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Abstract 
This paper proposes a modular ACTOR architecture and definitional method for artificial 

intelligence that is conceptually based on a single kind of object: actors [or, if you will, 
virtual processors, activation frames, or streams]. The formalism makes no presuppositions 
about the representation of primitive data structures and control structures. Such structures 
can be programmed, micro-coded, or hard wired in a uniform modular fashion. In fact it is 
impossible to determine whether a given object is "really" represented as a list, a vector, a 
hash table, a function, or a process. The architecture will efficiently run the coming 
generation of PLANNER-like artificial intelligence languages including those requiring a high 
degree of parallelism. The efficiency is gained without loss of programming generality because 
it only makes certain actors more efficient; it does not change their behavioral 
characteristics. The architecture is general with respect to control structure and 
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that 
the disallowed constructs are intended to achieve by other more structured methods. 

PLANNER Progress 

"Programs should not only work, 
but they should appear to work as well." 

PDP-1X Dogma 

The PLANNER project is continuing research in natural and effective means for embedding 
knowledge in procedures. In the course of this work we have succeeded in unifying the 
formalism around one_ fundamental concept: the ACTOR. Intuitively, an ACTOR is an active agent 
which plays a role on cue according to a script. We use the ACTOR metaphor to emphasize the 
inseparability of control and data flow in our model. Data structures, functions, semaphores, 
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, identifiers, demons, 
processes, contexts, and data bases can all be shown to be special cases of actors. All of the 
above are objects with certain useful modes of behavior. Our formalism shows how all of the 
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors. 
An actor is always invoked uniformly in exactly the same way regardless of whether it behaves 
as a recursive function, data structure, or process. 

"It is vain to multiply Entities beyond need." 
William of Occam 

"Monotheism is the Answer." 
The unification and simplification of the formalisms for the procedural embedding of 

knowledge has a great many benefits for us: 
FOUNDATIONS: The concept puts procedural semantics [the theory of how things 

operate] on a firmer basis. It will now be possible to do cleaner theoretical studies of the 
relation between procedural semantics and set-theoretic semantics such as model theories of 
the quantificational calculus and the lambda calculus. 

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational 
calculus. The logical constants FOR-ALL, THERE-EXISTS, AND, OR, NOT, and IMPLIES 
are defined as actors. 

KNOWLEDGE BASED PROGRAMMING is programming in an environment which has a 
substantial knowledge base in the application area for which the programs are intended. 
The actor formalism aids knowledge based programming in the following ways: PROCEDURAL 
EMBEDDING of KNOWLEDGE, TRACING BEHAVIORAL DEPENDENCIES, and SUBSTANTIATING that ACTORS 
SATISFY their INTENTIONS. 

INTENTIONS: Furthermore the confirmation of properties of procedures is made 
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites 
and the context of the actor being sent the message are satisfied. The intention is the 
CONTRACT that the actor has with the outside world. How an actor fullfills its contract is 
its own business. By a SIMPLE BUG we mean an actor which does not satisfy its intention. 
We would like to eliminate simple debugging of actors by the META-EVALUATION of actors to show 
that they satisfy their intentions. Suppose that there is an external audience of actors E 
which satisfy the intentions.of the actors to which they send messages. Intuitively, the 
principle of ACTOR INDUCTION states that the intentions of all actions caused by E are 
in turn satisfied provided that the following condition holds: 

If for each actor A 
the' intention of A is satisfied => 
that the intentions of all actors sent messages by A are satisfied. 

Computational induction [Manna], structural induction [Burstall], and Peano induction 
are all special cases of ACTOR induction. Actor based intentions have the following 
advantages: The intention is decoupled from the actors it describes. Intentions of 
concurrent actions are more easily disentangled. We can more elegantly write intentions 

The intentions are written in the same formalism as the 
Because 

for dialogues between actors. 
procedures they describe. Thus for example intentions can have intentions, 
protection is an intrinsic property of actors, we hope to be able to deal with protection 
issues in the same straight forward manner as more conventional intentions. Intentions 
of data structures are handled by the same machinery as for all other actors. 

COMPARATIVE SCHEMATOLOGY: The theory of comparative power of control structures is 
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extended and unified. The following hierarchy of control structures can be explicated by 
incrementally increasing the power of the message sending primitive: 

iterative—recursive—*-backtrack---Hieterniinate-—>-uni versa! 
EDUCATION: The model is sufficiently natural and simple that it can be made the 

conceptual basis of the model of computation for students. In particular it can be used as 
the conceptual model for a generalization of Seymour Papert's "little man" model of LOGO. 
The model becomes a cooperating society of "little men" each of whom can address others 
with whom it is acquainted and politely request that some task be performed. 

LEARNING and MODULARITY: Actors also enable us to teach computers more easily 
because they make it possible to incrementally add knowledge to procedures without having 
to rewrite all the knowledge which the computer already possesses. Incremental extensions 
can be incorporated and interfaced in a natural flexible manner. Protocol abstraction 
[Hewitt 1969; Hart, Nilsson, and Fikes 1972] can be generalized to actors so that 
procedures with an arbitrary control structure can be abstracted. 

EXTENDABILITY: The model provides for only one extension mechanism: creating 
new actors. However, this mechanism is sufficient to obtain any semantic extension that might 
be desired. 

PRIVACy and PROTECTION: Actors enable us to define effective and efficient 
protection schemes. Ordinary protection falls out as an efficient intrinsic property of 
actors. The protection is based on the concept of "use". Actors can be freely passed 
out since they will work only for actors which have the authority to use them. Mutually 
suspicious "memoryless" subsystems are easily and efficiently implemented. ACTORS are at 
least as powerful a protection mechanism as domains [Schroeder, Needham, etc.], access 
control lists [MULTICS], objects [Wulf 1972], and capabilities [Dennis, Plummer, Lampson]. 
Because actors are locally computationally universal and cannot be coerced there is reason 
to believe that they are a universal protection mechanism in the sense that all other 
protection mechanisms can be efficiently defined using actors. The most important issues 
in privacy and protection that remain unsolved are those involving intent and trust. We 
are currently considering ways in which our model can be further developed to address these 
problems. 

SYNCHRONIZATION: It provides at least as powerful a synchronization mechanism as 
the multiple semaphore P operation with no busy waiting and guaranteed first in first out 
discipline on each resource. Synchronization actors are easier to use and substantiate 
than semaphores since they are directly tied to the control-data flow. 

SIMULTANEOUS GOALS: The synchronization problem is actually a special case of the 
simultaneous goal problem. Each resource which is seized is the achievement and 
maintenance of one of a number of simultaneous goals. Recently Sussman has extended the 
previous theory of goal protection by making the protection guardians into a list of 
predicates which must be re-evaluated every time anything changes. We have generalized 
protection in our model by endowing each actor with a scheduler. We thus retain the 
advantages of local intentional semantics. A scheduler actor allows us to 
program EXCUSES for violation in case of need and to allow NEGOTIATION and re-negotiation 
between the actor which seeks to seize another and its scheduler. Richard Waldinger has 
pointed out that the task of sorting three numbers is a very elegant simple example 
illustrating the utility of incorporating these kinds of excuses for violating protection. 

RESOURCE ALLOCATION: Each actor has a banker who can keep track of the resources 
used by the actors that are financed by the banker. 

STRUCTURING: The actor point of view raises some interesting questions concerning 
the structure of programming. 

STRUCTURED PROGRAMS: We maintain that actor communication is well-structured. 
Having no goto, interrupt, semphore, etc. constructs, they do not violate "the letter 
of the law." Some readers will probably feel that some actors exhibit "undisciplined" 
control flow. These distinctions can be formalized through the mathematical discipline 
of comparative schematology [Patterson and Hewitt]. 

STRUCTURED PROGRAMMING: Some authors have advocated top down programming 
"middle out". 

We 
find that our own programming style can be more accurately described as 
We typically start with specifications for a large task which we would like to program. 
We refine these specifications attempting to create a program as rapidly as possible. 
This initial attempt to meet the specifications has the effect of causing us to change 
the specifications in two ways: 

1: More specifications [features which we originally did not realize are 
important] are added to the definition of the task. 

2: The specifications are generalized and combined to produce a task,that 
is easier to implement and more suited to our real needs. 
IMPLEMENTATION: Actors provide a very flexible implementation language. In fact 

we are carrying out the implementation entirely in the formalism itself. By so doing we 
obtain an implementation that is efficient and has an effective model of itself. The 
efficiency is gained by not having to incur the interpretive overhead of embedding the 
Implementation in some other formalism. The model enables the formalism to answer 
questions about itself and to draw conclusions as to the impact of proposed changes in the 
implementation. 

ARCHITECTURE: Actors can be made the basis of the architecture of a computer which 
means that all the benefits listed above can be enforced and made efficient. Programs 
written for the machine are guaranteed to be syntactically properly nested. The basic unit 
of execution on an actor machine is sending a message in much the same way that the basic 
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unit of execution on present day machines is an instruction. On a current generation 
machine in order to do an addition an add instruction must be executed; so on an actor 
machine a hardware actor must be sent the operands to be added. There are no goto, 
semaphore, interrupt, etc. instructions on an ACTOR machine. Arr ACTOR machine can be built 
using the current hardware technology that is competitive with current generation machines. 

"Now! Now!" cried the Queen. "Faster! Faster!" 
Lewis Carroll 

Current developments in hardware technology are making it economically attractive 
to run many physical processors in parallel. This leads to a "swarm of bees" style of 
programming. The actor formalism provides a coherent method for organizing and 
controlling all these processors. One way to build an ACTOR machine is to put each actor 
on a chip and build a decoding network so that each actor chip can address all the others. 
In certain applications parallel processing can greatly speed up the processing. For 
example with sufficient parallelism, garbage collection can be done in a time which is 
proportional to the logarithm of the storage collected instead of a time proportional to 
the amount of storage collected which is the best that a serial processor can do. Also the 
architecture looks very promising for parallel processing in the lower levels of computer 
audio and visual processing. 

"All the world's a stage, 
And all the men and women merely actors. 
They have their exits and their entrances; 
And one man in his time plays many parts." 

"If it waddles like a duck, quacks like a duck, and otherwise behaves like a duck; then 
you can't tell that it isn't a duck." 

Adding and Reorganizing Knowledge 
Our aim is to build a firm procedural foundation for problem solving. The foundation 

attempts to be a matrix in which real world problem solving knowledge can be efficiently and 
naturally embedded. We envisage knowledge being embedded in a set of knowledge boxes with 
interfaces between the boxes. In constructing models we need the ability to embed more 
knowledge in the model without having to totally rewrite it. Certain kinds of additions can be 
easily encompassed by declarative formalisms such as the quantificational calculus by simply 
adding more axioms. Imperative formalisms such as actors do not automatically extend so 
easily. However, we are implementing mechanisms that allow a great deal of flexibility in 
adding new procedural knowledge. 'The mechanisms attempt to provide the following abilities: 

PROCEDURAL EMBEDDING: They provide the means by which knowledge can easily and 
naturally be embedded in processes so that it will be used as intended. 

CONSERVATIVE EXTENSION: They enable new knowledge boxes to be added and 
interfaced between knowledge boxes. 

MODULAR CONNECTIVITY: They make it possible to reorganize the interfaces 
between knowledge boxes. 

MODULAR EQUIVALENCE: They guarantee that any box can be replaced by one which 
satisfies the previous interfaces. 
Actors must provide interfaces so that the binding of interfaces between boxes can be 

controlled by knowledge of the domain of the problem. The right kind of interface promotes 
modularity because the procedures on the other side of the interface are not affected so long 
as the conventions of the interface are not changed. These interfaces aid in debugging since 
traps and checkpoints are conveniently placed there. More generally, formal conditions can be 
stated for the interfaces and confirmed once and for all. 

Unification 
We claim that there is a common intellectual core to the following (now somewhat 

isolated) fields that can be characterized and investigated: digital circuit designers, data 
base designers, computer architecture designers, programming language designers, computer 
system architects. 

"Our primary thesis is that there can and must exist a single language for 
software engineering which is usable at all stages of design from the initial 
conception through to the final stage in which the last bit is solidly in place on 
some hardware computing system." 

Doug Ross 
The time has come for the unification and integration of the facilities provided by the 

above designers into an intellectually coherent manageable whole. Current systems which 
separate the following intellectual capabilities with arbitrary boundaries are now obsolete. 

"Know thyself". 
We intend that our actors should have a useful working knowledge of themselves. That is, they 
should be able to answer reasonable questions about themselves and be able to trace the 
implications of proposed changes in their intentions. It might seem that having the 
implementation understand itself is a rather incestuous artificial intelligence domain but we 
believe that it is a good one for several reasons. The implementation of actors on a 
conventional computer is a relatively large complex useful program which is not a toy. The 
implementation must adapt itself to a relatively unfavorable environment. Creating a model of 
itself should aid in showing how to create useful models of other large knowledge based programs 
since the implementation addresses a large number of difficult semantic issues. We have a 
number of experts on the domain that are very interested in formalizing and extending their 
knowledge. These experts are good programmers and have the time, motivations, and ability to 

-]L. 
4! 

i 

237 



embed their knowledge and intentions in the formalism. 
"The road to hell is paved with good intentions." 

Once the experts put in some of their intentions they find that they have to put in a great 
deal more to convince the auditor of the consistency of their intentions and procedures. In 
this way we hope to make explicit all the behavioral assumptions that our implementation is 
relying upon. The domain is closed in the sense that the questions that can reasonably be 
asked do not lead to a vast body of other knowledge which would have to be formalized as well. 
The domain is limited in that it is possible to start with a small superficial model of actors 
and build up incrementally. Any advance is immediately useful in aiding and motivating future 
advances. There is no hidden knowledge as the formalism is being entirely implemented in 
itself. The task is not complicated by unnecessary bad software engineering practices such as 
the use of gotos, interrupts, or semaphores. 

Intrinsic Computation 
We are approaching the problem from a behavioral [procedural] as opposed to an 

axiomatic approach. Our view is that objects are defined by their actors rather than by 
axiomatizing the properties of the operations that can be performed on them. 

"Ask not what you can do to some actor; 
but what the actor can [will?] do for you." 

Alan Kay has called this the INTRINSIC as opposed to the EXTRINSIC approach to defining 
objects. Our model follows the following two fundamental principles of organizing behavior: 

Control flow and data flow are inseparable. 
Computation should be done intrinsically instead of extrinsically i.e. "Every 

actor should act for himself or delegate the responsibility [pass the buck] to an actor 
who wi11." 

Although the fundamental principles are very general they have definite concrete consequences. 
For example they rule out the goto construct on the grounds that it does not allow a message to 
be passed to the place where control is going. Thus it violates the inseparability of control 
and data flow. Also the goto defines a semantic object [the code following the tag] which is-
not properly syntactically delimited thus possibly leading to programs which are not properly 
syntactically nested. Similarly the classical interrupt mechanism of present day machines 
violates the principle of intrinsic computation since it wrenches control away from whatever 
instruction is running when the interrupt strikes. 

Hierarchies 
The model provides for the following orthogonal hierarchies: 

SCHEDULING: Every actor has a scheduler which determines when the actor 
actually acts after it is sent a message. The scheduler handles problems of 
synchronization. Another job of the scheduler [Rulifson] is to try to cause actors to 
act in an order such that their intentions will be satisfied. 

INTENTIONS: Every actor has an intention which makes certain that the 
prerequisites and context of the actor being sent the message are satisfied. 
Intentions provide a certain amount of redundancy in the specifications of what is 
supposed to happen. 

MONITORING: Every actor can have monitors which look over each message sent to 
the actor. 

BINDING: Every actor can have a procedure for looking up the values of names 
that occur within it. 

RESOURCE MANAGEMENT: Every actor has a banker which monitors the use of space 
and time. 

Note that every actor has1 all of the above abilities and that each is done via an 
actor! 

"A slow sort of country!" said the Queen. "Now here, you see, it 
takes all the running you can do, to keep in the same place. If you want 
to get somewhere else, you must run at least twice as fast as that!" 

Lewis Carroll 
The previous sentence may worry the reader a bit as she [he] might envisage an infinite 

chain of actions [such as banking] to be necessary in order to get anything done. We short 
circuit this by only requiring that it appear that each of the above activities is done each 
time an actor is sent a message. 

"There's no use trying," she said: "one can't believe impossible 
things." 

"I daresay you haven't had much practice," said the Queen. "When I 
was your age, I always did it for half-an-hour a day. Why, sometimes I've 
believed as many as six impossible things before breakfast." 

Lewis Carroll 
Each of the activities is locally defined and executed at the point of invocation. 

This allows the maximum possible degree of parallelism. Our model contrasts strongly with 
extrinsic quantificational calculus models which are forced into global noneffective statements 
in order to characterize the semantics. 

"Global state considered harmful." 
We consider language definition techniques [such as those used with the Vienna 

Definition Language] that require the semantics £e defined in terms of the global computational 
state to be harmful. Formal penalties [such as the frame problem and the definition of 
simultaneity] must be paid even if the definition only effectively modifies local parts of the 
state. Local intrinsic models are better suited for our purposes. 
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Hardware 
Procedural embedding should be carried to its ultimate level: the architecture of the machine. 

Conceptually, the only objects in the machine are actors. In practice the machine recognizes certain 
actors as special cases to save speed and storage. We can easily reserve a portion of the name space 
for actors implemented in hardware. 

Syntactic Sugar 
"What's the good of Mercator's North Poles and Equators, 
Tropics, Zones and Meridian Lines?" 
So the Bellman would cry: and the crew would reply 
"They are merely conventional signs!" 

Lewis Carroll 
Thus far in our discussion we have discussed the semantic issues intuitively but vaguely. 

We.would now like to proceed with more precision. Unfortunately in order to do this it seems 
necessary to introduce a formal language. The precise nature of this language is completely 
unimportant so long as it is capable of expressing the semantic meanings we wish to convey. For some 
years we have been constructing a series of languages to express our evolving understanding of the 
above semantic issues. The latest of these is called PLANNER-73. 

Meta-syntactic variables will be underlined. We shall assume that the reader is familiar with 
advanced pattern matching languages such as SN0B0L4, CONVERT, QA4, and PLANNER-71. 

We shall use (%A M%) to indicate sending the message M to the actor A. We shall use 
[si s2 ... srj to denote the finite sequence si, s2̂, ... sn. A sequence s is an actor where (%s_ i_S!) 
is element i_ of the sequence s_. For example Ilia c b] 2%T~is c. We will use ( ) to delimit the 
simultaneous synchronous transmission of more than one message so that (Al_ A2...An) will be 
defined to be (%A1 [A2 ... AnJ%). The expression [%al_ a2_ ... an%] (read as "al_ then a£ ... finally 
send back an") wTTl Be" evaluated by evaluating al_, a2̂  and ar̂  in sequence and then sending back 
["returninĝ  the value of aji as the message. 

Identifiers can be created by the prefix operator =. For example if the pattern =x -is matched 
with v, then a new identifier is created and bound to v. 

"But 'glory' doesn't mean 'a nice knock-down argument,'" Alice 
objected. 

"When I_ use a word," Humpty Dumpty said, in rather a scornful tone, 
"it means just what I choose it to mean—neither more nor less," 

"The question is," said Alice, "whether you can make words mean so 
many different things." 

"The question is," said Humpty Dumpty, "which is to be master-
that's all." 

Lewis Carroll 
Humpty Dumpty propounds two criteria on the rules for names: 

Each actor has complete control over the names he uses. 
All other actors must respect the meaning that an actor has chosen for a name. 

We are encouraged to note that in addition to satisfying the criteria of Humpty Dumpty, our names also 
satisfy those subsequently proposed by Bill Wulf and Mary Shaw: The default is not necessarily to 
extend the scope of a name to any other actor. The right to access a name is by mutual agreement 
between the creating actor and each accessing actor. An access right to an actor and one of its acquan-
tances is decoupled. It is possible to distinguish different types of access. The definition of a 
name, access to a name, and allocation of storage are decoupled. The use of the prefix = does not imply 
the allocation of any storage. 

' One of the simplest kinds of ACTORS is a cell. A cell with initial contents V̂  can be created 
by evaluating (cell V). Given a cell x̂, we can ask it to send back its contents by evaluating 
(contents x) which is an abbreviation for (x_ #contents). For example (contents(cell 3)) evaluates to 3. 
We can ask it to change its contents to y_ by evaluating (x«-y_). For example if we let x be (cell 3) and 
evaluate (x+4), we will subsequently find that (contents x) will evaluate to 4. 

The pattern (by-reference Pj matches object E_ if the pattern P_ matches (cell E) i.e. a "cell" 
[see below] which contains Ê_ Thus matching the pattern (by-reference =x) against E is the same as 
binding x̂  to (cell Ej i.e. a new cell which contains the value of the expression E/~We shall use => 
[read as "RECEIVE MESSAGE"] to mean an actor which is reminiscent of the actor LAMBDA in the lambda 
calculus. For example (=> =x body) is like (LAMBDA x body) where x is an identifier. An expression 
(=> pattern body) is an abbreviation for (receive {[Fmessage pattern]} body) where receive is a more 
general actor that is capable of binding elements of the action in addition to the message. 
Evaluating 

(%(=> pattern body) the-message%), i.e. sending 
(=> pattern body) the-message, will attempt to match the-message against pattern. If the-message 

is not of the form specified by pattern, then the actor is NOT-APPLICABLE to "the-message. If the-message 
matches pattern, then body is evaluated. 

Evaluating (%(cases [fl_ £2 ... fnj) arg%) will send fl_ the message arg and if it is not applicable 
then it will send f2_ the message arg,..., and send fn the message arg 

The following abbreviations will be used to improve readability: 
(rules object clauses) for 

((cases clausesjobject) 
(let object pattern-for-message body) for 

(%[=> pattern-for-message body) objects) 
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;for example (let 3=x ( x+1)) is 4 
(let-reception object pattern-for-reception body) 

(̂ (receive pattern-for-reception body~)~"bbject%) 
;let is a special case of let-reception 

Sending Messages and Creating Actors 
The world's a theatre, the earth a stage, 
Which God and nature do with actors fill. 

Thomas Heywood 1612 
Conceptually at least a new actor is created every time a message is sent. Consider sending a 

message to a target T with message M and continuation C. 
(send 

T 
{ 

[#message the-body] 
[̂ continuation CJ}) The transmission (IT W) is an abbreviation for the above 

where C is defaulted to be the caller. If the target T~is the following: 
(receive 

{ 
[#message M] 
[̂ continuation =the-continuation]} 

the-body) then the-body is evaluated in an environment where the-message is bound to 
M and the-contihuation is bound to C_. 

We define an EVENT to be a quadruple of the form [£ T M Nj where C is _ the continuation 
of the caller, T the target, and M the message thereby creating a new actor N_. We define a 
HISTORY to be a strict partial order of events with the transitive closure of the partial ordering-* 
[read as PRECEDES] where 

[cl tl ml nl]->-[c2 t2 m2 n2] if 
{nl} intersect {c2 t2 m2} is nonvoid. 

The above definition states that one action precedes another if any of the actors generated by 
the first event are used in the second event. The relation-*can be thought of as the "arrow 
of time" which we require to be a strict partial order. Notice that we do not require a 
definition of global simultaneity; i.e. we do not require that two arbitrary events be related 
by +. We define BEHAVIOR of a history with respect to an AUDIENCE [a set of actors] E to 
be the subpartial ordering of the history consisting of those quadruples [CTHN] where C or T 
is an element of the audience E. The REPERTOIRE of a configuration of actors is the set of all 
behaviors of the configuration defines what the configuration does as opposed to how it does it. 
Two configurations of actors will be said to be EQUIVALENT if they have the same REPERTOIRE. 

We can name an actor H_ with the name A in the body B_ by the notation (label {[A <= H]} 
B). More precisely, the behavior of the actor (label {[f <= (E_ f)]} B) is defined by the 
MINIMAL BEHAVIORAL FIXED POINT of (Ef) i.e. the minimal repertoire F such that (-E F) =F. In 
the case where F happens to define a function, it will be the case that the repertoire F is 
isomorphic the graph [set of ordered pairs] of the function defined by F and that the graph of 
F is also the least (lattice-theoretic) fixed point of Park and Scott. 

Many Happy Returns. 
Many actors who are executing in parallel can share the same continuation. They can 

all send a message ["return"] to the same continuation. This property of actors is heavily 
exploited in meta-evaluation and synchronization. An actor can be thought of as a kind of 
virtual processor that is never "busy" [in the sense that it cannot be sent a message]. 

The basic mechanism of sending a message preserves all relevant information and is 
entirely free of side effects. Hence it is most suitable for purposes of semantic definition 
of special cases of invocation and for debugging situations where more information needs to be 
preserved. However, if fast write-once optical memories are developed then it would be 
suitable to be implemented directly in hardware. 

The following is an overview of what appears to be the behavior of the process of a 
running actor R sending a target T the message M specifying C as the continuation. If C is not 
explicitly specified by R then a representative of R must be constructed as the default. 

of T. 

actor: 

Call the banker of R to approve the expenditure of resources by the caller. 
The banker will probably eventually send a message to the scheduler of T. 
The scheduler will probably eventually send a message to the monitors of T. 
The monitors will probably eventually send a message to the intentions of T. 
The intentions of T will probably eventually send the message M to the continuation 

6: The continuation of T will finally attempt to get some real work done. 
There are several important things to know about the process of sending a message to an 

0: Conceptually at least, whenever a target is passed a message a new actor is 
constructed which is the target instantiated with a message. Wherever'possible we reuse old 
actors where the reuse cannot be detected by the behavior of the system. 

1: Sending messages between actors is a universal control primitivein the sense that 
control operations such as function calls, iteration, coroutine invocations, resource seizures, 
scheduling, sychroniztion, and continous evaluation of expressions are special cases. 

2: Actors can conduct their dialogue directly with each other; they do not have to set 
up some intermediary such as ports [Krutat, Balzer, and Mitchell] or possibility lists 
[McDermott and Sussman] which act as pipes through which conversations must be conducted. 

3: Sending a message to an actor is entirely free of side effects such as those in the 
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message mechanisms of the current SMALL TALK machine of Alan Kay and the port mechanism of 
Krutat and Balzer. Being free of side effects allows us a maximum of parallelism and allows an 
actor to be engaged in several conversations at the same time without becoming confused. 

4: Sending a message to an actor makes no presupposition that the actor sent the 
message will ever send back a message to the continuation. The unidirectional nature of 
sending messages enables us to define iteration, monitors, coroutines, etc.straight forwardly. 

5: The ACTOR model is not an [environment-pointer, instruction-pointer] model such as 
the CONTOUR model. A continuation is a full blown actor [with all the rights and privileges]; 
it is not a program counter. There are no instructions [in the sense of present day machines] 
in our model. Instead of instructions, an actor machine has certain primitive actors built in 
hardware. 

Logic 
"It is behavior, not meaning, that counts." 

We would like to show how actors represent formulas in the quantificational calculus 
and how the rules of natural deduction follow as special cases from the mechanism of extension 
worlds. We assume the existence of a function ANONYMOUS which generates a new name which has 
never before been encountered. Consider a formula of the form (every phi) which means that for 
every x we have that (phi x) is the case. The formula has two important uses: it can be 
asserted and it can be proved. We shall use an actor >=> [read as "ACCEPT REQUEST"] with the 
syntax 

(>=> pattern-for-request body) for procedures to be invoked by pattern directed 
invocation by a command which matches pattern-for-request. 

Our behavioral definitions are reminiscent of classical natural deduction except that 
we have four introduction and elimination rules [PROVE, DISPROVE, ASSERT, and DENY] to give us 
more flexibility in dealing with negation. 

"Then Logic would take you by the throat, and force you to do it!" 
Lewis Carroll 

Data Bases 
Data bases are actors which organize a set of actors for efficient retrieval. There 

are two primitive operations on data bases: PUT and GET. A new virgin data base can be 
created by evaluating (virgin). If we evaluate (w •*• (virgin)) then (contents w) will be a 
virgin world. We can put an actor (at John airport) in the world (contents w) by evaluating 
(put(at John airport) {[#world(contents w)]}). We could add further knowledge by evaluating 

(put (at airport Boston) {[#world (contents w)]}) to record that the airport is at 
Boston. 
(put (city Boston) {[#world (contents w)]}) to record that Boston is a city. 

If the constructor EXTENSION is passed a message then it will create a world which is an 
extension of its message. For example 
(put 

[(on John (flight 34)) 
(extension-world •<- (contents w))]) 

will set extension-world to a new world in which we have supposed that John is on flight #34. 
The world (contents w) is unaffected by this operation. On the other hand the extension world 
is affected if we do (put [(hungry John) (contents w)]). Extension worlds are very good for 
modeling the following: 

WORLD DIRECTED INVOCATION 
The extension world machinery provides a very powerful invocation and parameter 

passing mechanism for procedures. The idea is that to invoke a procedure, first grow an 
extension world; then do a world directed invocation on the extension world. This 
mechanism generalizes the previous pattern directed invocation of PLANNER-67 several ways. 
Pattern directed invocation is a special case in which there is just one assertion in the 
wish world. World Directed Invocation represents a formalization of the useful problem 
solving technique known as "wishful thinking" which is invocation on the basis of a 
fragment of a micro-world: Terry Winograd uses restriction lists for the same purpose in 
his thesis version of the blocks world. Suppose that we want to find a bridge with a red 
top which is supported by its left-leg and its right-leg both of which are of the same 
color. In order to accomplish this we can call upon a genie with our wish as its message. 
The genie uses whatever domain dependent knowledge it has to try to realize the wish, 
(realize 

(utopia 
{top left-leg right-leg color-of-legs} 

;"the variables in the uptopia are listed above" 
{ 

(color top red) 
(supported-by top left-leg) 
(supported-by top right-leg) 
(left-of left-leg right-leg) 
(color left-leg color-of-legs) 
(color left-leg color-of-legs)})) 

LOGICAL HYPOTHETICALS are logically possible alternatives to a world. 
By the Normalization Theorem for intuitionistic logic our actor definition of the 

logical constant IMPLIES is sufficient to mechanize logical implication. The rules of 
natural deduction are a special case of our rules for extension worlds and our procedural 
definition of the logical connectives. 

ALTERNATIVE WORLDS are physically possible alternatives to a world. 
PERCEPTUAL VIEWPOINTS can be mechanized as extension worlds. For example suppose 
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rattle-trap is the name of a world which describes my car. Then (front rattle-trap) could 
be a world which describes my car from the front and (left rattle-trap) can be the 
description from the left side. We can also consider a future historian's view of the 
present by (view-from-1984 world-of-1972). Minsky [1973] considers these possibilities from 
a somewhat different point of view. 

The following general principles hold for the use of extension worlds: 
Each independent fact should be a separate assertion. For example to record that 

"the banana banl is under the table tabl" we would assert: 
(banana banl) 
(table tabl) 
(under banl tabl) 

instead of conglomerating [McDermott 1973] them into one assertion: 
(at 

(the banl (is banl banana)) 
(place 

(the tabl (is tabl table)) 
under)) 

A person knowing a statement can be analyzed into the person believing the statement and 
the statement being true. So we might make the following definition of knowing: 

[know <= 
(=> [= person = statement] 

(and 
(believes person statement) 
(true statement)))] 

Thus the statement [Moore 1973] "John knows Bill's phone number" can be represented by the 
assertion: 

(knows John (phone-number Bill pn0005)) 
where pn0005 is a new name and (phone-number Bill pn0005) is intended to mean that the 
phone number of Bill is pn0005. The assertion can be expanded as follows: 

(believes John (phone-number Bill pn0005)) 
(true (phone-number Bill pn0005)) 

However the expansion is optional since the two assertions are not independent of the 
original assertion. 

"Whatever Logic is good enough to tell me is worth writing down," said 
the Tortoise. "So enter it in your book, please." 

Lewis Carroll 
Each assertion should have justifications[derivations] which are also assertions 

and which therefore ... 
Extraneous factors such as time and causality should not be conglomerated 

[McDermott 1973] into the extension world mechanism. Facts about time and causality should 
also be separate assertions. In this way we can deal more naturally and uniformly with 
questions involving more than one time. For example we can answer the question "How many 
times were there at most two cannibals in the boat while the missionaries and cannibals 
were crossing the river?" Also we can check the consistency of two different narratives of 
overlapping events such as might be generated by two people who attended the same party. 
Retreival of actors from data bases takes facts about time and causality into account in 
the retreival. Thus we still effectively avoid most of the frame problem of McCarthy. The 
ability to do this is enhanced by the way we define data bases as actors. 

A CONTEXT mechanism was invented for QA4 to generalize the property list structure of 
LISP. Rulifson explained it by means of examples of its use to mechanize identifiers. By use 
of the functions PUSH-CONTEXT and P0P_C0NTEXT and an EPAM discrimination net [Feigenbaum and 
Simon] the context mechanism can be used to mechanize a version of tree-structured worlds. The 
tree-structured worlds of PLANNER-71 were invented to get around the problem of having only one 
global data base not realizing that a context mechanism could be used to implement something 
like that. The tree-structured worlds were defined directly in terms of the hash-coding 
mechanism of PLANNER which had the advantage of decoupling them from the identifier structure 
of PLANNER. In addition by not conceiving an extension world analogue of P0P_CONTEXT large 
gains in efficiency over the context mechanism are possible. 

Worlds can ask the actors put 1n them to index themselves for rapid retreival.We also 
need to be able to retrieve actors from worlds. Simple retrieval can be done using patterns. 
For example 
(locations •*• (get (at (?) (?)){[#world (contents w)]})) 
will set locations to an actor which will retrieve all the actors stored in (contents w) which 
match the pattern (at (?) (?)). Now (next locations) will thus retrieve either (at airport 
Boston) or (at John airport). Actually, the above is an over simplification. We shall let 
$reality stand for the current world at any given point and $utopia stand for the world as we 
would like to see it. We do not want to have to explicity store every piece of knowledge 
which we have but would like to be able to derive conclusions from what is already known: We 
can distinguish several different classes of procedures for deriving conclusions. 

"McCarthy is at the airport." (put (at McCarthy airport)) If a person is at the 
airport, then the person might take a plane from the airport, 

[put-at <= 
(>=> (put (at = person airport)) 

(put (might (take-plane-from person airport))))] 
"McCarthy is not at the airport." (deny (at McCarthy airport)) If a person is not at 

th airport then he can't take a plane from the airport. 
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"McCarthy is not at the airport." (deny (at McCarthy airport)) If a person is not at 
the airport then he can't take a plane from the airport. 

[deny-at<= 
(>=> (deny (at =person airport)) 

(put (can't (take---plane-—from person airport ))))] 

"It is not known whether McCarthy is at the airport." (erase (at McCarthy airport)) If 
it is not known whether a person is at the airport then erase whatever depends on previous 
knowledge that the person is at the airport, 

[erase-at <= 
(>=> (erase (at =person airport)) 

(find (depends—on =s (at person airport)) 
(erase s)))] 

"Get McCarthy to the airport." (achieve {(at McCarthy airport )}) To achieve a person at 
a place: 

Find the present location of the person. 
Show that it is walkable from the present location to the car. 
Show that it is drivable from the car to the place, 

[achieve-at <= 
(>=> (achieve [(at =person =place )]) 

(achieve 
(find [(at person =present-location)] 

(show {(walkable present-location car)} 
(show {(drivable car place)})))))] 

"Show that McCarthy is at the airport." (show {(at McCarthy airport)}) To show that a 
thing is at a place show that the thing is at some intermediate and the intermediate is at the 
place. 

[show-at <= 
(>=> (show {(at =thing =place)}) 

(show {(at thing intermediate)} 
(show {(at intermediate place)})))] 

The actor show-at is simply transitivity of at. 
Is Anything Really Better 

Than Anything Else? 
CONNIVER can easily be defined in terms of PLANNER-73. We do this not because we 

believe that the procedures of CONNIVER are particularly well designed. Indeed we have given 
reasons above why these procedures are deficient. Rather we formally define these procedures 
to show how our model applies even to rather baroque control structures. 

CONNIVER is essentially the conglomeration of the following ideas: Landin's non-
hierarchical goto-71, the pattern directed construction, matching, retrieval, and invocation of 
PLANNER, Landin's streams, the context mechanism of QA4, and Balzer's and Krutar's ports. 

In most cases, two procedures in CONNIVER do not talk directly to each other but 
instead are required to communicate through an intermediary which is called a possibilities list. 
The concept of a POSSIBILITIES LIST is the major original contribution of CONNIVER. 

"What are these 
So wild and withered in their attire, 
That look not like the inhabitants 

0' the earth, 
and yet are on't?" 

Macbeth: Act I, Scene III 
Substitution, Reduction, and Meta-evaluation 

"One program's constant is another program's variable." 
Alan Peril's 

"Programming [or problem solving.in general] is the judicious postponement of 
decisions and commitments!" 

Edsger W. Dijkstra [1969] 
"Programming languages should be designed to suppress what is constant and 
emphasize what is variable." 

Alan Peril's 
"Each constant will eventually be a variable!" 

Corollary to Murphy's Law 
We never do unsubstitution [or if you wish decompilation, unsimplification, or 

unevaluation]. We always save the higher level language and resubstitute. The metaphor of 
substitution followed by reduction gives us a macroscopic view of a large number of 
computational activities. We hope to show more precisely how all the following activities fit 
within the general scheme of substitution followed by reduction: 

EVALUATION [Church, McCarthy, Lnadin] can be done by substituting the message 
into the code and reducing [execution]. 

DEDUCTION [Herbrand, Godel, Heyting, Prawitz, Robinson, Hewitt, Weyhrauch and 
Milner] can be done by procedural embedding. In this paper we have extended our 
previous work by defining the logical constants to be certain actors thus providing a 
procedural semantics for the quantificational calculus along the lines indicated by 
natural deduction. 

CONFIRMING the CONSISTENCY of ACTORS and their INTENTIONS [Naur, Floyd, Hewitt 
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1971, Waldinger, Deutsch] can be done by substituting the code for the actors into 
their intentions and then meta-evaluating the code. 

AUTOMATIC ACTOR GENERATION. An important corollary of the Thesis of Procedural 
Embedding is that the Fundamental Technique of Artificial Intelligence is automatic 
programming and procedural knowledge base construction. It can be done by the 
following methods: 

PARAMETERIZATION [Church, McCarthy, Landin, Mcintosh, Manna and 
Waldinger, Hewitt] of canned procedure templates. 

COMPILATION [Lombardi, Elcock, Fikes, Daniels, Wulff, Reynolds, and 
WegbreitJ can be done by substituting the values of the free variables in the 
code and then reducing [optimizing]. For examples we can enhance the behavior 
of the lists which were behaviorally defined above to vectors which will run 
more efficiently on current generation machines. 

ABSTRACT IMPOSSIBILITIES REMOVAL can be done by binding the 
alternatives with the code and deleting those which can never succeed. What we 
have in mind are situations such as having simultaneous subgoals (on a b) and 
(on b c) where we can show by meta-evaluation that the order given above can 
never succeed. Gerry Sussman has designed a program which attempts to abstract 
this fact from running on concrete examples. We believe that in this case and 
many others it can be abstractly derived by meta-evaluation. 

EXAMPLE EXPANSION [Hart, Nilsson, and Fikes 1971; Sussman 1972; Hewitt 
1971] can be done by binding the high level goal oriented language to an 
example problem and then reducing [executing and expanding to the paths executed] 
using world directed invocation [or some generalization] to create linkages 
between the variablized special cases. 

PROTOCOL ABSTRACTION [Hewitt 1969, 1971] can be done by binding 
together the protocols, reducing the resulting protocol tree by identifying 
indistinguishable nodes. 

ABSTRACT CASE GENERATION to distinguish the methods to achieve a goal 
can be done by determining the necessary pre-conditions for each method by 
reducing to a decision tree which distinguishes each method. 
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