Bibliographic Notes for Chapter 7

The text of this chapter was adapted from [Hillis, 1982). It appears in one of three spe-

cial volumes of the International Journal of Theoretical Physics that deal with physics

and computation. Most of the papers in these volumes are related to the subjects dis-

cussed in this chapter and the complementary subject of using computational models

to describe physics, as in (Landauer, 19671 and (Toffoli, 1977]. The von Neumann quote

is from [von Neumann, 1949].

131

Acknowledgements

(I have put the names in alphabetical order, so that you will all be able to find yourselves

easily.)

Hal Abelson, who encouraged me to work on this in the early stages. Phil Agre,

who did some of the first programming on the machine. Jim Bailey, who appreciated

the elegance from the first time he heard about it and explained it to everyone else,

Alan Bawden, who invented the first programming languages for the machine. Gordon

Bell, who gave lots of advice that I listened to, and some that I wish I had. Danny

Bobrow, who took me seriously. Michael Brady, for encouragement. Keira Bromberg,

who was relentless. Tom Callahan, who built it; nothing is impossible for him. David

Chapman, who had the first ideas about how to make conventional programs run on

the machine. Dave Christman, who invented many of the basic algorithms. Dick

Clayton, who made it real. It never would have happened without him. John Cocke,

for discussions on architecture. Glen Cramer, who figured how to use the machine

for test vector generation. Marvin Denicoff, for understanding. Michael Dertouzos,

who gave me the support to build my first parallel processor. Chris Drake, for good

humor. Gary Drescher, for teaching me to think better. Mike Drumheller, who wrote

the first vision program. Scott Fahlman, whose thesis inspired the machine. Carl

Feynman, for energy, joy, and enthusiasm from the beginning. Richard Feynman, for

teaching me something about what is important and what is not. Rolf-Dieter Fiebrich,

who led the group that wrote the first useful programs for the machine, with a sense

of wonder and excitement. Craig Fields, who knew it was the right thing. Richard

Greenblatt, for advice and encouragement. Sheryl Handler, for unending confidence in

me and for showing me the power and perils of positive thought. Robert Heinlein, for

making me want to go to MIT. Carl Hewitt, for good discussions. John Huffman,

who designed the chip. Lyman Hurd, who analyzed the router. Brewster Kahle,

for boundless effort, friendship and excitement, which makes it all worthwhile. Bob

Kahn, who supported the machine throughout its development. John Kimberly, who

designed the I/O for the prototype. Tom Knight, who was one of the principal designers

of the first prototype. Bradley Kuszmaul, who figured out how to compile functional

programs for the machine. Cliff Lasser, who wrote the first language that worked on the

machine. Jerry Letvin, for talking me out of being a neurophysiologist. Clem Liu, who

was one of the principal designers of the prototype. Neil Mayle, who wrote the initial

132

simulations. Margaret Minsky, who helped and encouraged me, for good criticism, ideas
and companionship. Marvin Minsky, my mentor, who taught me to think. Most of the
ideas in the thesis have their root, directly or indirectly, in discussions with Marvin.
(See also Thesis Committee.) The Minsky family, Julie, Henry, Margaret, Gloria and
Marvin, who adopted me when I moved to Boston. Bruce Nemnich, who made things
work. Seymour Papert, for supervising my first projects at MIT. Torn Poggio, who is
my model of a true scientist. Michael Rabin, for discussions on algorithms. Howard
Resnikoff, for helping me find order out of chaos (and Sheryl Handler for the reverse).
George Robertson, who wrote the first code to run on the hardware. Paul Rosenblum,
who kept up the dress code. Jim Salem, who accidently wrote the router diagnostic.
Jack Schwartz, who took the trouble to understand the details. Claude Shannon,
whose playful spirit got the field off to a good start. (See also Thesis Committee.)
Brian Silverman, for early discussions on the router. Karl Sims, who is the firE person
to apply the machine to graphics. Mark Stefik, for early encouragement. Steve Squires,
for support, ideas, and enthusiasm. Guy Steele, who headed the software team for the
prototype. Dave Stefanovic, who made things work. Gerald Sussman, who gave me
good advice and encouragement. Many of the key early ideas came out of discussions
with Gerry. (See also Thesis Committee.) Ivan Sutherland, who said to think about
wires instead of switches, John Taft, who was one of the designers of the first prototype.
Wati Taylor, who figured out how to do sorting. Tamiko Thiel, who made it beautiful.
Umesh Vasirani, who wrote one of the initial simulations. Dave Waltz, who is applying
the machine to natural language understanding. Dan Weinreb, who wrote one of the
initial simulations. Debbie Widener, for long hours of hard work getting it finished.
Jerry Wiesner, for encouragement and advice. Patrick Winston, who supported the
work from the beginning. (See also Thesis Committee.) Steve Wolfram, for friendship,
ideas, and encourgement. The people and creaturez of Disney World, who guarded
me while I wrote the first draft. Lowell Wood, who recognized my potential before
I did but fortunately was unable to exploit it, for encouragement, humor and advice.
I would also like to thank my Thesis Committee, Marvin Minsky (advisor), Claude
Shannon (thesis advisor), Gerald Sussman (thesis advisor), Patrick Winston; the Naval
Electronic Systems Command for support of the construction of the prototype under
contract #N00039-84-C-0638; the Fannie and John Hertz Foundation, which supported
me for six long years without complaint.

The thesis is dedicated to my family, Beth, David, Argye and Bill, for years of love
and support.

133

Annotated Bibliography

Abelson, Harold and Peter Andreae. "Information Transfer and Area-Time Tradeoffs

for VLSI Multiplication," Integrated Circuit Memo No. 80-4, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, January 4,

1980. (A good example of the use of information transfer models to bound the difficulty

of a computation. See [Thompson].)

Aho, V.A., J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer

Algorithms, 1974, Addison-Wesley. (The standard introductory text. See also [Knuth].)

Anderson, John R. "Retrieval of Information from Long-Term Memory," Science, April

1983. (Talks about spreading actuation memory retrieval. Gives evidence that access

time goes up with fanout.)

Applegate, James H., Michael R. Douglas, Yekta Gursel, Peter Hunter, Charles L.

Seitz and Gerald Jay Sussman. "A Digital Orrery," California Institute of Technology,

Pasadena, California. (A special purpose computer for simulating planetary motions.

Has ten processors, one for each planet and one for the sun.)

Aristotle, The Politic. [1253 B 33] (The section on "Slavery" contains the first written

reference, of which I am aware, to thinking machines.)

Arvind, K. P. Gostelow, and W. E. Plouffe. "An Asynchronous Programming Language

and Computing Machine," TR114A, Department of Information and Computer Science,

University of California at Irvine, December 1978. (Describes the Irvine Dataflow

language.)

Arvind, K.P., D. E. Culler, and R. A. lannucci, V. Kathail, K. Pingali, and R.E.

Thomas. "The Tagged Token Data Flow Architecture," Massachusetts Institute of

Technology Laboratory for Computer Science, 1983. (Describes a tagged data flow

architecture. See also [Dennisj.)

Ashby, W. Ross. "Design for an Intelligence-Amplifier," Automata Studies, edited by

C. E. Shannon and J. McCarthy, Princeton University Press, Princeton, NJ, 1956. (A
very optimistic prediction for the near-term prospect of Al, or rather, cybernetics.)

134

Backus, J. "Can Programming be Liberated from the von Neumann Style?" Communi-

cation of the ACM, Vol. 21, No. 8., August 1978, pp. 613-641. (A classic. Introduces

the phrase "von Neumann bottleneck," and "FP," an applicative programming lan-

guage that has some relation to CmLisp.)

Bartlett, F. C. Remembering: A Study in Experimental and Social Psychology, Cam-

bridge University Press, 1932. (Competitive analysis. Performance measurements of

human memory.)

Batcher, K. E. "Sorting Networks and their Applications," SJCC, April 1968, pp 307-
314. (Batcher is the original sorting network hacker.)

Batcher, K.E. "STARAN Parallel Processor System Hardware," AFIPS Conf. Proc.,

Vol. 43, 1974, NCC, pp. 405-410. (STARAN was one of the first fine-grained parallel

processors ever built. See also [Surprise].)

Batcher, Kenneth E. "Design of a Massively Parallel Processor," IEEE Transactions

on Computers, Vol.C-29, No. 9, September 1980. (A good overview of the MPP, which

is like the Connection Machine, without the connections.)

Bawden, Alan and Philip E. Agre. "What a parallel programming language has. to let
you say," Al Memo 796, Massachusetts Institute of Technology, Artificial Intelligence

Laboratory, September 1984. (One of the first efforts to develop a high-level language

for the Connection Machine.)

Bawden, Alan. "A Programming Language for Massively Parallel Computers," Mas-

ter's Thesis, Massachusetts Institute of Technology, September 1984. (Describes CGL,
Connection Machine Graph Language, a high-level language for the Connection Ma-
chine that is a much more radical departure from conventional programming languages

than CmLisp.)

Bell, C. Gordon. "Multis: A New Class of Multiprocessor Computers," Science, Vol.

228, pp. 462-467, 26 April 1985. (A good review of multicomputers, past, present and

future.)

Benes, V. E. Mathematical Theory of Connecting Networks and Telephone Traffic, Aca-
demic Press, 1965. (The standard text for telephone switching system. Describes Benes

Networks and Clos Networks. Very readable.)

135

Berman, Oded and Richard C. Larson. "The Median Problem with Congestion," Com-
put. 6 Ops Res., Vol. 9, No. 2, pp. 119-126, 1982. (Shows a solution to the problem
of locating servers to minimize travel time given server congestion.)

Bernstein, P. A. and D. W. Chiu. "Using Semi-Joins to Solve Relational Queries,"
JACM, Vol. 28, No. 1, January 1981, 0025-40. (Shows that tree queries are easy, but
cyclic ones are probably hard.)

Bhatt, Sandeep Nautum. "On Concentration and Cornection Networks," MIT-LCS-
TM-196, March 1981. (An O(n) construction of concentrator and 795nlog(n) + o(n)
construction of connector.)

Bobrow, Leonard S. and Michael A. Arbib. Discrete Mathematics: Applied Algebra for
Computer and Information Science, W. B. Saunders Company, 1974. (Contains a good
introduction to error correcting codes.)

Boden, Margaret. Artificial intelligence and natural man, Basic Books, 1977. (A
history of the development of AT.)

Bolt Beranek and Newman Inc. "Development of a Butterfly Multiprocessor Test
Bed," Report No. 5872, Quarterly Technical Report No. 1, March 1985. (A MIMD
multicomputer with 128 microprocessors and a-logarithmic memory interconnection
network.)

Borning, Alan. "Thinglab: A constraint-oriented simulation laboratory," Stanford
University Computer Science Department, Report 79-746, also Xerox PARC Report
SSL-79-3. (Shows what can be done with constraints. This is the modern version of
Sutherland's SKETCHPAD.)

Bouknight, W. J., Stewart A. Denenberg, David E. McIntyre, J. M. Randall, Amed H.
Sameh, and Daniel L. Slotnick. "The Illiac IV System," Proceedings of the IEEE, Vol.
60, No. 4, April 1972. (Overview of the Illiac IV, including software.)

Bracewell, R.N. "The Fast Hartley Transform," Proc IEEE, Vol. 72, No. 8, August
1984. (Gives fast version of transform FHT, similar to FFT. Included here because it
shows a simple FFT program.)

Brachman, R.J. "K LONE Reference Manual," BBN Report 3848, July 1978 (c). (K LONE

is probably the most developed knowledge representation language.)

136

Brachman, R.J. "On the Epistemological Status of Semantic Networks," Report No.

3807, Bolt Beranek and Newman Inc., Cambridge, MA, April 1978. (Background for

KLONE.)

Broomell, George and J. Robert Heath. "Classification Categories and Historical De-

velopment of Circuit Switching Topologies," Computing Surveys, Vol. 15, No. 2, pp.

95-133, June 1983. (A survey of interconnection topologies.)

Browning, S. A. "A Tree Machine," Lambda Magazine, April 1980, Vol. 1, No. 2, pp.

31-36. (Overview of Tree Machine, mostly hardware.)

Buehrer, Richard E., Hans-Joerg Brundiers, Hans Benz, Bernard Bron, Hansmartin

Friess, Walter Haelg, Hans Juergen Halin, Anders Isacson, and Milan Tadian. "The

ETH-Multiprocessor EMPRESS: A Dynamically Configurable MIMD System," IEEE

Transactions on Computers, Vol. C-31, No. 11, November 1982. (A 16-processor

LSI-11 based MIMD multiprocessor, with (effectively) 16 16-port memories for com-

munication. Describes parallelizing compiler for numeric simulation.)

Burkley, John. "MPP VLSI Multi-Processor Integrated Circuit Design," Goodyear

Aerospace Corporation, Akron, Ohio, August 1982. (Brief description of the MPP

chip.)

Burks, Arthur W., Herman H. Goldstine, John von Neumann. "Preliminary Discussion

of the Logical Design of an Electronic Computing Instrument," Report on the Mathe-

matical and Logical Aspects of an Electronic Computing Instrument, Part 1, Volume 1,
The Institute for Advanced Study, ECP list of reports 1946-57, no. 1. (Design docu-

ment for "Johniac." Includes amusing estimate of maximum memory requirements.)

Cannon, H.I. "Flavors: A Non-hierarchical Approach to Object-Oriented Program-

ming," in preparation. (Would have been the standard "Flavors" reference if Howard

had ever finished writing it. He didn't. See [Weinreb].)

Carroll, C.R. "Hardware Path Finders," Caltech VLSI Conference, 1980. (MA ZER,

routes circuit boards by distance-wave method. Carroll imagines a system with 1K by

1K cells.)

Chakravarthy, U. S., S. Kasif, M. Kohli, J. Minker, D. Cao. "Logic Programming

on ZMOB: A Highly Parallel Machine," Department of Computer Science, University

of Maryland, College Park, MD, and IEEE, 1982. (Parallel prolog-like language on

137

medium-grained MIMD machine with general communication.)

Chang, Hsu. "Bubbles for Relational Database," Fourth Annual Workshop on Com-

puter Architecture for Non-Numeric Processing, August 1978, pp.110-115. (A brute-

force database machine, including cartesian product and full join.)

Christman, David P. "Programming the Connection Machine," Master's Thesis, De-

partment of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, January 1983. (Many nice Connection Machine algorithms, including the

first enumeration consing algorithms.)

Codd, E.F. "Relational Completeness of Data Base Sublanguages" in Rustin, R. (ed)

Database Systems, Courant Computer Science Symp. Series, Vol. 6, Prentice Hall,

1972. (Compares the expressive power of various combination of primitives.)

Cole, G. C. "Computer Network Measurements: Techniques and Experiments," UCLA-

ENG-7165, 1971. (A lot of measured and computed data on the Arpanet. Says buffer

blocking is rare.)

Collins, A. M. and E. F. Loftus. "A spreading activation theory of semantic processing,"

Psychological Review, 82, pp. 407-428. (See also [WaltzJ and [Quilliani.

Comfort, W.T. "Highly parallel machines," in Barnum (ed), Computer Organization,

Spartan Books, 1963. (Talks about programming the Holland machine.)

Cooley, J.W., J.W. Tukey, "An algorithm for the machine calculation of complex

Fourier series," Math. Comput. 19, April 1965, pp. 297-301. (This is the paper

that introduced the FFT. Easy to read.)

Copeland, G.P., G.J. Lipovski, and S.Y.W. Su. "The Architecture of CASSM: A Cel-

lular System for Non-numeric Processing," Proc. 1st Annual Symp. Com. Arch. 1973,

pp. 121-128. (CASSM is a database machine, see [Hawthorn) for how it performed.)

Date, C. J. An Introduction to Database Systems, Addison-Wesley Publishing Company,

Inc., 1975. (A good overview. Compares the various approaches.)

Davidson, Edward S. "A Multiple Stream Microprocessor Prototype System: AMP-.

1*," Coordinated Science Laboratory, University of Illinois, Urbana, IL, and IEEE,

1980. (Analysis of shared memory MIMD machine for matrix operations.)

138

de Kleer, J., Jon Doyle, Charles Rich, Guy L. Steele Jr, and Gerald Jay Sussman.

"AMORD: A deductive procedure system," Massachusetts Institute of Technology Ar-

tificial Intelligence Laboratory Memo 435, January 1978. (A working system that does

truth maintenance.)

Dennett, D.C. Brainstorms: Philosophical essays on mind and psychology, Bradford,

1978. (A discussion of some of the philosophical questions that arise in thinking of the

mind as a computer or vice versa.)

Dcnnis, J.B., K.S. Weng. "Applications of Data Flow Computation to the Weather

Problem," in High Speed Computer and Algorithm Organization, Kuck, Lawrie, and

Sameh, Eds., Academic Press, New York, 1977, pp. 143-157. (An analysis of what

specs would be needed for a Data Flow computer that could beat a IBM 360/195 a

factor of 100.)

Dennis, Jack B. "Data Flow Supercomputers," IEEE, November 1980. (Introduces

dataflow and compares fine-grained "cell-block" implementation to a more conventional

multiprocessor implementation.)

DiGiacinto, Tom. "Airborne Associative Processor (ASPRO)," Goodyear Aerospace

Corporation, Akron, OH, 1981. (Like STARAN, see [Batcher, 1974].)

Dongarra, J. J. "Performance of Various Computers Using Standard Linear Equations

Software in a Fortran Environment," Technical Memorandum No. 23, Mathematics

and Computer Science Division, Argonne National Laboratory, University of Chicago,

January 1984. (Contains a measured comparison of a wide variety of machines on a

specific numeric application. Makes you want to go out and buy a Cray.)

Drescher, Gary L. "The Schema Mechanism: A Conception of Constructivist In-

telligence," Master's Thesis, Massachusetts Institute of Technology, February 1985.

(Drescher's learning program is based on a model of human infants' cognitive develop-

ment derived from Piaget.)

Drescher, Gary L. "Suggestions for Genetic A.1.," Massachusetts Institute of Technol-

ogy, Artificial Intelligence Laboratory, Working Paper #198, February 1980. (Proposal

for Drescher's learning program.)

Erdos, P. and A. Renyi. "On Random Graphs I," Publ. Math. Debrecen, 6, 1959,

pp. 290-297. (Proves that to be connected a random graph needs an average degree of

139

about 1 In N, and that this is a sharp bound.)

Erdos, Paul, Frank Harary and William T. Tutte. "On the Dimension of a Graph,"
Paul Erdos, The Art of Counting - Selected Writings, The MIT Press. (Defines graph
dimension according to minimum unit-length embedding in E(n).)

Evans, T.G. "A program for the solution of geometric-analogy intelligence test ques-
tions," in (Minsky 1968a). (An AI program that literally passed an IQ test.)

Fahlman, S.E. NETL: A system for representing and using real-world knowledge, The
MIT Press, 1979. (The thesis that inspired the Connection Machine.)

Fahlman, Scott E. "Design Sketch for a Million-Element NETL Machine," Department
of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1981. (A very rough
sketch of a NETL machine using off-the-shift rams, using telephone-style hookups.)

Feigenbaum, E. A. and Julian Feldman, eds. Computers and thought, McGraw-Hill,
1963. (A good early overview of Al.)

Feldman, J. A. and D. H. Ballard. "Computing with Connections," TR7, Department
of Computer Science, University of Rochester, April 1981, (This is a good introduc-
tion to "connectionist" theories of AL. As might be guessed, they are well matched to
implementation on the Connection Machine.)

Feller, William. An Introduction to Probability Theory and Its Applications, Vols. I
and II, John Wiley & Sons, 1957. (The best general reference for probability. If you
know it, it is probably there.)

Forster, Lyn. "Vision and Prey-Catching Strategies in Jumping Spiders," American
Scientist, pp. 165-174, March-April 1982. (Special purpose image processing hard-
ware.)

Fried, David L. "Least-square fitting a wave-front distortion estimate to an array of
phase-difference measurements," J. Opt. Soc. A m., Vol. 67, No. 3, March 1977,
pp. 370-375. (An example of a real-time control application that needs a Connection
Machine.)

Friedman, Daniel P. and David S. Wise. "An Environment for Multiple-Valued Re-
cursive Procedures," Technical Report No. 40, Indiana University Computer Science

140

Department, October 1975. (Another attempt to add vector-like function calling to

Lisp.)

Gajski, Daniel, David Kuck, Duncan Lawrie, Ahmed Sameh. "Construction of a Large

Scale Multiprocessor," Laboratory for Advanced Supercomputers Cedar Project, De-

partment of Computer Science, University of Illinois at Urbana-Champaign, February

7, 1983. (Proposal to build Cedar, a 32 processor prototype of a machine very similar

to Ultra, that will use an 8-way shuffle interconnection network.)

Gajski, Daniel, David Kuck, Duncan Lawrie, Ahmed Sameh. A Large Scale Multi-

processor, Laboratory for Advanced Supercomputers Cedar Project, Department of

Computer Science, University of Illinois at Urbana-Champaign, February 7, 1983. (A

short summary of the Cedar machine.)

Garner, H.L. and J.S. Squire. "Iterative Circuit Computers," in Barnum (ed), Com-

puter Organization, Spartan Books, 1963. (Compares n-cubes and 2-d grids for path

building.)

Gerla, Mario. "The Design of Store and Forward Networks for Computer Communi-

cations," Phd. Thesis, 1973, UCLA-ENG-7319. (Performance analysis, ignores buffer

limitations.)

Gilmore, Paul A. "The Computer MPP," GER-17083, Defense Systems Division, Good-

year Aerospace Corporation, Akron, OH, June 1982. (Another MPP overview.)

Goldberg, Adele and David Robson. Smalltalk-80: The Language and its Implementa-

tion, Addison-Wesley, 1983. (One of the first languages based on message passing.)

Goldstine, Herman H. and John von Neumann. "Planning and Coding of Problems for

an Electronic Computing Instrument," Report on the Mathematical and Logical Aspects

of an Electronic Computing Instrument, Part II, Volume 2, The Institute for Advanced

Study, Princeton, NJ, 1948. (Discussion of programming the "Johniac," including a

merge sort.)

Goodman, J. R. and C. H. Sequin. "Hypertree, A Multiprocessor Interconnection

Topology," University of California at Berkeley, Draft, 1980. (An omega-network aug-

mented tree topology.)

Goodman, James R. and Alvin M. Despain. "A Study of the Interconnection of Multiple

141

Processors in a Data Base Environment," Computer Science Department, University

of California, Berkeley, CA. (An analysis of interconnection topologies in the context

of a specific database problem, the elimination of duplicates. Argues in favor of an

augmented tree structure.)

Gottlieb, Allan and J. T. Schwartz. "Networks and Algorithms for Very-Large-Scale

Computation," Computer, January 1982, pp. 27-36. (A good introduction to paracom-

puters. See also [Schwartz].)

Gottlieb, Allan, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph,

and Marc Snir. "The NYU Ultracomputer - Designing an MIMD Shared Memory Par-

allel Computer," IEEE Transactions on Computers, Vol. C-32, No. 2, February 1983,
pp. 175-189. (The hardware of a proposed 4096 processor ultracomputer, including

detailed description and analysis of interconnection network.)

Gritton, E.C., et al. "Feasibility of a Special-Purpose Computer to Solve the Navier-

Stokes Equations," Rand Corp. r-2183-RC, June 1977. (Sutherland (pp. 22-28) sug-

gests a 10K cell number cruncher for hydrodynamics problems.)

Gross, Donald and Carl M. Harris. Fundamentals of Queueing Theory, John Wiley &

Sons, 1974. (A good introduction. See also [Klienrock].)

Halstaed, R.H. "Reference Tree Networks: Virtual Machine and Implementation,"

MIT/LCS/TR-222, Massachusetts Institute of Technology Laboratory for Computer

Science, Cambridge, MA, June 1979. (A neat programming idea for sharing data

structures across multiple machines.)

Halstead, Robert H. Jr. and Stephen A. Ward. "The Munet: A Scalable Decentralized

Architecture for Parallel Computation," IEEE, 1980. (A brief review of the Munet and

reference trees. For more detail see Halstead's Ph.d. thesis.)

Harary, Frank. Graph Theory, Addison-Wesley Publishing Company, 1969. (Best
introduction to graph theory.)

Hawkins, J.K. and C.J. Munsey. "A Two Dimensional Iterative Network Computing

Technique And Mechanizations," in Barnum (ed), Computer Organization, Spartan

Books, 1963. (An optical 2-d grid computer.)

Hawthorn, Paula B. and David J. DeWitt. "Performance Analysis of Alternative

142

Database Machine Architectures," lEEE Transactions on Software Engineering, Vol.

SE-8, No. 1, January 1982, pp. 61-74. (Compares RAP, CASSM, DBC, DIRECT and

CAFS. If you plan to build a database machine, better read this first.)

Haynes, L.S., R.L. Lau, D.P. Sieqiorek, D.W. Mizell. "A Survey of Highly Parallel

Computing," Computer, January 1982. (A good recent survey of parallel computing.)

Hendrix, Gary G. "Expanding the utility of semantic networks through partitioning,"

SRI Tech. Note No. 105, June 1975. (Shows how to represent quantifiers in semantic

networks through context mechanisms.)

Hewitt C., G. Attardi, and M. Simi. "Knowledge Embedding in the Description System

Omega," Proceedings of 1980 AAAI Conference, Stanford, August 1980, pp. 157-164.

(A provably consistent knowledge representation scheme.)

Hewitt, C. "Viewing control structures as patterns of passing messages," Artificial

Intelligence, v8, n3, June 1977, pp. 323-364. (Describes the ACTOR paradigm for

describing computation.)

Hewitt, C. E. "The Apiary Network Architecture for Knowledgeable Systems," Proceed-

ings of Lisp Conference, Stanford, August 1980, pp. 107-118. (A hardware architecture

to support ACTORS.)

Hewitt, C. "PLANNER: A Language for Proving Theorems in Robots," IJCAI-69.

Washington, D.C., May 1969, pp. 295-302. (One of the first very high-level Al lan-

guages. See also [Sussman].)

Hillis, D. "Dynamics of Manipulators with Less Than One Degree of Freedom," Mas--

sachusetts Institute of Technology, Artificial Intelligence Laboratory, A.I. Working Pa-

per 241, January 1983. (A computation that cannot be speeded up by parallel process-

ing.)

Hillis, W. Daniel. "New Computer Architectures and Their Relationship to Physics

or Why Computer Science Is No Good," International Journal of Theoretical Physics,

Vol 21, Nos. 3/4, 1982. (Shows why to expect computer science to begin to look like

physics.)

Hillis, W. Daniel. "The Connection Machine," Massachusetts Institute of Technology

Artificial Intelligence Laboratory Memo 646, September 1981. (An early Connection

143

Machine description.)

Hillis, W. Daniel. "The Connection Machine: A Computer Architecture Based on
Cellular Automata," Physica, pp. 213-228, 1984. (A slightly easier to find version of
the Al memo.)

Hoare, C.A.R. "Communicating Sequential Processes," C.A.C.M. 21:8, August 1978,
pp. 666-677. (An important paper, but a conservative approach to parallel program-
ming.)

Hoffman, A. J. and R. R. Singleton. "On Moore Graphs with Diameters 2 and 3," IBM
Journal, pp. 497-504, November 1960. (Moore graphs are optimal network topologies.)

Holland, John H. "A Universal Computer Capable of Executing an Arbitrary Number
of Sub-Programs Simultaneously," Proc 1959 E.J.C.C., pp. 108-113. (This was one of
the earliest proposed general purpose massively parallel computers.)

Holland, John H. "Iterative Circuit Computers," Proc 1960 W.J.C.C., pp. 259-265.
(More on the Holland machine.)

Hopfield, J. J. "Neural networks and physical systems with emergent collective com-
putational abilities," Proc. Nat!. Acad. Sci. USA 79, Vol. 79, pp. 2554-2558, April
1982. (This is a new type of neural network learning model that fits very well with the
Connection Machine. This type of network was the first interesting progress in neural
networks in many years. See also [Hinton].)

Jaffe, Jefffrey M. "Distributed Multi-Destination Routing: The Constraints of Local In-
formation," IBM Research Report, RC 9243, February 1982. (Shows that local routing
is fundamentally hard.)

Keller, Robert M., Gary Lindstrom and Suhas Patil. "A Loosely-Coupled Applicative
Multi-Processing System," National Computer Conference, 1979, pp. 613-622. (See
below.)

Keller, Robert M., Gary Lindstrom, Suhas Patil. "An Architecture for a Loosely-
Coupled Parallel Processor," Department of Computer Science, University of Utah,
Salt Lake City, UT, October 1978. (Description of a large-grain tree machine, and how

to program it in LISP.)

144

Kirkpatrick, S., C.D. Gellatt, M.P. Vecchi. "Simulated Annealing," Science 220, 671,

1983. (Introduction to simulated annealing.)

Kleinrock, L. Communications Nets: Stochastic Message Flow and Delay, McGraw-

Hill, New York, 1964. (A classic, but assumes independence of message lengths and

infinite buffers.)

Kleinrock, L. Queueing Systems: Theory and Applications, Wiley Interscience, 1973.

(The basic text on queueing.)

Kleinrock, Leonard. Queueing Systems, Volume II: Computer Applications. John Wi-

ley & Sons, 1976. (Volume IT of above.)

Knight, T.F. "Design of an integrated optical sensor with on-chip preprocessing." Ph.D.

thesis, Massachusetts Institute of Technology, 1983. (A special-purpose vision processor

that integrates the sensor onto the same chip as the processor. This is one trick the

Connection Machine can't be programmed to do!)

Knuth, Donald E. The Art of Computer Programming, Volumes I, II and III. Addison-

Wesley Publishing Company, 1968. (1 am one of those people who keeps thinking, "One

of these day I am going to sit down and read all of Knuth.")

Koton, P.A. "Simulating a Semantic Network in LMS," Bachelor's Thesis, Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA, January 1980. (Mentions problems with NETL.)

Kruskal, Clyde P. and Marc Snir. "Some Results on Multistage Interconnection Net-

works for Multiprocessors," New York University, Computer Science Department, Tech-

nical Report 51, May 1982. (An analysis of Banyan Networks and a specialization called

delta network in which all path desceptors to a given destination are identical.)

Kuck, David J. and Richard A. Stokes. "The Burroughs Scientific Processor (BSP),"

IEEE 'Transactions on Computers, Vol. C-31, No. 5, May 1982. (A fast Cray-class

number cruncher, built but never produced.)

Kung, H.T. and P.L. Lehman. "Systolic (VLSI) arrays for relational database oper-

ations," Int. Conj. on Management of Data, May 1980. (Includes intersect, remove

duplicates, union, join, d ivide.)

145

Kung, H.T. and C.E. Leiserson. "Systolic Arrays," in Introduction to VLSI Systems by
C.A. Mead and L.A. Conway, Section 8.3, Addison-Wesley, 1980. (A good introduction

to systolic arrays.)

Landauer, Rolf. "Wanted: A Physically Possible Theory of Physics," IEEE Spectrum,
4:9, September 1967, pp. 105-109. (Is the universe a cellular automaton?)

Lang, T. and H.S. Stone. "A shuffle-exchange network with simplified control," IEEE
Trans. Comput., C-25, 1, pp. 55-65, January 1976. (Introduction to shuffle-exchange.)

Lawrie, D.H. "Access and alignment of data in an array processor," IEEE Trans. Com-
put., C-24, 12, pp. 1145-1155, December 1975. (Discusses omega network.)

Lee, C.Y. and M.C. Paul. "A Content-Addressable Distributed-Logic Memory with
Applications to Information Retrieval," IEEE Proc., 51:924-932, June 1963. (A local
content addressable memory.)

Lee, C.Y. "Intercommunicating Cells, Basis for a Distributed-Logic Computer," Proc
1962 FJCC. (A content addressable memory for string search.)

Leiserson, Charles E. "FAT-TREES: Universal Networks for Hardware-Efficient Super-
computing," 1985 International Conference on Parallel Processing, IEEE Computer
Society, August 1985 (to appear). (Fat trees are an augmented tree structure that gets
thicks towards the root. This paper shows a sense in which they are universal, that is,
able to efficiently simulate any other physically realizable topology.)

Lieberman, Henry. "Thinking About Lots of Things At Once Without Getting Con-
fused: Parallelism in Act 1," Al Memo 626, Massachusetts Institute of Technology,
May 1981. (Act 1 is a language based on Actors.)

Lipovski, G.J, "Semantic paging on intelligent discs," Fourth Annual Workshop on
Computer Architecture for Non-Numeric Processing, August 1978, pp. 30-34. (Re-

trieval semantic nets by marker propagation, head-per-track-disks.)

Lundstrom, Stephen F. and George H. Barnes. "A Controllable MIMD Architecture,"

IEEE, 1980. (Describes the FMP, a proposed architecture very much like an ultracom-

puter designed for Navier-Stoke-type problems. Paper describes both hardware and

software.)

146

Mago, Gyula A. "A Network of Microprocessors to Execute Reduction Languages,

Part I," International Journal of Computer and Information Sciences, Vol. 8, No. 5,

October 1979, pp. 349-385. (This is a small-grained tree architecture, designed to

implement Backus functional reduction language. See [Backusj.)

Manning, F.R. "Automatic Test, Configuration and Repair of Cellular Arrays," MAC

TR-151, June 1975. (Shows how to repair defective grids.)

McDermott, D. and Gerald Sussman. "The conniver reference manual," Massachusetts

Institute of Technology Artificial Intelligence Laboratory Memo 259A, January 1974.

(A language that represents a peak in hairy control structure.)

Meadows, J.C. J. Neurol. Neurosurg. Psychiat., 37,489, 1974. (Evidence for special

hardware for the recognition of faces.)

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller. Journal of Chemical

Physics, 1953, no. 21, p. 1807. (Describes the "Metropolis criterion" for accepting

moves often used in simulated annealing.)

Michalski, R.S. and R.E. Flick. "Automated Construction of Classifications: Con-

ceptual Clustering Versus Numerical Taxonomy," PAMI, July 1983, pp. 410-416. (A

better form of cluster analysis and a good description of the problem. Allows three

kinds of variables: nominal (symbols), numeric, and structured (trees) and clusters in

hierarchy.)

Minsky, M. "A framework for representing knowledge," Massachusetts Institute of

Technology Artificial Intelligence Laboratory Memo 306, June 1974, reprinted in part

in (Winston 1975) and in (Haugeland 1981). (This is the famous "frames" paper. It

changed the way people thought about knowledge representation.)

Minsky, M. "Jokes and the logic of the cognitive unconscious," Massachusetts Institute

of Technology Artificial Intelligence Laboratory Memo 603, November 1980. (One of

the early "society of mind" papers.)

Minsky, M. "K-Lines: A theory of memory," Massachusetts Institute of Technology

Artificial Intelligence Laboratory Memo 516, June 1979, reprinted in Cognitive Science,

1980, pp. 117-133. (A parallel memory theory that would work well on the Connection

Machine.)

147

Minsky, M. "Learning meaning," Massachusetts Institute of Technology Artificial In-

telligence Laboratory Memo, 1982. (New wave learning. See also IWinston).)

Minsky, M. "Steps toward artificial intelligence," Proc IRE, vol. 49, no. 1, January

1961, reprinted in (Feigenbaum & Feldman 1963). (The best AI overview, oldie but

goodie.)

Minsky, M. Computation: Finite and infinite machines, Prentice-Hall, 1967. (A good

introductory text on Turing machines, automata, etc.)

Minsky, M. and Seymour Papert. Perceptrons, The MIT Press, first edition 1969,

second edition 1972. (Perceptrons were parallel learning machines. Anything that they

could do, they could be taught to do by a simple algorithm. Unfortunately, they could

not do much. This book seemed to put an end to them.)

Minsky, M., ed. Semantic information processing, The MIT Press, 1968. (Another Al

classic.)

Minsky, Marvin L. "Some Universal Elements for Finite Automata," Automata Studies,
edited by C. E. Shannon and J. McCarthy, Princeton University Press, Princeton, NJ,

1956. (Besides the familiar stuff, shows that a neuron with a recovery time is universal.)

Moon, David A. "MACLISP Reference Manual, Revision 0," Project MAC, Mas-

sachusetts Institute of Technology, April 1974. (The Lisp on which Common Lisp

in based.)

Moore, E. F. and C. E. Shannon, "Reliable Circuits Using Less Reliable Relays,"

Journal of The Franklin Institute, July-December, 1956. (Was originally called "Good

Circuits with Crummy Relays." An elegant construction and analysis shows how arbi-

trarily reliable circuits can be constructed with arbitrarily unreliable switches.)

Moore, Edward F., editor. Sequential Machines: Selected Papers. Addison-Wesley

Publishing Company, Inc., 1964. (Contains rnany of the original papers on sequential

automata.)

Moravec, Hans P. "Intelligent Machines: How to Get There From Here and What

To Do Afterwards," Computer Science Department, Stanford University, April 1979.

(A fun but flaky paper comparing human brain to computer. Suggests the need for

millions of times more raw power. Hans also published a very unflaky paper on parallel

148

computers with sorting nets, but I can't find the reference. Hans?)

Newell, Allen and Herbert A. Simon. "GPS, a program that simulates human thought,"
in (Feigenbaum & Feldman, 1963.) (An Al classic, OPS is General Problem Solver,
the basis for almost all problem solving programs.)

Omohundro, Stephen. "Modelling Cellular Automata with Partial Differential Equa-
tions," Physica 10D, pp. 128-134, 1984. (This is the other side of what Wolfram is
doing.)

Orcutt, Samuel E. "Implementation of Permutation Functions in Illiac IV-Type Com-
puters," IEEE Transactions on Computers, Vol. C-25, No. 9, pp. 929-936, September
1976. (How to do general communication on a grid.)

Ozkarahan, S. A., S. A. Schuster and K. C. Sevcik. "A Data Base Processor," Tech.
Rep. CSRG-43, Comp. Sys. Res. Group, University of Toronto, September 1974.
(The real scoop on RAP.)

Ozkarahan, S. A., S. A. Schuster and K. C. Sevcik. "Performance evaluation of a
relational associative processor," ACM Trans. Database Systems, Vol. 2, No. 2, June
1977. (RAP, a working marker propagation system for relational databases, uses semi-
joins.)

Papert, Seymour. Mindstorms, Basic Books, 1980. (LOGO and why.)

Parhami, B. "Rapid: A Rotating Associative Processor for Information Dissemination,"
UCLA-ENG-7213, 1972. (Like Lee CAM cells, fed from a disk.)

Parker, D. Stott, Jr. "Notes on Shuffle/Exchange-Type Switching Networks," IEEE
Transactions on Computers, Vol. C-29, No. 3, pp. 213-222, March 1980. (Shows that
indirect n-cube, omega network, and shuffle/exchange are equivalent.)

Pease, M.C. III. "An Adaptation of the fast fourier transform for parallel processing,"
J. A CM, 15, 2, pp. 252-264, April 1968. (Discusses perfect shuffle.)

Peterson, W. Wesley and E. J. Weldon, Jr. Error-Correcting Codes, The MIT Press,
1972 second edition, 1961 first edition. (A good reference source for all types of error
correction schemes.)

Quillian, M. Ross. "Semantic memory," in (Minsky 1968a), pp. 227-270. (One of the

149

first semantic networks, with parallel marker propagation.)

Reeves, Anthony P. "Parallel Computer Architectures for Image Processing," IEEE,

1981. (A general review of SIMD grids, pipelined, and MIMD processors for vision.)

Rieger, C. "ZMOB: A Mob of 256 Cooperative Z80A-Based Microcomputers," Com-

puter Science Technical Report Series TR-825, University of Maryland, College Park,

MD, November 1979. (ZMOB is a 256 280 processors tied together by a fast "conveyer

belt" communications system.)

Rieger, C., John Bane, and Randy Trigg. "ZMOB: A Highly Parallel Multiprocessor,"

Department of Computer Science, University of Maryland, College Park, MD, May

1980. (Tells detail of the ZMOB implementation, including conveyer belt that rotates

once every 10 microseconds.)

Robertson, James E. and Kishor S. Trivedi. "The Status of Investigations into Com-

puter Hardware Design Based on the Use of Continued Fractions," IEEE Transactions

on Computers, June 1973. (Describes continued fractions algorithms, but not hardware,

for fractions restricted to powers of 2.)

Russell, R. M. "The Cray-1 Computer System," CA CM, 21:1, pp. 63-72, January 1978.

(This is a good overview of the Cray-1 hardware.)

Schaefer, D. H., J. R. Fischer, and K. R. Wallgren. "The Massively Parallel Processor,"

Engineering Notes, Vol. 5, No. 3, pp. 313-315, May-June 1982. (More MPP)

Schwartz, J. T. "Ultracomputers," A CM Transactions on Programming Languages and

Systems, Vol. 2, No. 4, pp. 484-521, October 1980. (Lots of real content including short

discussion of perfect-shuffle networks, many specific concurrent algorithms, a parallel

programming language, and a great bibliography. One of the best papers on a parallel

architecture.)

Schwartz, J. T. "On Programming, An interim Report on the SETL Project," Com-

puter Science Department, Courant Institute of Mathematical Science, New York Uni-

versity, 1973. (A programming language based on sets.)

Schwartz, Jacob T. "The Burroughs FMP Machine," Ultracomputer Note #5, January

9, 1980. (Contains a good summary of the FMP routing algorithm. See [Lundstromj.)

150

Schwartz, J. T. "A Taxonomic Table of Parallel Computers, Based on 55 Designs,"

Courant Institute, New York University, November 1983. (This is a good overview of

many existing and proposed parallel architectures. The discussion of parallel machines

in Chapter 1 follows this taxonomy.)

Seitz, Chuck. "System Timing," Chapter 7 of Introduction to VLSI Systems, Carver

Mead and Lynn Conway, Addison-Wesley Publishing Company, 1980. (Discussion of

synchronous versus asynchronous design and local synchronization.)

Sequin, Carlo H. "Doubly Twisted Torus Networks for VLSI Processor Arrays," Com-

puter Science Division, University of California, Berkeley, CA, May 1981. (A homoge-

neous two-dimensional topology.)

Sequin, C. H. and R. M. Fujimoto. "X-Tree and Y-Components," Report No. UCB/CSD

82/107, Computer Science Division (EECS), University of California, Berkeley, CA,

October 1982. (Describes X-tree architecture with one-chip size PE's, and ring aug-

mented tree topology, and general 3-port buffered communications component that can

be connected into different topologies.)

Sequin, C. H., A. M. Despain, and D. A. Patterson. "Communication in X-Tree, a

Modular Multiprocessor System," Proceedings of A CM, 1978. (Describes how processor

communicates in a ring augmented tree.)

Shannon, C. E. "A Mathematical Theory of Communication," Bell System Technical

Journal, Monograph B-1598, Vol. 27, July-October, 1948. (The original information

theory paper.)

Shannon, Claude E. "A Universal Turing Machine with Two Internal States," Au-

tomata Studies, edited by C. E. Shannon and J. McCarthy, Princeton University Press,

Princeton, NJ, 1956. (A neat construction shows how to simulate any Turing machine

with one whose state machine has only two states.)

Shapiro, S.C. and M. Wand. "The relevance of relevance," Indiana University CS Tech.

Rep. No. 46, March 1976. (Relevance logic, in which A implies B only if A was used

to prove B.)

Shaw, David Elliot. "The NON-VON Supercomputer," Department of Computer Sci-

ence, Columbia University, August 1982. (NON-VON is an almost-SIMD small-grained

tree machine that has been built. This document includes a detailed description of both

151

the hardware and software.)

Shin, Kang G., Yann-Hang Lee, J. Sasidhar. "Design of HM2 p - A Hierarchical Multi-

microprocessor for General-Purpose Applications," IEEE Transactions on Computers,
Vol C-31, No. 11, November 1982. (A proposed improvement on a CM*-type hierar-
chical multimicroprocessor.)

Sholl, D. A. The Organization of the Cerebral Cortex, Methuen & Co. Ltd., London,
1956. (Reverse engineering of the competition.)

Siegel, Howard Jay, Leah J. Siegel, Frederick C. Kemmerer, Philip T. Mueller, Jr.,
Harold E. Smalley, Jr., and S. Diane Smith. "PASM: A Partitionable SIMD/MIMD

System for Image Processing and Pattern Recognition," IEEE Transactions on Com-

puters, Vol C-30, No. 12, December 1981. (PASM is a SIMD machine with multiple

micro-controller that can be partitioned to handle different parts of the array. The

paper discusses both hardware and software.)

Slotnick, D.L., et al. "The ILLIAC IV Computer," IEEE Transactions on Computers,

Vol. C-17, No. 8, August 1978, pp. 746-757. (Overview of the first really big parallel

machine.)

Small, Steven. "Word Expert Parsing: A Theory of Distributed Word-Based Natural

Language Understanding," TR 954, Department of Computer Science, University of
Maryland, 1980. (A parallel processing view of how to understand language in which
each word in the language needs it own computer. See also [Waltz].)

Snir, Marc. "Comments on Lens and Hypertrees - or the Perfect-Shuffle Again,"
Ultracomputer Note 38, Computer Science Department, New York University. (Shows
that the "de Brujn" network mentioned in Goodman and Sequin is isomorphic to the
shuffle exchange.)

Snyder, Lawrence. "Introduction to the Configurable, Highly Parallel Computer,"

IEEE,'January 1982. (Programmable systolic array where the connection pattern can

be set up to match an algorithm.)

Steele, Guy L. Jr. "Rabbit: A compiler for Scheme," Massachusetts Institute of Tech-

nology Artificial Intelligence Laboratory TR 474, May 1978. (Shows how a compiler

can get a lot of mileage by knowing about a few special constructs.)

152

Steele, Guy L. Jr. Common LISP: The Language, The Digital Press, 1984. (The
language that CmLisp is built upon.)

Steele, Guy Lewis Jr. and Gerald Jay Sussman. "The Revised Report on SCHEME: A
Dialect of Lisp," Al Memo 452, Massachusetts Institute of Technology, January 1978.
(The lisp on which Common Lisp should have been based. Includes lexical scoping, full
funarg, cleaner syntax and uses value cell for function bindings.)

Stefik, Mark, et al. "The Organization of Expert Systems: A Prescriptive Tutorial,"
VLSI-82-1, Xerox Palo Alto Research Centers, January 1982. (A good overview of
methods.)

Stefik, Mark. "Planning with constraints (Molgen: Part 1)," Artificial Intelligence, vol.
16, pp. 111-139. (An Al program that actually did something useful. A good example
of an expert system.)

Stolfo, Salvatore J. and David Elliot Shaw. "DADO: A Tree-Structured Machine Archi-
tecture for Production Systems," Department of Computer Science, Columbia Univer-
sity, March, 1982. (Dado is a MIMD tree machine, designed specifically for production
systems.)

Sullivan, H. and T. R. Bashkow. "A Large Scale, Homogeneous, Full Distributed
Parallel Machine, I," Proceedings of 4th Annual Symposium on Computer Architecture,
March 1977, pp. 105-117.

Surprise, Jon M. "Airborne Associative Processor (ASPRO)," IEEE, 1981. (STARAN
in a shoebox.)

Sussman, Gerald Jay and Drew McDermott. "Why conniving is better than planning,"
Massachusetts Institute of Technology Artificial Intelligence Laboratory Memo 255A,
April 1972, reprinted in Proc FJCC, vol. 41, pp. 1171-1179, AFIPS Press, 1972. (An
argument for hairy control structure.)

Sussman, Gerald Jay and Guy L. Steele Jr. "Constraints: A language for express-
ing almost-hierarchical descriptions," Massachusetts institute of Technology Artificial
Intelligence Laboratory Memo 502A, August 1981, reprinted in Artificial Intelligence,
vol. 14, pp. 1-39, 1980. (A good introduction to programming by constraints.)

Sutherland, I.E. "SK ETCHPAD: A Man Machine Graphical Communications System,"

153

Massachusetts Institute of Technology Lincoln Laboratory Technical Report 296, May
1965. (This is the original constraint programming system.)

Swan, R. J., S. H. Fuller and D. P. Siewiorek. "Cm* - A Modular, Multi-Microprocessor,"
National Computer Conference, 1977. (Good review of Cm*, one of the first multipro-
cessors actually built. Uses multiple PDP-11's in a mapped bus hierarchy.)

Szolovitz, P., L. Hawkinson and W. A. Martin. "An Overview of OWL, a Language
for Knowledge Representation," MIT/LCS/TM-86, Massachusetts Institute of Technol-
ogy Laboratory for Computer Science, Cambridge, MA, June 1977. (OWL is another
knowledge representation language, vith some attempt to define the semantics.)

Tenenbaum, Eric. "A Comparison of Parallel Computer Architectures for Al Applica-
tions," Bachelor's Thesis, Massachusetts Institute of Technology, 1983. (Compares the
Connection Machine to DADO.)

Thompson, Clark D. "Area-Time Complexity for VLSI," 11th Annual ACM Symposium
on the Theory of Computing, 1979. (Introduces a model of computation based on
communication bandwidths between partitions.)

Thompson, Clark D. "Generalized Connection Networks for Parallel Processor Inter-
communication," IEEE Transactions on Computers, Vol. c-27, No. 12, December
1978. (Gives 7.6LogN general connection network, nicely summarizes other work on
general connection networks, shows how to go from a general connection network or
permutation network to a routing scheme for broadcasts or shuffles.)

Toffoli, Tommaso. "Cellular Automata Mechanics," Tech. Rep. No. 208, Logic of
Computers Group, CCS Department, The University of Michigan, November 1977.
(Physics-like behavior in cellular automata.)

Treleaven, P. C. and G. F. Moll, "A Multi-Processor Reduction Machine for User-
Defined Reduction Languages," Seventh Annual Symposium on Computer Architec-

ture, La Baule, France, May 1980, pp. 121-130. (A machine for executing functional

languages.)

Trivedi, Kishor S. "On the Use of Continued Fractions for Digital Computer Arith-
metic," IEEE Transactions on Computers, July 1977. (Describes continued fractions

algorithms, but not hardware, for fractions restricted to powers of 2.)

154

Trujillo, Vito A. "System Architecture of a Reconfigurable Multimicroprocessor Re-
search System," 1982 International Conference on Parallel Processing. (MIMD machine
with a 20 x 32 processor-to-memory crossbar.)

Turing, Alan M. "Can a machine think?" Mind, October 1950, pp. 433-460, reprinted
in (Feigenbaum & Feldman 1963). (A classic, introduces the "Turing Test.")

Turner, D. A. "Another Algorithm for Bracket Abstraction," The Journal of Symbolic
Logic, Volume 44, Number 2, pp. 267-270, June 1979. (An algorithm for translating
applicative expressions into combinators. See below.)

Turner, D. A. "A New Implementation Technique for Applicative Languages," Software
- Practice and Experience, Vol. 9, pp. 31-49, 1979. (Combinators, a "curried" version
of lambda calculus that eliminates the need for symbol binding. Combinators can be
reduced (evaluated) locally and in parallel, so they make an interesting model of par-
allel computation. Combinator hackers: this paper introduces some new combinators,
besides S-K-I, that help keep the translation from blowing up in space.)

Valiant, L. G. "A Scheme for Fast Parallel Communication," SIAM J. Comput., Vol.
11, No. 2, May 1982. (Probabilistic limited-storage routing algorithm for an t-cube.)

Valiant, L. G. "Optimality of a Two-Phase Strategy for Routing in Interconnection Net-
works," TR-15-82, Aiken Computation Laboratory, Center for Research in Computing
Technology, Harvard University, Cambridge, MA, March 1982. (Describes Valiant ran-
domization method for reducing worst case to twice the random case.)

von Neumann, John. "First Draft of a Report on the EDVAC," University of Penn-
sylvania Report for the U.S. Army Ordinance Department, 1945. (This is the original
design document for the "von Neumann Machine," and this report is why it got cred-
ited to him. J.P. Eckert and J. W. Mauchly were responsible for many of the ideas
presented.)

von Neumann, John. "Theory and Organization of Complex Automata," lecture
delivered at the University of Illinois, December, 1949, published in Theory of Self-
Reproducing Automata, University of Illinois Press, 1966. (History. Fun to read.)

von Neumann, John. "Probabilistic Logics and the Synthesis of Reliable Organisms
From Unreliable Components," Automata Studies, edited by C. E. Shannon and J.
McCarthy, Princeton University Press, Princeton, NJ, 1956. (A brute-force neural-net

155

voting scheme. Lacks elegance, and requires lots of redundancy, but it works for any

sort of error. A classic.)

von Neumann, John. The Computer and the Brain, 1958, Yale University Press. (A

classic. A series of lectures about the von Neumann Computer, and why.)

Waltz, David L. and Jordan B. Pollack. "Massively Parallel Parsing: A Strongly

Interactive Model of Natural Language Interpretation," Cognitive Science, Volume 9,

Number 1, pp. 51-74, January-March, 1985. (A relaxation network algorithm for

interpreting natural language. Each word in the language effectively uses its own

process element, so the interpretation is done concurrently. Very neural-networkish. I

like it. See also [Smallj.)

Ward, S. A. "The MuNet: A Multiprocessor Message-Passing System Architecture"

Seventh Texas Conference on Computing Systems, Houston, Texas, October 1978.

(Short overview of MuNet.)

Weinreb, Daniel and David A. Moon. "Flavors: Message passing in the Lisp machine,"

Massachusetts Institute of Technology Artificial Intelligence Laboratory Memo 602,
November 1980. (Flavors is a programming system based on message passing. See also

[Cannon].)

White, Steve R. "Concepts of Scale in Simulated Annealing," RC 10661, IBM Thomas

J. Watson Research Center, Yorktown Heights, NY, August 6, 1984. (My favorite

paper on simulated annealing. Lots of content on what temperatures to use when.)

Widdoes, L.C. "The S-1 Project: Developing High Performance Digital Computers,"

Spring COMPCON 1980, February, 1980, pp. 282-291. (The S-1 is a big hairy machine

that was designed to be used in clusters of 16 with a shared memory. The project was

a source of lessons, good and bad, for the Connection Machine project.)

Wiener, Norbert. Cybernetics; or Control and Communication in the Animal and the

Machine, The MIT Press, 1948. (An introduction to the field that begat artificial

intelligence, and understanding of servomechanisms.)

Williams, Michael D. "The Process of Retrieval from Very Long Term Memory,"

September 1978, U.C.S.D., CHIP 75. (Bartlett-like sudy of high school yearbook name

recall.)

156

Winston, Patrick H. "Learning and reasoning by analogy," Massachusetts Institute of

Technology Artificial Intelligence Laboratory Memo 520, May 1980. (An example of

the new wave of learning programs that will need the Connection Machine.)

Winston, Patrick H. and Berthold K. P. Horn. Lisp, Addison-Wesley, 1981. (A good

overview of Lisp.)

Wittie, Larry D. "Communication Structures for Large Networks of Microcomputers,"

IEEE Transactions on Computers, Vol. C-30, No. 4, April 1981, pp. 264-273. (Dual-

bus hypercubes.)

Wolfram, Stephen. "Cellular automata as models of complexity," Nature, Vol. 311, 4

October 1984, pp. 419-424. (Prettier pictures than the IAS version.)

Wolfram, Stephen. "Twenty Problems in the Theory of Cellular Automata," The

Institute for Advanced Study, Princeton, NJ, July 1984. (If you want to work on

cellular automata, read this.)

Wolfram, Stephen. "Cellular Automata: Towards a Paradigm for Complexity," The

Institute for Advanced Study, Princeton, NJ, January 1984. (Models of complexity

that are appropriate for parallel processing.)

Woods, W. A. "What's in a link?: Foundations for semantic networks," in (Bobrow and

Collins, 1975), pp. 35-82. (A 'good discussion of the semantics of semantic networks.)

Woods, W.A. "Research in Natural Language Understanding, Progress Report No,

2," Report No. 3797, Bolt Beranek and Newman Inc., Cambridge, MA, April 1978.

(Talks about a version of marker propagation using subscripted markers. Half way to

pointers.)

Woods, W.A. "Research in Natural Language Understanding, Progress Report No. 6,"

Report No. 4181, Bolt Beranek and Newman Inc., Cambridge, MA, February 1979.

(More on subscripted markers.)

Wu, Shyue B. and Ming T. Liu. "A Cluster Structure as an Interconnection Network

for Large Multimicrocomputer Systems," IEEE Transactions on Computers, Vol. C-30,

No. 4, April 1981. (Analytic comparison of tree, hierarchy, and hypercube.)

Zeigler, J. F. "Nodal Blocking in Large Networks," UCLA-ENG-7167, 1971. (Blocking

in grids.)

157

