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Abstract 

A method of describing pictures is introduced. 

The equations, which describe the appearance of a 

picture, also form a purely functional program 

which can be used to compute the set of lines 

necessary to plot the picture on a graphical 

device. The method is illustrated by using it to 

describe the structure of one of the woodcuts of 

Maurits Escher. 

I n t r o d u c t i o n  

%4e s h a l l  d e f i n e  a da ta  type ~ , ~ ' ~ ' , '  and some 

o p e r a t i o n s  upon i t .  In p a r t i c u l a r  we s h a l l  show 

how 1'{,'/:~','~ can be combined to form ~ ' i , .~ , , '~ :  

by such operations as juxtaposition, rotation 

and superposition. The particular operations we 

have chosen are rather arbitrary but have been 

arrived at as the result of considerable experi- 

mentation. H o p e f u l l y  the main example o f  t h i s  

paper- w i l l  conv ince  the reader  t h a t  they a re  

adequate  to a l a r g e  c l a s s  o f  i l l u s t r a t i o n s .  

A l ' [ , . t :~x'c is a set  o f  l i n e  segments. We can 

o n l y  i l l u s t r a t e  a U[,'k:tr,," r e l a t i v e  to a bounding 

box. F i gu re  I shows a p i c t u r e  c o n s i s t i n g  o f  25 

l i n e  segments. I t  p u r p o r t s  to  d e p i c t  a man. In a l l  

our  i l l u s t r a t i o n s  the bounding box w i l l  be shown. 
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It is not part of the picture. 

If we choose different shaped bounding boxes, 

the same set of line segments lead to different 

illustrations as figures 2,3 and 4 show. 

f i ~]u re. I 

man in box 14 by 20 

SAV 
f i .~ure  2 

man in box 20 by 14 

figure 3 

man in box I0 by 30 

SA\ 
figure 4 

man in box 30 by 10 
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The first operation which we shall need is one 

which allows us to build basic pictures from line 

segments. We define the function 

grid : integerxintegerxList(linesegment) ÷ picture 

as follows. If m and n are two non-negative 

integer values then we construct a grid with x- 

coordinates ranging between 0 and m and with 

y-coordinates ranging between 0 and n. Each line 

segment then joins two points within the grid and 

thus can be represented by four integers xO, yO, xl 

and yl corresponding to its end points. 

Figure 5 shows the 14 by 20 grid which was used 

to draft the picture which we have called man. 

man = grid (14, 20, ( (6, 10, O, I0), (0, 1 O, O, 12), 

(0,12,6,12) .... , (4,0,6,8), 

(6, 8, 6, 10))) 

Clearly grid can be used to draft any picture. We 

use it only to draft pictures which have little or 

no regularity. 

The remaining opera t ions  a l l  produce pictures 

from pictures. The operation 

flip : picture ~ picture 

is such that flip(p) is the reflection of p in a 

vertical axis exactly bisecting the picture. Figure 

6 illustrates flip(man). 

The opera t ion  

beside : integer×integerxpicturexpicture ~ picture 

is such that beside(m,n,p,q) is the picture obtained 

by jux tapos ing  p to the l e f t  of  q so tha t  the r a t i o  

of  t h e i r  widths is m to n. Figures 7,8 and 9 i l l u s -  

t r a t e  th i s  ope ra t i on .  

f i gu re  5 

f i gu re  6 

f l ip (man)  in box 14 by 20 

f i gu re  7: beside(1,1,man,man) 

in box 28 by 20 

) 

f i g u r e  8: beside(1,2,man,man) 

in box 21 by 20 

f i g u r e  9: bes ide(1 ,1 , rnan, f l ip (man) )  
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Similarly above(m,n,p,q) is the picture obtained 

by juxtaposing p above q so that the ratio of their 

heights is m to n. If we denote the picture with 

no line segments in it by nil then we can define 

fatboy = above(1,1, nil, man) 

boy ~ beside(1,1,fatboy, nil) 

See figures I0,11,12,13 and 14. Notice in part- 

icular the difference between figures 13 and 14. 

The operation 

rot : picture ÷ picture 

performs a 90 °, anticlockwise rotation of the 

picture. The bounding box does not rotate. It is 

not part of the picture. Thus figure 15. 

The operation 

overlay : picture×picture ~ picture 

is such that over~ay(p,q) is the picture which 

contains all the line segments of p and all the 

line segments of q. Thus figure 16. 

fi~lure 10: fatboy fi~lure 11: boy 

f igure 13: beside(1,1,man,boy) 

f igure 14: bes i de (2,1 ,man, fatboy) 

figure 15: man and rot(man) 

f igure 12: beside(1,1,man,fatboy) 
f igure 16: 

whe re p 

I I  

overlay(p, fl i p(p)) 

= beside(6,7,nl I ,man) 
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Geometric .interpretation 

A bounding box has position and orientation. 

This can be fixed, relative to an origin, by three 

vectors a,b and ~, which respectively describe the 

position of the lower left corner of the box and 

the length and orientation of its sides. See 

figure 17. A bounding box can be a parallelogram. 

Let us denote by plot(p,a,b,c) the set of lines 

which will constitute an illustration of the 

picture p with respect to the bounding box a,b,c. 

If we have p=grtd(m,n,s) then for each 

(xO, yO, xl,yl) in s the line 

(a÷bxxO /m+cxyO /n, a+b×xl /m+~×yl /n ) 

is included in plot(p,a,~c). 

The remaining operations are trivial. 

plot(nil,~ b, c) = 

plot(flip(p),~b,c) = plot(p,a+~-b,c) 

plot (rot (p), a, b_~ c) = plot (p, a*b, c, -b) 

p~ot (overlay (p, q ) , a, b, c) = 

plot(p,~bjc) u plot(q,a,b_~c) 

p lot (beside (m, n, p, q), a, b, c) = 

plot(p,a, bxm/(m+n),c) u 

plot(q, a,b×m/ (m*n) , b×n/ (m+n) , c) 

plot (above (m, n, p, q), a_~ b_~ c) = 

plot(p,a+cxn/ (m+n) , b_~ cxm/ (m+n) ) u 

plot (q, a, b, c×n/ (m+n) ) 

The set of lines plot(p,~b,c) can be used to 

drive a plotter. It is sensible to be lazy and 

avoid building the entire set before beginning 

to consume i t. 

An Escher woodcut 

M.C.Escher produced many fine woodcuts and 

lithographs. Among them is a variety where 

carefully designed animal shapes intertwine 

with each other to entirely cover the area 

of the illustration. Some are reproduced in 

"The World of M.C.Escher" [I]. One in 

particular, "Square Limit" which intertwines 

carefully constructed fish (plates 261 to 263), 

lends itself to description using the method of 

functional geometry. This illustration was 

chosen because, along with a reproduction of 

c 

0 /  b r 

fi,gure 17: a bounding box 

the final woodcut, two sketches on graph paper 

are also published. These sketches provide a key 

to the way in which the picture was designed. 

The decomposition given here is only one way 

of analysing the structure of "Square Limit". It 

almost certainly does not reflect the way that 

Escher himself saw the structure of his picture. 

We shall begin by defining four basic pictures. 

These give, in a garish parody of Escher's 

original drawings, the general shape of each of 

three fishes from which the final picture will be 

constructed. Our objective is simply to reproduce 

a schematic version of "Square Limit" in which 

each of the fish is in its correct position and 

orientation. 

All the pictures which we shall construct will 

be square. Frequently we shall require to take 

four of them and combine them in the obvious way 

to form a new square. We shall make use of the 

following operation for this purpose. 

quartet (pl, p2, p3, p4) -- 

above (1, 1, beside(I, 1,pi, p2) , 

beside (1,1, p3, p4) ) 
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figure 18: p 

figure 20: r 

figure 19: q 

figure 21: s 

Figures 18,19,20 and 21 show the four basic 

pictures which we shall call p,q,r and s. i~e shall 

see that they fit together in the most pleasing 

ways. Figure 22 shows shows the arrangement 

t = quartet(p,q,r,s) 

which is a new picture with some remarkable 

properties. Clearly p,q,r and s were designed so 

as to fit together in just this way. 

Another p~ct~re which we shall need is 

constructed From four copies of the basic picture 

q, as shown in figure 23. This arrangement of 

four copies of a picture each rotated 90 ° relative 

to the next, also has general utility. Therefore 

let us define 

cycle(p1) = quartet(pl, rot(rot(rot(pl))), 

rot(pl),rot(rot(pl))) 

Using this definition we can describe the 

arrangement shown in figure 23 as 

u = cycle(rot(q)) 

which we shall make use of later. 

fi~ 22: t = quar te t (p ,q , r , s )  

f igure  23: u = cyc le ( ro t (q ) )  

Another illustration of the use of cycle is 

afforded by figure 24 which also shows one of the 

ways in which t fits against itself. 

f i~lure 24: c y c l e ( r o t ( t ) )  
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figure 25: s i de l  26: side2 

i 
Consider now the arrangement of figure 25. This 

defines 

side1 = quartet(nil, nil, rot(t), t) 

which is unremarkable in itself until we define 

side2 = quartet(sidel,sidel, rot(t),t) 

which is shown in figure 26. Here we see the 

remarkable property of t, that when reduced to 

half its size, it sits happily on top of itself. 

Moreover, it does so in two quite distinct ways. 

We could of course go on and define side3, side4, 

. . .  or even side(n), but s~e2 will be sufficient 

to complete our task and tax our plotter. figure 27: cornerl 

Let us c o n s t r u c t  a co rne r  in a s i m i l a r  manner. 

First define the almost empty 

aornerl = quartet(nil, nil, nil, u) 

shown in figure 27 and then 

corner2 ~ quartet(corner1, sidel, rot(sidel),u) 

which is shown in figure 28. Again we could 

continue in this vein but again it would be in 

vain for interesting though corer3 might be, 

we only need go as far as corer2. 

The next and final step to "Square Limit" is 

less trivial. Before we take it we shall make a 

little detour. 
f i g u r e  28: corner2  
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L 
figure 29: pseudocor ner 

Clearly we could cycle any of the corners we 

have produced or postulated and generate a 

symmetric result. These are too regular to be very 

interesting. However a minor alteration to what 

could have been corner3 leads to 

pseudocorner = quartet(corner2, side2, 

rot(side2),rot(t)) 

shown in figure 29. Note that we have replaced a 

slightly boring u by an interestingly irregular 

rot(t). Now we can produce 

pseudolimit = cycle(pseudocorner) 

shown in Figure 30. This is not unlike "Square 

Limit". Except near the edge, the fish are not yet 

in their correct orientation. 

f igure 30: pseudolimit 
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To resolve this final problem we need to define 

a function which will produce from nine pictures 

a regular three by three arrangement of them. We 

use the fact that the arguments of above and 

beside can be laid out in the text in the same 

positions as the corresponding pictures will 

occupy in the composition, to ensure that our 

definition is correct. At the same time we 

elevate this nice property to the new function. 

nonet(pl, p2, p3, 

p4, p5,p6, 

p7,p8,pg) = 

above (1, 2, beside (1, 2, pl, beside (1,1, p2, p3) ), 

above (I, 1, beside (1, 2, p4, beside (1, 1, p5, p6) ), 

beside (1, 2, p 7, beside (1, 1, pS, pg) ) ) ) 

Now, finally, we can define what will be one 

corner of "Square Limit". It is a non-trivial 

arrangement of nine of the composite pictures 

which we have defined. 

corner = nonet(corner2, side2, side2, 

rot(side2) ,u, rot(t), 

rot (side2), rot(t), rot(q) ) 

This corner is illustrated in figure 31. Observe 

that it is not symmetric about its main diagonal, 

as one might have expected. The definition of 

I i 

I i 
figure 31: corner 

I I 

corner shows this most clearly, with the two 

asymmetric occurrences of rot(t). 

So we Ceach the end of the story. Satisfyingly, 

for the author at least, figure 32 shows 

squarelimit = cycle(corner) 

and all the fish are where they should be, all 412 

of them. 

[1_7 Locher J.L. (ed) "The world of M.C.Escher", 

Harry N. Abrams, Incorporated, New York (1971) 

ISBN 8109-0107-2 
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Post script As an exercise the interested reader 

might like to describe the following picture of 

a crowd of functional programmers. 
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f igure 32: square l i m i t  
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