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I. Introduction

During the last two decades Physics Education Research (PER) has emerged as a viable sub-

discipline of physics, with faculty in physics departments specializing in research on learning

and teaching physics. There is still plenty of resistance to PER from hard-nosed physicists who

are suspicious of any research that smacks of education, psychology or philosophy. However,

that is countered by a growing body of results documenting deficiencies in traditional physics

instruction and significant improvements with PER-based pedagogy. Overall, PER supports the

general conclusion that science content cannot be separated from pedagogy in the design of

effective science instruction. Student learning depends as much on structure and organization of

subject matter as on the mode of student engagement. For this reason, science education research

must be located in science departments and not consigned to colleges of education.

As one of the players in PER from its beginning, my main concern has been to establish a

scientific theory of instruction to guide research and practice. Drawing on my own experience as

a research scientist, I identified construction and use of conceptual models as central to scientific

research and practice, so I adopted it as the thematic core for a MODELING THEORY of

science instruction. From the beginning, it was clear that Modeling Theory had to address

cognition and learning in everyday life as well as in science, so it required development of a

model-based epistemology and philosophy of science. Thus began a theory-driven MODELING

RESEARCH PROGRAM: Applying the theory to design curriculum and instruction, evaluating

results, and revising theory and teaching methods accordingly. Fig. 1 provides an overview of

the program.

Section II reviews evolution of the Modeling Research Program. Concurrent evolution of

Cognitive Science is outlined in Section III. Then comes the main purpose of this paper: To lay

foundations for a common modeling theory in cognitive science and science education to drive

symbiotic research in both fields. Specific research in both fields is then directed toward a

unified account of cognition in common sense, science and mathematics. This opens enormous

opportunities for science education research that I hope some readers will be induced to pursue.

Of course, I am not alone in recognizing the importance of models and modeling in

science, cognition, and instruction. Since this theme cuts across the whole of science, I have

surely overlooked many important insights. I can only hope that this paper contributes to a

broader dialog if not to common research objectives.
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II. Evolution of Modeling Instruction

My abiding interest in questions about cognition and epistemology in science and mathematics

was initiated by undergraduate studies in philosophy. In 1956 I switched to graduate studies in

physics with the hope of finding some answers. By 1976 I had established a productive research

program in theoretical physics and mathematics, which, I am pleased to say, is still flourishing

today [1]. About that time, activities of my colleagues Richard Stoner, Bill Tillery and Anton

Lawson provoked my interest in problems of student learning. The result was my first article

advocating Physics Education Research [2].

I was soon forced to follow my own advice by the responsibility of directing PER

doctoral dissertations for two outstanding graduate students, Ibrahim Halloun and Malcolm

Wells. Halloun started about a year before Wells. In my interaction with them, two major

research themes emerged: First, effects on student learning of organizing instruction about

models and modeling; Second, effects of instruction on student preconceptions about physics.

The Modeling Instruction theme came easy. I was already convinced of the central role of

modeling in physics research, and I had nearly completed an advanced monograph-textbook on

classical mechanics with a modeling emphasis [12]. So, with Halloun as helpful teaching

assistant, I conducted several years of experiments with modeling in my introductory physics

courses.

The second theme was more problematic. I was led to focus on modes of student thinking

by numerous discussions with Richard Stoner about results from exams in his introductory

physics course. His exam questions called for qualitative answers only, because he believed that

is a better indicator of physics understanding than quantitative problem solving. However,

despite his heroic efforts to improve every aspect of his course, from the design of labs and
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problem solving activities to personal interaction with students, class average scores on his

exams remained consistently below 40%. In our lengthy discussions of student responses to his

questions, I was struck by what they revealed about student thinking and its divergence from the

physics he was trying to teach. So I resolved to design a test to evaluate the discrepancy

systematically. During the next several years I encountered numerous hints in the literature on

what to include. When Halloun arrived, I turned the project over to him to complete the hard

work of designing test items, validating the test and analyzing test results from a large body of

students.

The results [3, 4] were a stunning surprise! surprising even me! so stunning that the

journal editor accelerated publication! With subsequent improvements [5], the test is now known

as the Force Concept Inventory (FCI), but that has only consolidated and enhanced the initial

results. Instructional implications are discussed below in connection with recent developments.

For the moment, it suffices to know that the FCI was immediately recognized as a reliable

instrument for evaluating the effectiveness of introductory physics instruction in both high

school and college.

Five major papers [6-10] have been published on Modeling Theory and its application to

instruction. These papers provide the theoretical backbone for the Modeling Instruction Project

[11], which is arguably the most successful program for high school physics reform in the U.S. if

not the world. Since the papers have been seldom noted outside that project, a few words about

what they offer is in order.

The first paper [6] provides the initial theoretical foundation for Modeling Theory and its

relation to cognitive science. As modeling has become a popular theme in science education in

recent years, it may be hard to understand the resistance it met in 1985 when my paper was first

submitted. Publication was delayed for two years by vehement objections of a referee who was

finally overruled by the editor. Subsequently, the paper was dismissed as mere speculation by

empiricists in the PER community, despite the fact that it was accompanied by a paper

documenting successful application to instruction. Nevertheless, this paper provided the initial

conceptual framework for all subsequent developments in modeling instruction. It must be

admitted, though, the paper is a difficult read, more appropriate for researchers than teachers.

Paper [7] is my personal favorite in the lot, because it exorcises the accumulated

positivist contamination of Newtonian physics in favor of a model-centered cognitive account.

For the first time it breaks with tradition to formulate all six of Newton’s laws. This is important

pedagogically, because all six laws were needed for complete coverage of the “Force concept” in

designing the FCI [5]. Moreover, explicit formulation of the Zeroth Law (about space and time)

should interest all physicists, because that is the part of Newtonian physics that was changed by

relativity theory. Beyond that, the paper shows that Newton consciously employed basic

modeling techniques with great skill and insight. Indeed, Newton can be credited with

formulating the first set of rules for MODELING GAMES that scientists have been playing ever

since.

Paper [11] applies Modeling Theory to instructional design, especially the design of

software to facilitate modeling activities. Unfortunately, the R&D necessary to build such

software is very expensive, and funding sources are still not geared to support it.

In contrast to the preceding theoretical emphasis, papers [8, 9] are aimed at practicing

teachers. Paper [8] describes the results of Wells’ doctoral thesis, along with instructional design

that he and I worked out together and his brilliant innovations in modeling discourse

management. His invention of the portable whiteboard to organize student discourse is
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propagating to classrooms throughout the world. Sadly, terminal illness prevented him from

contributing to this account of his work.

Wells’ doctoral research deserves recognition as one of the most successful and

significant pedagogical experiments ever conducted. He came to me as an accomplished teacher

with 30 years experience who had explored every available teaching resource. He had already

created a complete system of activities to support student-centered inquiry that fulfills every

recommendation of the National Science Education Standards today. Still he was unsatisfied.

Stunned by the performance of his students on the FCI-precursor, he resolved to adapt to high

school the ideas of modeling instruction that Halloun and I were experimenting with in college.

The controls for his experiment were exceptional. As one control, he had complete data on

performance of his own students without modeling. Classroom activities for treatment and

control groups were identical. The only difference was that discourse and activities were focused

on models with emphasis on eliciting and evaluating the students’ own ideas. As a second

control, posttest results for the treatment group were compared to a well-matched group taught

by traditional methods over the same time period. The comparative performance gains of his

students were unprecedented. However, I am absolutely confident of their validity, because they

have been duplicated many times, not only by Wells but others that followed.

I was so impressed with Wells’ results that I obtained in 1989 a grant from the U.S.

National Science Foundation, to help him develop Modeling Workshops to inspire and enable

other teachers to duplicate his feat. Thus began the Modeling Instruction Project, which, with

continuous NSF support, has evolved through several stages with progressively broader

implications for science education reform throughout the United States. Details are available at

the project website [11]. None of this, including my own involvement, would have happened

without the pioneering influence of Malcolm Wells.

III. Evolution of Cognitive Science

Cognitive science grew up in parallel with PER and Modeling Theory. With the aim of

connecting the strands, let me describe the emergence of cognitive science from the perspective

of one who has followed these developments from the beginning. Of course, the mysteries of the

human thought have been the subject of philosophical contemplation since ancient times, but

sufficient empirical and theoretical resources to support a genuine science of mind have been

assembled only recently. Box 1 outlines the main points I want to make.

I regard the formalist movement in mathematics as an essential component in the

evolution of mathematics as the science of structure, which is a central theme in our formulation

of Modeling Theory below. Axioms are often dismissed as mathematical niceties, inessential to

science. But it should be recognized that axioms are essential to Euclidean geometry, and

without geometry there is no science. I believe that the central figure in the formalist movement,

David Hilbert, was the first to recognize that axioms are actually definitions! Axioms define the

structure in a mathematical system, and structure makes rational inference possible!

Equally important to science is the operational structure of scientific measurement, for

this is essential to relate theoretical structures to experiential structures in the physical world.

This point has been made most emphatically by physicist Percy Bridgeman, with his concept of

operational definitions for physical quantities (but see [7] for qualifications). However, to my

mind, the deepest analysis of scientific measurement has been made by Henri Poincaré, who

explained how measurement conventions profoundly influence theoretical conceptions. In
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particular, he claimed that

curvature of physical space is

not a fact of nature independent

of how measurements are

defined. This claim has long

been inconclusively debated in

philosophical circles, but

recently it received spectacular

confirmation [14].

Following a long

tradi t ion in rat ional is t

philosophy, the formalist

movement in mathematics and

logic has been widely construed

as the foundation for a theory of

mind, especially in Anglo-

American analytic philosophy.

This is an egregious mistake

that has been roundly criticized

by George Lakoff and Mark

Johnson [17-21] in the light of

recent developments in

cognitive science. Even so, as

already suggested, formalist

notions play an important role

in characterizing structure in

cognition.

The creation of serial computers can be construed as technological implementation of

operational structures developed in the formalist tradition. It soon stimulated the creation of

information processing psychology, with the notion that cognition is all about symbol processing.

I was right up to date in applying this egregious mistake to physics teaching [2]. Even so, most of

the important research results and insights that I reported survive reinterpretation when the

confusion between cognition and symbol processing is straightened out. Symbol processing is

still a central idea in computer science and Artificial Intelligence (AI), but only the ill-informed

confuse it with cognitive processes.

I tried to link the dates in Box 1 to significant events in each category. I selected the date

1983 for the onset of second generation cognitive science, because I had the privilege of co-

organizing the very first conference devoted exclusively to what is now known as cognitive

neuroscience. It still took several years to overcome the heavy empiricist bias of the

neuroscience community and establish neural network modeling as a respectable activity in the

field. The consequence has been a revolution in thinking about thinking that we aim to exploit.

IV. Modeling Research in Cognitive Science

With its promise for a universal science of mind, research in cognitive science cuts across every

scientific discipline and beyond. Box 2 lists research that I see as highly relevant to the Modeling

Box 1:        Emergence of Cognitive Science

I. Scientific Precursors

• Formalist mathematics and logic (~1850-1940)

– axioms & standards for rigorous proof

– reasoning by rules and algorithms

• Operationalism (Bridgeman, 1930)

• Conventionalism (Poincaré, 1902)

• Gestalt psychology (~1915-1940)

• Genetic Epistemology (Piaget, ~1930-1960)

II. Emergence of computers and computer science

       (~1945-1970) implementing operational structures

III. First Generation Cognitive Science (~1960-1980)

• “Brain is a serial computer” metaphor

• “Mind is a computer software system”

• Information processing psychology & AI

     – Thinking is symbol manipulation

     – functionalism (details about the brain irrelevant)

IV. Second Generation Cognitive Science (~1983--    )

• Neural network level

     – Brain is a massively parallel dynamical system

     – Thinking is pattern processing

• Cognitive phenomenology at the functional level:

     – empirical evidence for mental modeling

        is accumulating rapidly from many sources.
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Theory I am promoting. The

list is illustrative only, as

many of my favorites are

omitted. These scientists are

so productive that it is

impractical to cite even their

most important work. Instead,

I call attention to the various

research themes, which will

be expanded with citations

when specifics are discussed.

References [15, 16]

provide an entrée to the

important work of Giere,

Nercessian and Gentner,

which has so much in

common with my own

thinking that it may be hard to

bel ieve i t developed

independently. This illustrates

the fact that significant ideas

are implicit in the culture of

sc i ence wa i t i ng fo r

investigators to explicate and

cultivate as their own.

In sections to follow, I

emphasize alignment of

Modeling Theory with

Cognitive Linguistics, especially as expounded by George Lakoff [17-20]. Language is a

window to the mind, and linguistic research has distilled a vast corpus of data to deep insights

into structure and use of language. My objective is to apply these insights to understanding

cognition in science and mathematics. Cognitive Linguistics makes this possible, because it is a

reconstruction of linguistic theory aligned with the recent revolution in Cognitive Science.

V. Constraints from Cognitive Neuroscience

Cognitive neuroscience is concerned with explaining cognition as a function of the brain. It

bridges the interface between psychology and biology. The problem is to match cognitive theory

at the psychological level with neural network theory at the biological level. Already there is

considerable evidence supporting the working hypothesis that cognition (at the psychological

level) is grounded in the sensory-motor system (at the biological level).

The evidence is of three kinds:

• Soft constraints: Validated models of cognitive structure from cognitive science,

especially cognitive linguistics.

• Hard constraints: Identification of specific neural architectures and mechanisms

sufficient to support cognition and memory.

Box 2: Modeling Research in Cognitive Science

Philosophy of Science

Ronald Giere (Model-based philosophy of science)

Jon Barwise (Deductive inference from diagrams)

History and Sociology of Science

Thomas Kuhn (Research driven by Exemplars)

Nancy Nercessian (Maxwell’s analogical modeling)

Cognitive Psychology

Dedre Gentner (Analogical reasoning)

Philip Johnson-Laird (Inference with mental models)

Barbara Tversky (Spatial mental models vs. visual imagery)

Cognitive Linguistics

George Lakoff (Metaphors & radial categories)

Ronald Langacker (Cognitive grammar & image schemas)

Cognitive Neuroscience

Michael O’Keeffe (Hippocampus as a Cognitive Map)

Stephen Grossberg (Neural network theory)

Physics Education Research

Andy diSessa (Phenomenological primitives)

John Clement (Bridging analogies)

Information & Design Sciences

UML: Universal Modeling Language

& Object-Oriented Programming
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• Evolutionary constraint: A plausible account of how the brain could have evolved to

support cognition.

A few comments will help fix some of the issues.

Biology tells us that brains evolved adaptively to enable navigation to find food and

respond to threats. Perception and action are surely grounded in identifiable brain structures of

the sensory-motor system. However, no comparable brain structures specialized for cognition

have been identified. This strongly suggests that cognition too is grounded in the sensory-motor

system. The main question is then: what adaptations and extensions of the sensory-motor system

are necessary to support cognition?

I hold that introspection, despite its bad scientific reputation, is a crucial source of

information about cognition that has been systematically explored by philosophers, linguists and

mathematicians for ages. As Kant was first to realize and Lakoff has recently elaborated [20], the

very structure of mathematics is shaped by hard constraints on the way we think. A major

conclusion is that geometric concepts (grounded in the sensory-motor system) are the prime

source of relational structures in mathematical systems.

I am in general agreement with Mark Johnson’s NeoKantian account of cognition [21],

which draws on soft constraints from Cognitive Linguistics. But it needs support by

reconciliation with hard constraints from sensory-motor neuroscience. That defines a promising

direction for research in Cognitive Neuroscience. Let me reiterate my firm opinion [6] that the

research program of Stephen Grossberg provides the best theoretical resources to pursue it.

VI. System, Model & Theory; Structure & Morphism

The terms ‘system’ and ‘model’ have been ubiquitous in science and engineering since the

middle of the twentieth century. Mostly these terms are used informally, so their meanings are

quite variable. But for the purposes of Modeling Theory, we need to define them as sharply as

possible. Without duplicating my lengthy discussions of this matter before [7-10], let me

reiterate some key points with an eye to preparing a deeper connection to cognitive theory in the

next section.

I define a SYSTEM as a set of related objects. Systems can be of any kind depending on

the kind of object. A system itself is an object, and the objects of which it is composed may be

systems. In a conceptual system the objects are concepts. In a material system the objects are

material things. Unless otherwise indicated, we assume that the systems we are talking about are

material systems. A material system can be classified as physical, chemical or biological,

depending on relations and properties attributed to the objects.

The STRUCTURE of a system is defined as the set of relations among objects in the

system. This includes the relation of “belonging to,” which specifies COMPOSITION, the set of

objects belonging to the system. A universal finding of science is that all material systems have

geometric, causal and temporal structure, and no other (metaphysical) properties are needed to

account for their behavior. According to Modeling Theory, science comes to know objects in the

real world not by direct observation, but by constructing conceptual models to interpret

observations and represent the objects in the mind. This epistemological precept is called

Constructive Realism by philosopher Ronald Giere.

I define a conceptual MODEL as a representation of structure in a material system,

which may be real or imaginary. The possible types of structure are summarized in Box 3. I have

been using this definition of model for a long time, and I am yet to find a model in any branch of
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science that cannot be

expressed in these terms.

Models are of many

kinds, depending on their

purpose. All models are

idealizations, representing only

structure that is relevant to the

purpose, not necessarily

including all five types of

structure in Box 3. The

prototypical kind of model is a

map. Its main purpose is to

specify geometric structure

(relations among places),

though it also specifies objects

in various locations. Maps can

be extended to represent

motion of an object by a path

on the map. I call such a model

a motion map. Motion maps should not be confused with graphs of motion, though this point is

seldom made in physics or math courses. In relativity theory, motion maps and graphs are

combined in a single spacetime map to represent integrated spatiotemporal event structure.

A mathematical model represents the structure of a system by quantitative variables of

two types: state variables, specifying composition, geometry and object properties; interaction

variables, specifying links among the parts and with the environment [6]. A process model

represents temporal structure as change of state variables. There are two types. A descriptive

model represents change by explicit functions of time. A dynamical model specifies equations of

change determined by interaction laws. Interaction laws express interaction variables as

functions of state variables.

A scientific THEORY is defined by a system of general principles (or Laws) specifying a

class of state variables, interactions and dynamics (modes of change) [6, 7]. Scientific practice is

governed by two kinds of law:

I. Statutes: General Laws defining the domain and structure of a Theory

(such as Newton’s Laws and Maxwell’s equations)

II. Ordinances: Specific laws defining models

(such as Galileo’s law of falling bodies and Snell’s law)

The content of a scientific theory is a population of validated models. The statutes of a theory

can be validated only indirectly through validation of models.

Laws defining state variables are intimately related to Principles of Measurement (also

called correspondence rules or operational definitions) for assigning measured values to states of

a system. A model is validated to the degree that measured values (data) match predicted values

determined by the model. The class of systems and range of variables that match a given model

is called its domain of validity. The domain of validity for a theory is the union of the validity

domains for its models.

Empirical observation and measurement determine an analogy between a given model

Box 3:     A conceptual MODEL is defined

         by specifying five types of structure:

(a) systemic structure:

• composition (internal parts (objects) in the system)

• environment (external agents linked to the system)

• connections (external and internal links)

(b) geometric structure:

• position with respect to a reference frame (external)

• configuration (geometric relations among the parts)

(c) object structure:

• intrinsic properties of the parts

(d) interaction structure:

• properties of (causal) links

(e) temporal (event) structure:

• temporal change in structure of the system
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and its referent (a system). I call this a referential analogy. An analogy is defined as a mapping

of structure from one domain (source) to another (target). The mapping is always partial, which

means that some structure is not mapped. (For alternative views on analogy see [16].) Analogy is

ubiquitous in science, but often goes unnoticed. Several different kinds are illustrated in Figs.

3&4.

Conceptual analogies between models in different domains are common in science and

often play a generative role in research. Maxwell, for example, explicitly exploited electrical–

mechanical analogies. An analogy specifies differences as well as similarities between source

and target. For example, similar models of wave propagation for light, sound and water and

ropes suppress confounding differences, such as the role of an underlying medium. Such

differences are still issues in scientific research as well as points of confusion for students.

A material analogy relates

structure in different material systems or

processes; for example, geometric

similarity of a real car to a scale model

of the car. An important case that often

goes unnoticed, because it is so subtle

and commonplace, is m a t e r i a l

equivalence of two material objects or

systems, whereby they are judged to be

the same or identical. I call this an

inductive analogy, because it amounts to

matching the objects to the same model

(Fig. 4). I submit that this matching process underlies classical inductive inference, wherein

repeated events are attributed to a single mechanism.

One other analogy deserves mention, because it plays an increasingly central role in

science: the analogy between conceptual models and computer models. The formalization of

mathematics has made it possible to imbed every detail in the structure of conceptual models in

computer programs, which, running in simulation mode, can emulate the behavior of material

systems with stunning accuracy. More and more, computers carry out the empirical function of

matching models to data without human intervention. However there is an essential difference

between computer models and conceptual models, which we discuss in the next section.

Considering the multiple, essential roles of analogy just described, I recommend

Referential

Analogy
Material

World:

Conceptual

World: Model II

System I System II

Model I

Conceptual

Analogy

Material

Analogy

         Fig. 3:  Three Kinds of Analogy

Model I

System I System II

Inductive

Analogy

Referential

Analogy

                Fig. 4:  Material equivalence
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formalizing the concept of analogy in science with the technical term MORPHISM. In

mathematics a morphism is a structure-preserving mapping: Thus the terms homomorphism

(preserves algebraic structure) and homeomorphism (preserves topological structure). Alternative

notions of analogy are discussed in [16].

The above characterization of science by Modeling Theory bears on deep epistemological

questions long debated by philosophers and scientists. For example:

• In what sense can science claim objective knowledge about the material world?

• To what degree is observed structure inherent in the material world and independent of

the observer?

• What determines the structure categories for conceptual models in Box 3?

In regard to the last question, I submit in line with Lakoff and Johnson [18, 19, 21] that these are

basic categories of cognition grounded in the human sensory-motor system. This suggests that

answers to all epistemological questions depend on our theory of cognition, to which we now

turn.

VII. Modeling Structure of Cognition

If cognition in science is an extension of common sense, then the structure of models in science

should reflect structure of cognition in general. To follow up this hint I outline a Modeling

Theory of Cognition. The theory begins with a crucial distinction between mental models and

conceptual models (Fig. 5). Mental models are private constructions in the mind of an

individual. They can be elevated to conceptual models by encoding model structure in symbols

Understanding

Creating

Perception
Action In

ter
pre
tat
ion

Re
pre
sen
tat
ion

(World 3)

CONCEPTUAL WORLD

Conceptual Models

(Objective)

Scientific knowledge

Mental Models

(Subjective)
Personal knowledge

(World 2)

MENTAL WORLD

Real Things

& Processes

Being and Becoming

PHYSICAL WORLD

(World 1)

encoded in
symbolic
forms

embodied
in neural 
networks

       Fig. 5. Mental models vs. Conceptual models
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that activate the individual’s mental model and corresponding mental models in other minds. Just

as Modeling Theory characterizes science as construction and use of shared conceptual models, I

propose to characterize cognition as construction and manipulation of private mental models.

As already mentioned, the idea that mental models are central to cognition is

commonplace in cognitive science. However, it has yet to crystallize into commonly accepted

theory, so I cannot claim that other researchers will approve of the way I construe their results as

support for Modeling Theory. The most extensive and coherent body of evidence comes from

cognitive linguistics, supporting the revolutionary thesis: Language does not refer directly to

the world, but rather to mental models and components thereof! Words serve to activate,

elaborate or modify mental models, as in comprehension of a narrative.

This thesis rejects all previous versions of semantics, which located the referents of

language outside the mind, in favor of cognitive semantics, which locates referents inside the

mind. I see the evidence supporting cognitive semantics as overwhelming [17-24], but it must be

admitted that some linguists are not convinced, and many research questions remain.

My aim here is to assimilate insights of cognitive linguistics into Modeling Theory and

study implications for cognition in science and mathematics. The first step is to sharpen our

definition of concept. Inspired by the notion of ‘construction’ in cognitive linguistics [25], I

define a concept as a {form, meaning} pair

represented by a symbol (or symbolic

construction), as schematized in Fig. 6. The

meaning is given by a mental model or schema

called a prototype , and the f o r m is the

structure or a substructure of the prototype.

This is similar to the classical notion that the

meaning of a symbol is given by its intension

and extension, but the differences are profound.

For example, the prototype for the concept right triangle is a mental image of a triangle,

and its form is a system of relations among its constituent vertices and sides. The concept of

hypotenuse has the same prototype, but its form is a substructure of the triangle. This kind of

substructure selection is called profiling in cognitive linguistics. Note that different individuals

can agree on the meaning and use of a concept even though their mental images may be

different. We say that their mental images are homologous.

In my definition of a concept, the form is derived from the prototype. Suppose the

opposite. I call that a formal concept. That kind of concept is common in science and

mathematics. For example the concept of length is determined by a system or rules and

procedures for measurement that determine the structure of the concept. To understand the

concept, each person must embed the structure in a mental model of his own making. Evidently

formal concepts can be derived from “informal concepts” by explicating the implicit structure in

a prototype. I submit that this process of explication plays an important role in both developing

and learning mathematics.

Like a percept, a concept is an irreducible whole, with gestalt structure embedded in its

prototype. Whereas a percept is activated by sensory input, a concept is activated by symbolic

input. Concepts can be combined to make more elaborate concepts, for which I recommend the

new term construct to indicate that it is composed of irreducible concepts, though its wholeness

is typically than the “sum” of its parts.

We can apply the definition of ‘concept’ to sharpen the notion of ‘conceptual model,’

CONCEPT

symbol

meaningform

Fig. 6: Concept triad
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which was employed informally in the preceding section. A conceptual model is now defined as

a concept (or construct if you will) with the additional stipulation that the structure of its referent

be encoded in its representation by a symbolic construction, or figure, or some other inscription.

Like a concept, a conceptual model is characterized by a triad, as depicted in Fig. 7.

To emphasize the main point: the symbols for concepts refer to mental models (or

features thereof), which may or may not correspond to actual material objects (as suggested in

Fig.7). Though every conceptual model refers to a mental model, the converse is not true. The

brain creates all sorts of mental constructions, including mental models, for which there are no

words to express. I refer to such constructions as ideas or intuitions. Ideas and intuitions are

elevated to concepts by creating symbols to represent them!

My definitions of ‘concept’ and ‘conceptual model’ have not seen print before, so others

may be able to improve them. But I believe they incorporate the essential ideas. The main task

remaining is to elaborate the concept of mental model with reference to empirical support for

important claims.

The very idea of mental model comes from introspection, so that is a good place to start.

However, introspection is a notoriously unreliable guide even to our own thinking, partly

because most thinking is unconscious processing by the brain. Consequently, like the tip of an

iceberg, only part of a mental model is open to direct inspection. Research has developed means

to probe more deeply.

Everyone has imagination, the ability to conjure up an image of a situation from a

description or memory. What can that tell us about mental models? Some people report images

that are picture-like, similar to actual visual images. However, others deny such experience, and

blind people are perfectly capable of imagination. Classical research in this domain found

support for the view that mental imagery is internalized perception, but not without critics.

Barbara Tversky

and collaborators [26]

have tested the classical

view by comparison to

m e n t a l m o d e l

alternatives. Among

other things, they

compared individual

accounts of a visual

scene generated from

narrative with accounts

generated from direct

observation and found

MODEL

representation

referentstructure Mental model

Material system

   Fig. 7: Conceptual model

  Box 4:             Spatial MENTAL models

• are schematic,  representing only some features,

• are structured, consisting of elements and relations.

• Elements are typically objects (or reified things).

• Object properties are idealized (points, lines or paths).

• Object models are always placed in a background

(context or frame).

• Individual objects are modeled separately from the frame,

so they can move around in the frame.
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that they are functionally equivalent. A crucial difference is that perceptions have a fixed point of

view, while mental models allow change in point of view. Furthermore, spatial mental models

are more schematic and categorical than images, capturing some features of the object but not all

and incorporating information about the world that is not purely perceptual. Major characteristics

of spatial mental models are summarized in Box 4. The best fit to data is a spatial framework

model, where each object has an egocentric frame consisting of mental extensions of three body

axes.

The general conclusion is that mental models represent states of the world as conceived,

not perceived. To know a thing is to form a mental model of it. The details in Box 4 are

abundantly supported by other lines of research, especially in cognitive linguistics, to which we

now turn.

In the preceding section we saw that concepts of structure and morphism provide the

foundation for models and modeling practices in science (and, later I will claim, for mathematics

as well). My purpose here is to link those concepts to the extensive cognitive theory and

evidence reviewed by Lakoff and company [17-24], especially to serve as a guide for those who

wish to mine the rich lode of insight in this domain. To that end, I have altered Lakoff’s

terminology somewhat but I hope not misrepresented his message.

I claim that all reasoning is inference from structure, so I seek to identify basic

cognitive structures and understand how they generate the rich conceptual structures of science

and mathematics. The following major themes are involved:

• Basic concepts are irreducible cognitive primitives grounded in sensory-motor

experience.

• All other conceptual domains are structured by metaphorical extension from the basic

domain.

• Cognition is organized by semantic frames, which provide background structure for

distinct conceptual domains and modeling in mental spaces.

Only a brief orientation to each theme can be given here.

Metaphors are morphisms in which structure in the source domain is projected into the

target domain to provide it with structure. The process begins with grounding metaphors,

which project structural primitives from basic concepts. A huge catalog of metaphors has been

compiled and analyzed to make a strong case that all higher order cognition is structured in this

way.

Semantic frames provide an overall conceptual structure linking systems of related

concepts (including the words that express them). In mathematics, the frames may be general

conceptual systems such as arithmetic and geometry or subsystems thereof. Everyday cognition

is structured by a great variety of frames, such as the classic restaurant frame that that provides a

context for modeling what happens in a restaurant. A semantic frame for a temporal sequence of

events, such as dining (ordering, eating and paying for a meal), is called a script.

Fauconnier has coined the term mental spaces for the arenas in which mental modeling

occurs [23, 24]. Especially significant is the concept of blending, whereby distinct frames are

blended to create a new frame. The description of cognitive processes in such terms is in its

infancy but very promising.

As cognitive grounding for science and mathematics, we are most interested in basic

concepts of space, time and causality. Their prototypes, usually called schemas, provide the

primitive structures from which all reasoning is generated. There are two kinds, called image

schemas and aspectual schemas.



14

Image schemas provide common structure for spatial concepts and spatial perceptions,

thus linking language with spatial perception. The world’s languages use a relatively small

number of image schemas, but they incorporate spatial concepts in quite different ways –– in

English mostly with prepositions. Some prepositions, such as in/out and from/to, express

topological concepts, while others, such as up/down and left/right, express directional concepts.

The schema for each concept is a structured whole or gestalt, where in the parts have no

significance except in relation to the whole. For example, the container schema (Fig. 8) consists

of a boundary that separates interior and exterior spaces. The preposition in profiles the interior,

while out profiles the exterior.

The container schema

provides the structure for the

g e n e r a l c o n c e p t s o f

containment and space as a

container. The alternative

notion of space as a set of

points (locations) was not

invented until the nineteenth

century. The contrast between

these two concepts of space has

generated tension in the

foundations of mathematics that

is still not resolved to

everyone’s satisfaction.

By metaphorical projection, the container schema structures many conceptual domains.

In particular, as Lakoff explains at length, the Categories-are-containers metaphor provides

propositional logic with cognitive grounding in the inherent logic of the container schema

(illustrated in Fig. 8). More generally, container logic is the logic of part-whole structure, which

underlies the concepts of set and system (Box 4).

Aspectual schemas structure events and actions. The prototypical aspectual concept is

the verb, of which the reader knows many examples. The most fundamental aspectual schema is

the basic schema for motion (Fig. 9), called the Source-Path-Goal schema by linguists, who use

trajector as the default term for any object moving along a path. This schema has its own logic,

and provides cognitive structure for the concepts of continuity and linear order in mathematics.

Indeed, Newton conceived of curves as traced out by moving points, and his First Law of Motion

provides grounding for the concept of time on

the more basic concept of motion [7]. Indeed,

the Greek concept of a curve as a locus of

points suggests the action of drawing the curve.

In physics the concept of motion is integrated

with concept of space, and the geometry of

motion is called kinematics.

Though the path schema of Fig. 9 is classified as aspectual in cognitive linguistics,

evidence from cognitive neuroscience and perceptual psychology suggests that it should

regarded as an image schema. It is a mistake to think that visual processing is limited to static

images. In visual cortex motion is processed concurrently with form. Even young children can

Excluded middle: x in A or not in A

Modus Ponens:

x in B � x in A

Modus Tollens:

x not in A� x not in B

AB

• x

• in
• out

A
Container schema:

  Boundary A

in profiles Interior

out profiles Exterior

Fig. 8: Container Schema Logic

•
source goaltrajector

Fig. 9: Source-Path-Goal Schema
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trace the path of a thrown ball, and the path is retained mentally as a kind of afterimage, though,

like most of visual processing, it remains below the radar of consciousness.

Clearly, the basic concepts of structure and quantity come from geometry. Evidently the

general concept of structure is derived from geometry by metaphorical projection to practically

every conceptual domain. An obvious example is the general concept of state space, where states

are identified with locations.

Categories are fundamental to human thought, as they enable distinctions between

objects and events. One of the pillars of cognitive linguistics is Eleanor Rosch’s discovery that

Natural Categories are determined by mental prototypes. This should be contrasted with the

classical concept of a Formal Category for which membership is determined by a set of defining

properties, a noteworthy generalization of the container metaphor. The notion of categories as

containers cannot account for a mountain of empirical evidence on natural language use.

Natural categories (commonly called Radial categories) are discussed at great length by

Lakoff [18], so there is no need for details here. The term “radial” expresses the fact that natural

categories have a radial structure of subordinate and superordinate categories with a central

category for which membership is determined by matching to a prototype. The matching process

accounts for fuzziness in category boundaries and graded category structure with membership

determined by partial matching qualified by hedges, such as “It looks like a bird, but . . .”

The upshot is that the structure of natural categories is derived from prototypes whereas

for formal categories structure is imposed by conventions. As already noted for formal concepts,

formal categories play an essential role in creating objective knowledge in science and

mathematics. However, the role of radial categories in structuring scientific knowledge has

received little notice [27].

Most human reasoning is inference from mental models. We can distinguish several types

of model-based reasoning:

• Abductive, to complete or extend a model, often guided by a semantic frame in which

the model is embedded.

• Deductive, to extract substructure from a model.

• Inductive, to match models to experience.

• Analogical, to interpret or compare models.

• Metaphorical, to infuse structure into a model.

• Synthesis, to construct a model, perhaps by analogy or blending other models.

• Analysis, to profile or elaborate implicit structure in a model.

Justification of model-based reasoning requires translation from mental models to inference

from conceptual models that can be publicly shared, like the scientific models in the preceding

section.

In contrast, formal reasoning is computational, using axioms, production rules and other

procedures. It is the foundation for rigorous proof in mathematics and formal logic. However, I

daresay that mathematicians and even logicians reason mostly from mental models. Model-based

reasoning is more general and powerful than propositional logic, as it integrates multiple

representations of information (propositions, maps, diagrams, equations) into a coherently

structured mental model. Rules and procedures are central to the formal concept of inference, but

they can be understood as prescriptions for operations on mental models as well as on symbols.

We have seen how Modeling Theory provides a theoretical framework for cognitive

science that embraces the findings of cognitive linguistics. Thus it provides the means for

scientific answers to long-standing philosophical questions, such as: What is the role of language
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in cognition? Is it merely an expression of thought and a vehicle for communication? Or does it

determine the structure of thought? As for most deep philosophical questions, the answer is “Yes

and no!” Yes, the basic structure in thought is grounded in the evolved structure of the sensory-

motor system. No, there is more to the story. The structure of mental models, perhaps even of

aspectual and image schemas, is shaped by experience with tools, linguistic as well as physical.

In the following sections we consider evidence for this in physics and mathematics.

VIII. Concepts of Force in science and common sense

From the beginning, Modeling Theory was developed with an eye to improving instruction in

science and mathematics, so we look to that domain for validation of the theory. In section II, I

reported the stunning success of Malcolm Wells’ initial experiment with Modeling Theory and

its subsequent flowering in the Modeling Instruction Project. My purpose in this section is, first

to describe what Modeling Theory initially contributed to that success, and second to propose

new explanations based on the current version of the theory. This opens up many opportunities

for further research.

School physics has a reputation for being impossibly difficult. The rap is that few have

the talent to understand it. However, PER has arrived at a different explanation by investigating

common sense (CS) concepts of force and motion in comparison to the Newtonian concepts of

physics. The following conclusions are now widely accepted:

• CS concepts dominate student thinking in introductory physics!

• Conventional instruction is almost totally ineffective in altering them!

• This result is independent of the instructor’s academic qualifications, teaching

experience, and (unless informed by PER) mode of teaching!

Definitive quantitative support for these claims was made possible by development of the Force

Concept Inventory (FCI). The initial results [3, 5] have been repeatedly replicated (throughout

the U.S. and elsewhere), so the conclusions are universal, and only the ill-informed are skeptical.

The implications for conventional instruction could hardly be more serious! Student

thinking is far from Newtonian when they begin physics, and it has hardly changed (<15%) when

they finish the first course. Consequently, students systematically misinterpret almost everything

they read, hear and see throughout the course. Evidence for this catastrophe has always been

there for teachers to see, but they lacked the conceptual framework to recognize it. Witness the

common student complaint: “I understand the theory, I just can’t work the problems!” In my

early years of teaching I dismissed such claims as unfounded, because ability to work problems

was regarded as the definitive test of understanding. Now I see that the student was right. He did

understand the theory –– but it was the wrong theory! His theory wrapped up his CS concepts in

Newtonian words; he had learned jargon instead of Newtonian concepts.

Since students are oblivious to the underlying conceptual mismatch, they cannot process

their own mistakes in problem solving. Consequently, they resort to rote learning and depend on

the teacher for answers. A sure sign of this state of affairs in a physics classroom is student

clamoring for the teacher to demonstrate solving more and more problems. They confuse

memorizing problem solutions with learning how to solve problems. This works to a degree, but

repeated failure leads to frustration and humiliation, self-doubt and ultimately student turn-off!

Happily, this is not the end of the story. Figure 10 summarizes data from a nationwide

sample of 7500 high school physics students involved in the Modeling Instruction Project during
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1995–98. The mean FCI pretest score is about 26%, slightly above the random guessing level of

20%, and well below the 60% score which, for empirical reasons, can be regarded as a threshold

in the understanding of Newtonian mechanics.

Figure 10 shows that traditional high school instruction (lecture, demonstration, and

standard laboratory activities) has little impact on student beliefs, with an average FCI posttest

score of 42%, still well below the Newtonian threshold. This is data from the classes of teachers

before participating in the Modeling Instruction Project.

Participating teachers attend an intensive 3-week Modeling Workshop that immerses

them in modeling

pedagogy and acquaints

them with curriculum

materials designed

expressly to support it.

Almost every teacher

enthusiastically adopts

the approach and begins

teaching wi th i t

immediately. After their

first year of teaching

posttest scores for

students of these novice

modelers are about 10%

higher, as shown in Fig.

10 for 3394 students of

66 teachers. Students of

expert modelers do

much better.

For 11 teachers identified as expert modelers after two years in the Project, posttest

scores of their 647 students averaged 69%. Their average gain is more than two standard

deviations higher than the gain under traditional instruction. It is comparable to the gain

achieved by the first expert modeler Malcolm Wells.

The 29%/69% pretest/posttest means for the expert modelers should be compared

with the 52%/63% means for calculus-based physics at a major university [5]. We now have

many examples of modelers who consistently achieve posttest means from 80-90%. On the other

hand, even initially under-prepared teachers eventually achieve substantial gains, comparable to

gains for well-prepared teachers after two years in the project.

FCI scores are vastly more informative than scores for an ordinary test. To see why, one

needs to examine the structure of the test and the significance of the questions. The questions are

based on a detailed taxonomy of common sense (CS) concepts of force and motion derived from

research. The taxonomy is structured by a systematic analysis of the Newtonian force concept

into six fundamental conceptual dimensions. Each question requires a forced choice between a

Newtonian concept and CS alternatives for best explanation in a common physical situation, and

the set of questions systematically probes all dimensions of the force concept. Questions are

designed to be meaningful to readers without formal training in physics.

To a physicist the correct choice for each question is so obvious that the whole test looks

trivial. On the other hand, virtually all CS concepts about force and motion are incompatible with
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Newtonian theory. Consequently, every missed question has high information content. Each miss

is a sure indicator of non-Newtonian thinking, as any skeptical teacher can verify by

interviewing the student who missed it.

Considering the FCI’s comprehensive coverage of crucial concepts, the abysmal FCI

scores for traditional instruction imply catastrophic failure to penetrate student thinking! Most

high school students and half the university students do not even reach the Newtonian threshold

of 60%. Below that threshold students have not learned enough about Newtonian concepts to use

them reliably in reasoning. No wonder they do so poorly on problem solving.

Why is traditional instruction so ineffective? Research has made the answer clear. To

cope with ordinary experience each of us has developed a loosely organized system of intuitions

about how the world works. That provides intuitive grounding for CS beliefs about force and

motion, which are embedded in natural language and studied in linguistics and PER. Research

shows that CS beliefs are universal in the sense that they are much the same for everyone,

though there is some variation among individuals and cultures. They are also very robust and

expressed with confidence as obvious truths about experience.

Paradoxically, physicists regard most CS beliefs about force and motion as obviously

false. From the viewpoint of Newtonian theory they are simply misconceptions about the way the

world truly is! However, it is more accurate, as well as more respectful, to regard them as

alternative hypotheses. Indeed, in preNewtonian times the primary CS “misconceptions” were

clearly articulated and forcefully defended by great intellectuals –– Aristotle, Jean Buridan,

Galileo, and even Newton himself (before writing the Principia) [4]. Here we see another side of

the paradox:

To most physicists today Newtonian physics describes obvious structure in perceptible

experience, in stark contrast to the subtle quantum view of the world. I have yet to meet a single

physicist who recollects ever holding pre-scientific CS beliefs, though occasionally one recalls a

sudden aha! insight into Newton’s Laws. This collective retrograde amnesia testifies to an

important fact about memory and cognition: recollections are reconstructed to fit current

cognitive structures. Thus, physicists cannot recall earlier CS thinking because it is filtered by

current Newtonian concepts.

In conclusion, the crux of the problem with traditional instruction is that it does not even

recognize CS beliefs as legitimate, let alone address them with argument and evidence. In

contrast, Modeling Instruction is deliberately designed to address this problem with

• Modeling activities that systematically engage students in developing models and

providing their own explanations for basic physical phenomena,

• Modeling discourse (centered on visual representations of the models) to engage students

in articulating their explanations and comparing them with Newtonian concepts,

• Modeling concepts and tools (such as graphs, diagrams and equations) to help students

simplify and clarify their models and explanations.

Instructors are equipped with a taxonomy of CS concepts to help recognize opportunities to elicit

the concepts from students for comparison with Newtonian alternatives and confrontation with

empirical evidence. Instructors know that students must recognize and resolve discrepancies by

themselves. Telling them answers does not work.

From years of experimenting with modeling discourse (especially in the classroom of

Malcolm Wells) we have learned to focus on the three CS concepts listed in Box 5. When these

concepts are adequately addressed, other misconceptions in our extensive taxonomy [5] tend to
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fall away automatically. Their robustness is indicated by the posttest discrepancies (Box 5) from

FCI data on more than a thousand university students. After completing a first course in calculus-

based physics, the fraction of students choosing CS alternatives over Newton’s First, Second and

Third Laws was 60%, 40% and 90% respectively. Of course, Newton’s Laws are not named as

such in the FCI. 80% of the students had already taken high school physics and could state

Newton’s Laws as slogans before beginning university physics.

After the Modeling

Instruction Project was up and

running, I learned about Lakoff’s

work on metaphors and its

relevance for understanding CS

force and motion concepts. I

presented the ideas to teachers in

Modeling Workshops but have

no evidence that this improved

the pedagogy, which was already

well developed. I suppose that

much of the new insight was

overlooked, because it was not

nailed down in print, so let me

record some of it here as analysis

of the three primary CS concepts in Box 5.

The Impetus Principle employs the Object-As-Container metaphor, where the container is

filled with impetus that makes it move. After a while the impetus is used up and the motion

stops. Of course, students don’t know the term impetus (which was coined in the middle ages);

they often use the term energy instead. Naïve students don’t discriminate between energy and

force. Like Newton himself before the Principia, they have to be convinced that “free particle

motion in a straight line” is a natural state that doesn’t require a motive force (or energy) to

sustain it. This does not require discarding the impetus intuition (which is permanently grounded

in the sensory-motor system in any case) but realigning the intuition with physics concepts of

inertia and momentum.

The CS prototype for force is human action on an object. Consequently, students don’t

recognize constraints on motion like walls and floors as due to contact forces. “They just get in

the way.” Teachers try to activate student intuition by emphasizing that “force is a push or a

pull,” without realizing that unqualified application of this metaphor excludes passive forces.

Besides, no textbooks explicitly note that universality of force is an implicit assumption in

Newtonian theory, which requires that motion is influenced only by forces. To arrive at force

universality on their own, students need to develop intuition to recognize forces in any instance

of physical contact. As an instructional strategy to achieve that end, Clement and Camp [28]

engage students in constructing a series of “bridging analogies” to link, for example, the

unproblematic case of a person pressing on a spring to the problematic case of a book resting on

a table. I recommend modifying their approach to include a common vector representation of

normal force in each case to codify symbolic equivalence (as in Fig. 4).

In situations involving Newton’s Third Law, the slogan “for every action there is an

equal and opposite reaction” evokes a misplaced analogy with a struggle between “opposing

forces,” from which it follows that one must be the winner, “overcoming” the other, in

Box 5        Contrasting Force Concepts

  Posttest

  Newtonian vs. Common Sense          Discrepancy

• First Law �    “Motion requires force” ~ 60%

            (Impetus Principle)

• Second Law �    “Force is action” ~ 40%

(No Passive forces)

• Third Law �    “Force is war” ~ 90%

(Dominance Principle)



20

contradiction to the Third Law. The difficulty that students have in resolving this paradox is

reflected in the fact that FCI questions on the Third Law are typically the last to be mastered.

DiSessa [29] gives a perceptive analysis of Third Law difficulties and measures to address them.

Such insights into student thinking as just described are insufficient for promoting a

transition to Newtonian thinking in the classroom. The literature is replete with attempts to

address specific misconceptions with partial success at best. So what accounts for the singular

success of Modeling Instruction as measured by the FCI (Fig. 10)? As for any expert

performance, detailed planning and preparation is essential for superior classroom instruction.

(The intensive Modeling Workshops help teachers with that.) However, Modeling Instruction is

unique in its strategic design.

Rather than address student misconceptions directly, Modeling Instruction creates an

environment of activities and discourse to stimulate reflective thinking about physical

phenomena that are likely to evoke those misconceptions. The environment is structured by an

emphasis on models and modeling with multiple representations (maps, graphs, diagrams,

equations). This provides students with conceptual tools to sharpen their thinking and gives them

access to Newtonian concepts. In this environment students are able to adjust their thinking to

resolve discrepancies within the Newtonian system, which gradually becomes their own. Rather

than learning Newtonian concepts piecemeal, they learn them as part of a coherent Newtonian

system. Construction of a Newtonian model requires coordinated use of all the Newtonian

concepts, and only this reveals the coherence of the Newtonian system. That coherence is not at

all obvious from the standard statement of Newton’s Laws. I believe that learning Newtonian

concepts as a coherent system best accounts for high FCI scores. Logically this is only a

sufficient condition for a high score, but I estimate that a high score from piecemeal

understanding of Newtonian physics is improbably low. Thus, it is best to interpret overall FCI

score as a measure of coherence in understanding Newtonian physics.

One other important point deserves mention here. As we have noted, Modeling Theory

informed by empirical evidence from cognitive science holds that mental models are always

constructed within a semantic frame. Accordingly, I suppose that physical situations (regardless

of how they are presented) activate a Newtonian semantic frame in the mental spaces of

physicists. And I submit that physics instruction is not truly successful until the same is true for

students. It is well known that students tend to leave the science they have learned in the

classroom and revert to CS thinking in every day affairs. Perhaps recognizing this as a problem

of semantic framing can lead to a better result.

As I have described it, Modeling Instruction does not depend on detailed understanding

of how students think. Indeed, I have tried to steer it clear of doubtful assumptions about

cognition that might interfere with learning. However, I now believe that advances in the

Modeling Theory of cognition described in Section VII are sufficient to serve as a reliable guide

for research to further improve instruction by incorporating details about cognition. Let me

sketch the prospects with specific reference to force and motion concepts.

The intertwined concepts of force and causation have been studied extensively in

cognitive linguistics. Lakoff and Johnson [19] show that the great variety of causal concepts fall

naturally into a radial category (“kinds of causation”) structured by a system of metaphorical

projections. The central prototype in this category is given by the Force-as-Human-Action

metaphor, in agreement with our analysis above. Their analysis provides an organizational

framework for the whole body of linguistic research on causation. That research provides

valuable insight into CS concepts of force and motion that deserves careful study. However,



21

limited as it is to study of natural languages, linguistic research does not discover the profound

difference in the force concept of physicists. For that we need to turn to PER, where the deepest

and most thorough research is by Andy diSessa [29].

In much the same way that linguists have amassed evidence for the existence of

prototypes and image schemas, diSessa has used interview techniques to isolate and characterize

conceptual primitives employed by students in causal reasoning. He has identified a family of

irreducible “knowledge structures” that he calls phenomenological primitives or p-prims. Since

diSessa’s definitive monograph on p-prims in 1993, converging evidence from cognitive

linguistics has made it increasingly clear that his p-prims are of the same ilk as the image and

aspectual schemas discussed in the preceding section. Accordingly, I aim to integrate them under

the umbrella of Modeling Theory.

Let us begin with the most important example, which diSessa calls Ohm’s p-prim. As he

explains,

Ohm’s p-prim comprises “an agent that is the locus of an impetus that acts

against a resistance to produce a result.”

Evidently this intuitive structure is abstracted from experience pushing objects. It is an important

elaboration of the central Force-as-Action metaphor mentioned above –– Very important! ––

Because this structure is fundamental to qualitative reasoning. The logic of Ohm’s p-prim is the

qualitative proportion:

more effort �  more result,

and the inverse proportion:

more resistance �  less result.

This reasoning structure is evoked for explanatory purposes in circumstances determined by

experience.

DiSessa identifies a number of other p-prims and catalogs them into a cluster that

corresponds closely to the taxonomy of CS force and motion concepts used to construct the FCI.

His monograph should be consulted for many details and insights that need not be repeated here.

Instead, I comment on general aspects of his analysis.

In accord with Lakoff and Johnson, diSessa holds that causal cognition is grounded in a

loosely organized system of many simple schemas derived from sensory-motor experience. P-

prims provide the grounding for our intuitive sense of (causal) mechanism. They are the CS

equivalent of physical laws, used to explain but not explainable. To naïve subjects, “that’s the

way things are.”

As to be expected from their presumed origin in experience, p-prims are cued directly by

situations without reliance on language. DiSessa asserts that p-prims are inarticulate, in the sense

that they are not strongly coupled to language. Here there is need for further research on subtle

coupling with language that diSessa has not noticed. For example, Lakoff notes that the

preposition on activates and profiles schemas for the concepts of contact and support, which

surely should be counted among the p-prims.

As disclosed in Ohm’s p-prim, the concept of (causal) agency entails a basic

Causal syntax:    agent �  (kind of action) �  on patient �  result.
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DiSessa notes that this provides an interpretative framework for F = ma, and he recommends

exploiting it in teaching mechanics. However he does not recognize it as a basic aspectual

schema for verb structure, which has been studied at length in cognitive grammar [22]. Aspectual

concepts are generally about event structure, where events are changes of state and causes (or

causal agents) induce events. Causes cannot be separated from events. Here is more opportunity

for research.

Under physics instruction, diSessa says that p-prims are refined but not replaced, that

they are gradually tuned to expertise in physics. Considering the role of metaphor and analogy in

this process, it might be better to say that p-prims are realigned. There are many other issues to

investigate in this domain. Broadly speaking, I believe that we now have sufficient theoretical

resources to guide research on instructional designs that target student p-prims more directly to

retune and integrate them into schemas for more expert-like concepts. I propose that we design

idealized expert prototypes for force and motion concepts to serve as targets for instruction. This

would involve a more targeted role for diagrams to incorporate figural schemas into the

prototypes.

The call to design expert prototypes embroils us in many deep questions about physics

and epistemology. For example, do forces really exist outside our mental models? We have seen

that Modeling Theory tells us that the answer depends on our choice of theoretical primitives and

measurement conventions. Indeed, if momentum is a primitive, then Newton’s Second Law is

reduced to a definition of force as momentum flux and the Third Law expresses momentum

conservation. The physical intuition engaged when mechanics is reformulated in terms of

momentum and momentum flux has been investigated by diSessa among others, but few

physicists have noted that fundamental epistemological issues are involved. Not the least of these

issues is the transition from classical to quantum mechanics, where momentum is king and force

is reduced to a figure of speech.

A related epistemological question: Is causal knowledge domain-specific? Causal claims

are supported by causal inference from models based on acquired domain-specific knowledge.

But to what degree does inference in different domains engage common intuitive mechanisms?

Perhaps the difference across domains is due more to structure of the models rather than the

reasoning. Perhaps we should follow Lakoff’s lead to develop force and interaction as a radial

category for a progression of interaction concepts ranging from particles to fields.

I am often asked how the FCI might be emulated to assess student understanding in

domains outside of mechanics, such as electrodynamics, thermodynamics, quantum mechanics

and even mathematics. Indeed, many have tried to do it themselves, but the result has invariably

been something like an ordinary subject matter test. The reason for failure is insufficient

attention to cognitive facts and theory that went into FCI design, which I now hope are more

fully elucidated by Modeling Theory. The primary mistake is to think that the FCI is basically

about detecting misconceptions in mechanics. Rather, as we have seen, it is about comparing CS

causal concepts to Newtonian concepts. The p-prims and image schemas underlying the CS

concepts are not peculiar to mechanics, they are basic cognitive structures for reasoning in any

domain. Therefore, the primary problem is to investigate how these structures are adapted to

other domains. Then we can see whether reasoning in those domains requires other p-prims that

have been overlooked. Finally, we can investigate whether and how new p-prims are created for

advanced reasoning in science and mathematics. That brings us to the next section, where we

discuss the development of conceptual tools to enhance scientific thinking.
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IX. Tools to think with

The evolution of science is driven by invention and use of tools of increasing sophistication and

power! The tools are of two kinds: instruments for detecting patterns in the material world, and

symbolic systems to represent those patterns for contemplation. As outlined in Fig. 11, we can

distinguish three major stages in tool development.

In the perceptual domain, pattern detection began with direct observation using human

sensory apparatus. Then the perceptual range was extended by scientific instruments such as

telescopes and microscopes. Finally, human sensory detectors are replaced by more sensitive

detection instruments, and the data are processed by computers with no role for humans except to

interpret the final results; even there the results may be fed to a robot to take action with no

human participation at all.

Tool development in the cognitive domain began with the natural languages in spoken

and then written form. Considering their ad hoc evolution, the coherence, flexibility and subtlety

of the natural languages is truly astounding. More deliberate and systematic development of

symbolic tools came with the emergence of science and mathematics. The next stage of

enhancing human cognitive powers with computer tools is just beginning. My purpose in this

section is to discuss what Modeling Theory can tell us about the intuitive foundations of

mathematics to serve as a guide for research on design of better instruction and better

mathematical tools for modeling in science and engineering.

While science is a search for structure, mathematics is the science of structure. Every

Modeling Tool Development

Instruments

for detecting patterns

Symbolic systems

for representing patterns

Perceptual Stage I Cognitive

• Sensory apparatus

(direct observation)

• natural language

• sketches & icons

Experimental Stage II Theoretical

• scientific instruments

& apparatus

• mathematics

• diagrammatic systems

Computer Stage III Computer

• Universal Lab

Interface

• simulation

• visualization

precision

Modeling skills

    Fig. 11
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science develops specialized modeling tools to represent the structure it investigates. Witness the

rich system of diagrams that chemists have developed to characterize atomic and molecular

structure. Ultimately, though, these diagrams provide grist for mathematical models of greater

explanatory power. What accounts for the ubiquitous applicability of mathematics to science?

I have long wondered how mathematical thinking relates to theoretical physics.

According to Modeling Theory, theoretical physics is about designing and analyzing conceptual

models that represent structure in the material world. For the most part these models are

mathematical models, so the cognitive activity is called mathematical modeling. But how does

mathematical thinking differ from the mathematical modeling in physics? Can it be essentially

the same when there are no physical referents for the mathematical structures? I am now

convinced that the answer is yes! The light went on when I learned about cognitive semantics

and realized that the referents for cognition in both mathematics and physics are mental

models! Lakoff and Núñez [20] argue forcefully for the same conclusion, but I want to put my

own twist on it.

I contend that the basic difference between mathematics and physics is how they relate

their mental models to the external world. Physicists aim to match their mental models to

structure in the material world. I call the ability to make such matches physical intuition. Note

that mathematics is not necessarily involved in this. In contrast, mathematicians aim to match

their mental models to structure in symbolic systems. I call the ability to make such matches

mathematical intuition. To be sure, physicists also relate their mental models to mathematical

structures, but for the most part they take the mathematics as given. When they do venture to

modify or extend the mathematical structures they function as mathematicians. Indeed, that is not

uncommon; a vast portion of mathematics was created by theoretical physicists.

According to Modeling Theory, mathematicians work with intuitive structures (grounded

in sensory-motor experience) that every normal person has. They proceed to encode these

structures in symbolic systems and elaborate them using the intuitive inferential structures of p-

prims and image schemas. I submit that mathematical thinking involves a feedback loop

generating external symbolic structures that stimulate modeling in mental spaces to generate

more symbolic structure. Though some mathematical thinking can be done with internal

representations of the symbols, external representation is essential for communication and

consensus building [30]. For this reason, I believe that the invention of written language was an

essential prerequisite to the creation of mathematics.

Let’s consider an example of intuitive grounding for mathematical structures. Lakoff and

Núñez [20] give many others, including four grounding metaphors for arithmetic. Note that the

intuitive causal syntax discussed in the previous section can be construed (by metaphorical

projection at least) as

Operator syntax:    agent �  (kind of action) �  on patient �  result,

where the action is on symbols (instead of material objects) to produce other symbols. Surely this

provides an intuitive base for the mathematical concept of function (though it may not be the

only one). Exploration of mental models reveals various kinds of structure that can be encoded

and organized into symbolic systems such as Set theory, Geometry, Topology, Algebra and

Group theory. Note that the number of distinct types of mathematical structure is limited, which

presumably reflects constraints on their grounding in the sensory-motor system. Of course, to

confirm this point of view thorough research is needed to detail the intuitive base for each type

of mathematical structure. Lakoff and Núñez [20] have already made a good start.
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The upshot is that cognitive processes in theoretical physics and mathematics are

fundamentally the same, centered on construction and analysis of conceptual models. Semantics

plays a far more significant role in mathematical thinking (and human reasoning in general) than

commonly recognized –– it is the cognitive semantics of mental models, mostly residing in the

cognitive unconscious, but often manifested in pattern recognition and construction skills [31].

Mathematical intuition (like physical intuition) is a repertoire of mental structures (schemas) for

making and manipulating mental models! This goes a long way toward answering the question:

What does it mean to understand a scientific concept?

I am not alone in my opinion on the intimate relation between physics and mathematics.

Here is a brief extract from a long diatribe On Teaching Mathematics by the distinguished

Russian mathematician V. I. Arnold [32]:

 “Mathematics is a part of physics. Physics is an experimental science, a part of natural

science. Mathematics is the part of physics where experiments are cheap.  . . .  In the

middle of the 20th century it was attempted to divide physics and mathematics. The

consequences turned out to be catastrophic. Whole generations of mathematicians grew

up without knowing half of their science and, of course in total ignorance of other

sciences.”

Arnold is deliberately provocative but not flippant. He raises a very important educational issue

that deserves mention quite apart from the deep connection to cognitive science that most

concerns us here.

There is abundant evidence to support Arnold’s claim. For example, up until World War

II physics was a required minor for mathematics majors in US universities. Since it was dropped,

the mathematics curriculum has become increasingly irrelevant to physics majors, and physics

departments provide most of the mathematics their students need. At the same time,

mathematicians have contributed less and less to physics, with some exceptions like the Russian

tradition that Arnold comes from, which has sustained a connection to physics.

But the most serious consequence of the divorce of mathematics from physics is the fact

that, in the U.S. at least, most high school math teachers have little insight into relations of math

they teach to science in general and physics in particular. Here is a bit of data to support my

contention: We administered the FCI to a cohort of some 20 experienced high school math

teachers. The profile of scores was the same as the pitiful profile for traditional instruction in Fig.

10, with the highest score at the Newtonian threshold of 60%. Half the teachers missed basic

questions about relating data on motion to concepts of velocity and acceleration. This chasm

between math and science, now fully ensconced in the teachers, may be the single most serious

barrier to significant secondary science education reform.

To document deficiencies in math education, many have called for a Math Concept

Inventory (MCI) analogous to the FCI. I have resisted that call for lack of adequate theory and

data on intuitive foundations for mathematical thinking. There is lots of educational research on

conceptual learning in mathematics, but most of it suffers from outdated cognitive theory.

Modeling Theory offers a new approach that can profit immediately from what has been learned

about cognitive mechanisms in physics. We need to identify “m-prims” that are mathematical

analogs of the p-prims discussed in the preceding section. I suspect that underlying intuitive

mechanisms are the same for m-prims and p-prims, but their connections to experience must be

different to account for the difference between mathematical and physical intuition noted above.

I recommend coordinated research on m-prims and p-prims aiming for a comprehensive
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Modeling Theory of cognition in science and mathematics.

I have barely set the stage for application of Modeling Theory for my favorite enterprise,

namely, the design of modeling tools for learning and doing science, engineering and

mathematics [10]. I have previously described the influence of my Geometric Algebra research

on development of Modeling Theory [13]. Now I believe that Modeling Theory has matured to

the point where it can contribute, along with Geometric Algebra, to the design of more powerful

modeling tools, especially tools embedded in computer software. But that is a task for tomorrow!

X. Conclusion

Central thesis: Cognition in science, mathematics, and everyday life

   is basically about making and manipulating mental models.

• The human cognitive capacity for creating, manipulating and

       remembering mental models has evolved to facilitate coping

       with the environment, so it is central to “common sense”

            thinking and communication by humans.

• Human culture has expanded and augmented this capacity by

       creating semiotic systems: representational systems of signs

(symbols, diagrams, tokens, icons, etc.),

 most notably spoken and written language.

• Science and mathematics has further extended the use of

        symbolic systems deliberately and self-consciously.

        but the cognitive mechanisms involved are

  essentially the same as for common sense.

Scientific modeling is a “deliberate and self-conscious extension of the

evolved cognitive capabilities for “mapping” the environment.” (Giere)

Science is a refinement of common sense! differing in respect to:

Objectivity – based on explicit rules & conventions

                       for observer-independent inferences

Precision  – in measurement

              – in description and analysis

Formalization  – for mathematical modeling and

              analysis of complex systems

Systematicity  – coherent, consistent & maximally

             integrated bodies of knowledge

Reliability – critically tested & reproducible results

Skepticism – about unsubstantiated claims

Knowledge and Wonder – so say Weisskopf & Sagan

Social structure and norms – Ziman
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To the grand philosophical question: “What is man?”

Aristotle answered:

“Man is a rational animal.”

Modeling Theory offers a new answer:

“Man is a modeling animal!” Homo modelus!
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