
FUNCTIONAL GEOMETRY

Peter Henderson

Oxford University Computing Laboratory

Programming Research Group

45 ~anbury Road

Oxford OX2 6PE, U.K.

Abstract

A method of describing pictures is introduced.

The equations, which describe the appearance of a

picture, also form a purely functional program

which can be used to compute the set of lines

necessary to plot the picture on a graphical

device. The method is illustrated by using it to

describe the structure of one of the woodcuts of

Maurits Escher.

I n t r o d u c t i o n

%4e s h a l l d e f i n e a da ta type ~ , ~ ' ~ ' , ' and some

o p e r a t i o n s upon i t . In p a r t i c u l a r we s h a l l show

how 1'{,'/:~','~ can be combined to form ~ ' i , .~ , , '~ :

by such operations as juxtaposition, rotation

and superposition. The particular operations we

have chosen are rather arbitrary but have been

arrived at as the result of considerable experi-

mentation. H o p e f u l l y the main example o f t h i s

paper- w i l l conv ince the reader t h a t they a re

adequate to a l a r g e c l a s s o f i l l u s t r a t i o n s .

A l ' [, . t :~x'c is a set o f l i n e segments. We can

o n l y i l l u s t r a t e a U[,'k:tr,," r e l a t i v e to a bounding

box. F i gu re I shows a p i c t u r e c o n s i s t i n g o f 25

l i n e segments. I t p u r p o r t s to d e p i c t a man. In a l l

our i l l u s t r a t i o n s the bounding box w i l l be shown.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-082-6/82/008/0179 $00.75

It is not part of the picture.

If we choose different shaped bounding boxes,

the same set of line segments lead to different

illustrations as figures 2,3 and 4 show.

f i ~]u re. I

man in box 14 by 20

SAV
f i .~ure 2

man in box 20 by 14

figure 3

man in box I0 by 30

SA\
figure 4

man in box 30 by 10

1 7 9

The first operation which we shall need is one

which allows us to build basic pictures from line

segments. We define the function

grid : integerxintegerxList(linesegment) ÷ picture

as follows. If m and n are two non-negative

integer values then we construct a grid with x-

coordinates ranging between 0 and m and with

y-coordinates ranging between 0 and n. Each line

segment then joins two points within the grid and

thus can be represented by four integers xO, yO, xl

and yl corresponding to its end points.

Figure 5 shows the 14 by 20 grid which was used

to draft the picture which we have called man.

man = grid (14, 20, ((6, 10, O, I0), (0, 1 O, O, 12),

(0,12,6,12) , (4,0,6,8),

(6, 8, 6, 10)))

Clearly grid can be used to draft any picture. We

use it only to draft pictures which have little or

no regularity.

The remaining opera t ions a l l produce pictures

from pictures. The operation

flip : picture ~ picture

is such that flip(p) is the reflection of p in a

vertical axis exactly bisecting the picture. Figure

6 illustrates flip(man).

The opera t ion

beside : integer×integerxpicturexpicture ~ picture

is such that beside(m,n,p,q) is the picture obtained

by jux tapos ing p to the l e f t of q so tha t the r a t i o

of t h e i r widths is m to n. Figures 7,8 and 9 i l l u s -

t r a t e th i s ope ra t i on .

f i gu re 5

f i gu re 6

f l ip (man) in box 14 by 20

f i gu re 7: beside(1,1,man,man)

in box 28 by 20

)

f i g u r e 8: beside(1,2,man,man)

in box 21 by 20

f i g u r e 9: bes ide(1 ,1 , rnan, f l ip (man))

1 8 0

Similarly above(m,n,p,q) is the picture obtained

by juxtaposing p above q so that the ratio of their

heights is m to n. If we denote the picture with

no line segments in it by nil then we can define

fatboy = above(1,1, nil, man)

boy ~ beside(1,1,fatboy, nil)

See figures I0,11,12,13 and 14. Notice in part-

icular the difference between figures 13 and 14.

The operation

rot : picture ÷ picture

performs a 90 °, anticlockwise rotation of the

picture. The bounding box does not rotate. It is

not part of the picture. Thus figure 15.

The operation

overlay : picture×picture ~ picture

is such that over~ay(p,q) is the picture which

contains all the line segments of p and all the

line segments of q. Thus figure 16.

fi~lure 10: fatboy fi~lure 11: boy

f igure 13: beside(1,1,man,boy)

f igure 14: bes i de (2,1 ,man, fatboy)

figure 15: man and rot(man)

f igure 12: beside(1,1,man,fatboy)
f igure 16:

whe re p

I I

overlay(p, fl i p(p))

= beside(6,7,nl I ,man)

181

Geometric .interpretation

A bounding box has position and orientation.

This can be fixed, relative to an origin, by three

vectors a,b and ~, which respectively describe the

position of the lower left corner of the box and

the length and orientation of its sides. See

figure 17. A bounding box can be a parallelogram.

Let us denote by plot(p,a,b,c) the set of lines

which will constitute an illustration of the

picture p with respect to the bounding box a,b,c.

If we have p=grtd(m,n,s) then for each

(xO, yO, xl,yl) in s the line

(a÷bxxO /m+cxyO /n, a+b×xl /m+~×yl /n)

is included in plot(p,a,~c).

The remaining operations are trivial.

plot(nil,~ b, c) =

plot(flip(p),~b,c) = plot(p,a+~-b,c)

plot (rot (p), a, b_~ c) = plot (p, a*b, c, -b)

p~ot (overlay (p, q) , a, b, c) =

plot(p,~bjc) u plot(q,a,b_~c)

p lot (beside (m, n, p, q), a, b, c) =

plot(p,a, bxm/(m+n),c) u

plot(q, a,b×m/ (m*n) , b×n/ (m+n) , c)

plot (above (m, n, p, q), a_~ b_~ c) =

plot(p,a+cxn/ (m+n) , b_~ cxm/ (m+n)) u

plot (q, a, b, c×n/ (m+n))

The set of lines plot(p,~b,c) can be used to

drive a plotter. It is sensible to be lazy and

avoid building the entire set before beginning

to consume i t.

An Escher woodcut

M.C.Escher produced many fine woodcuts and

lithographs. Among them is a variety where

carefully designed animal shapes intertwine

with each other to entirely cover the area

of the illustration. Some are reproduced in

"The World of M.C.Escher" [I]. One in

particular, "Square Limit" which intertwines

carefully constructed fish (plates 261 to 263),

lends itself to description using the method of

functional geometry. This illustration was

chosen because, along with a reproduction of

c

0 / b r

fi,gure 17: a bounding box

the final woodcut, two sketches on graph paper

are also published. These sketches provide a key

to the way in which the picture was designed.

The decomposition given here is only one way

of analysing the structure of "Square Limit". It

almost certainly does not reflect the way that

Escher himself saw the structure of his picture.

We shall begin by defining four basic pictures.

These give, in a garish parody of Escher's

original drawings, the general shape of each of

three fishes from which the final picture will be

constructed. Our objective is simply to reproduce

a schematic version of "Square Limit" in which

each of the fish is in its correct position and

orientation.

All the pictures which we shall construct will

be square. Frequently we shall require to take

four of them and combine them in the obvious way

to form a new square. We shall make use of the

following operation for this purpose.

quartet (pl, p2, p3, p4) --

above (1, 1, beside(I, 1,pi, p2) ,

beside (1,1, p3, p4))

182

figure 18: p

figure 20: r

figure 19: q

figure 21: s

Figures 18,19,20 and 21 show the four basic

pictures which we shall call p,q,r and s. i~e shall

see that they fit together in the most pleasing

ways. Figure 22 shows shows the arrangement

t = quartet(p,q,r,s)

which is a new picture with some remarkable

properties. Clearly p,q,r and s were designed so

as to fit together in just this way.

Another p~ct~re which we shall need is

constructed From four copies of the basic picture

q, as shown in figure 23. This arrangement of

four copies of a picture each rotated 90 ° relative

to the next, also has general utility. Therefore

let us define

cycle(p1) = quartet(pl, rot(rot(rot(pl))),

rot(pl),rot(rot(pl)))

Using this definition we can describe the

arrangement shown in figure 23 as

u = cycle(rot(q))

which we shall make use of later.

fi~ 22: t = quar te t (p ,q , r , s)

f igure 23: u = cyc le (ro t (q))

Another illustration of the use of cycle is

afforded by figure 24 which also shows one of the

ways in which t fits against itself.

f i~lure 24: c y c l e (r o t (t))

183

figure 25: s i de l 26: side2

i
Consider now the arrangement of figure 25. This

defines

side1 = quartet(nil, nil, rot(t), t)

which is unremarkable in itself until we define

side2 = quartet(sidel,sidel, rot(t),t)

which is shown in figure 26. Here we see the

remarkable property of t, that when reduced to

half its size, it sits happily on top of itself.

Moreover, it does so in two quite distinct ways.

We could of course go on and define side3, side4,

. . . or even side(n), but s~e2 will be sufficient

to complete our task and tax our plotter. figure 27: cornerl

Let us c o n s t r u c t a co rne r in a s i m i l a r manner.

First define the almost empty

aornerl = quartet(nil, nil, nil, u)

shown in figure 27 and then

corner2 ~ quartet(corner1, sidel, rot(sidel),u)

which is shown in figure 28. Again we could

continue in this vein but again it would be in

vain for interesting though corer3 might be,

we only need go as far as corer2.

The next and final step to "Square Limit" is

less trivial. Before we take it we shall make a

little detour.
f i g u r e 28: corner2

184

L
figure 29: pseudocor ner

Clearly we could cycle any of the corners we

have produced or postulated and generate a

symmetric result. These are too regular to be very

interesting. However a minor alteration to what

could have been corner3 leads to

pseudocorner = quartet(corner2, side2,

rot(side2),rot(t))

shown in figure 29. Note that we have replaced a

slightly boring u by an interestingly irregular

rot(t). Now we can produce

pseudolimit = cycle(pseudocorner)

shown in Figure 30. This is not unlike "Square

Limit". Except near the edge, the fish are not yet

in their correct orientation.

f igure 30: pseudolimit

185

To resolve this final problem we need to define

a function which will produce from nine pictures

a regular three by three arrangement of them. We

use the fact that the arguments of above and

beside can be laid out in the text in the same

positions as the corresponding pictures will

occupy in the composition, to ensure that our

definition is correct. At the same time we

elevate this nice property to the new function.

nonet(pl, p2, p3,

p4, p5,p6,

p7,p8,pg) =

above (1, 2, beside (1, 2, pl, beside (1,1, p2, p3)),

above (I, 1, beside (1, 2, p4, beside (1, 1, p5, p6)),

beside (1, 2, p 7, beside (1, 1, pS, pg))))

Now, finally, we can define what will be one

corner of "Square Limit". It is a non-trivial

arrangement of nine of the composite pictures

which we have defined.

corner = nonet(corner2, side2, side2,

rot(side2) ,u, rot(t),

rot (side2), rot(t), rot(q))

This corner is illustrated in figure 31. Observe

that it is not symmetric about its main diagonal,

as one might have expected. The definition of

I i

I i
figure 31: corner

I I

corner shows this most clearly, with the two

asymmetric occurrences of rot(t).

So we Ceach the end of the story. Satisfyingly,

for the author at least, figure 32 shows

squarelimit = cycle(corner)

and all the fish are where they should be, all 412

of them.

[1_7 Locher J.L. (ed) "The world of M.C.Escher",

Harry N. Abrams, Incorporated, New York (1971)

ISBN 8109-0107-2

Acknowledgements

Many people have helped me to investigate the

ideas presented here. Martin McLauchlan and Mary

Sheeran each made implementations of these and many

other basic operations and applied them to many

problems, in particular that of integrated circuit

layout. I have benefitted greatly from the comments

of colleagues at the Universities of Edinburgh,

Newcastle upon Tyne and Oxford. Les Belady gave me

the book on Escher, six years ago, and generated

all this fun and frustration. The illustrations

were done using a functional geometry package

implemented in UCSD Pascal by Mary Sheeran.

Post script As an exercise the interested reader

might like to describe the following picture of

a crowd of functional programmers.

1 8 6

f igure 32: square l i m i t

187

