
~9~i'8 A ~ 3[T~ring Leer'tare

, ~ - r Science O n e M a n s V i e w o f C o n ~ p u t e

[L W. HAMMING

B dg Tdephene Laboratories, Inc., Murray Hi l l , New Jersey

~x~s'r~.xv'r, A nvtmber of observations and comments are directed toward suggesting that more
~ha*~ die usual engineering flavor be given to computer science. The engineering aspect is
imv~rt~at because most present ditficulties in this field do not involve the theoretical question
r~f whe*,her ccrte~in things can be done, bu t rather the practical question of how can they be
accomplished well and simply.

The teaching of computer science could be made more effective by various alterations, for
example, the i~elusion of a laboratory course in programming, t~he requirement for a strong
minor ia something other than mathematics, and more practical coding and less abstract
theory, as well as more seriousness and less game playing.

~:eY -wogi)$ ~kN[) Pt~gASES: computer science, computer engineering, practical programming,
mathematical g~me~playi~g, computer teehniciat~, computer professional, true-to-life pro-
tramming, comtmtcr science curriculum, software, basic research, undirected research, pro-
grammars' ethical standards, programmers ' soziat responsibility

i,et me begin with ~ few personal words , When one is notified that he has been
(~lected t:he ACM Turing lec turer f o r the year, he is at first surprised--especially
is the ,~o~academic person su rp r i sed b y an ACM award. After a little while the
s~rprise is replaced by a feeling of p l ea su re . Still later comes ~ feeling of "Why me?"
With aI1 that has been done and is b e i n g done in computing, why single out me and
my work? Well, I suppose tha t i~ h a s to happen to someone each year, and this
time [am the lucky person. A n y w a y , l e t me thank you for the honor you have given
~o me mid by inference to ~he Bell T e l e p h o n e Laboratories where I work and which
has made possible so much of w h a t I h a v e done.

The topk:: of my Turing lecture, " O n e Man ' s View of Computer Science," was
picked because "What is c o m p u t e r science?" is m'gued endlessly among people
in the field. Furthermore, as t he exce l l en t Curriculum 68 report ~ remarks in its
introduct;ioa, "The Commit tee be l i eves s t rongly tha t a continuing dialogue on the
process and goals of education in c o m p u t e r science will be vital in the years to come."
I,as~ty, it is wrong to think of T u r i n g , for whom these lectures were named, as being
exclusively interested in Ta r ing m a c h i n e s ; the fact is that he contributed to mm~y
aspects of the field and would p r o b a b l y have been very interested in the topic,
though perhaps not in what I say .

The question "Whag is c o m p u t e r science?" actually occurs in rnatly different

A Report of the ACM Curriculum Commit tee on Computer Science; Comm. ACM 11, 3 (Mar:
1968), 151--197.

JouraM of Q~e Association for Computing)&uehin,ery V'ol. lfl, No. [, Juau~ry 1969, DP. 8-12.

R, W, HAMMING

forms, among which are: What is computer science currently? What can it deveI¢):p
into? What shouht it develop into? What, will it develop into?

A precise answer cannot be given to any of the:~e, Ma~y :,'ears ago aa erni~er~:t
mathematician wrote a b~ek What is Malkemagics and >.owhere did he try to de~
firte mathematics, rather he simply wrote :mathematics, While you will ~(,~- arid
then find some :~spect of mathematics defirmd rather sharply, the only geaeralty
agreed upon definition of mathematics is "2\[athematics is what mathematician,s
do", which is followed by "Mathematicim~s are people who do nmthematics." Wha t
is true about defining raathematics is also true about ma~.v other fields: ~chere is
often no dear, sharp definition of the field.

In the face of this difficulty many people, i~mludir~g myself ag times, flee[~' t~a:~:
we should ignore the discussion and get on with doi~g it. But a.s George I:~rs3 the
points out so welP in a recent article, it does matter what people in Wash ~ gt(~n
D. C. think computer science is. According to him, they tend to feel that it is a
part of applied mathernatics and therefore turn to the mathematiciat~s for advice
in the granting of funds. And it is not greatly different elsewhere; in both t dus t ry
and the universities you can often still see traces of where computing first sta:rted,
whether in electrical engineering, physics, mathematics, or even busi~ess, ti;vi-
dently the picture which people have of a subject can significantly afl'ect its subse..
quent development. Therefore, although we cannot hope to set, tle the questioa
definitively, we need fre(luently to examine and to air our views on what ~,ur su~>
jeer is and should become.

In many. x(~, p(.cts,"s~"' for me it would be more satisfactory, t(: give a talk (m s,ome
small, technical point in computer science---it would certainly be easier. But ~.hat~
is exactly one of the things that I wish to st, ress-- the danger of gettir~g h)st i~ (.he
details of the field, especially in the coming (lays when there will t:e a veri table
blizzard of papers appearing each month in the journals. We nmst give a good deal
of ~ttention to a broad training in the f ield--this in tim face of the increasing ~
sity to specialize more and rnore higMy in order to get a thesis problem, pubt:ish
many papers, el;(',. We need to prepare our students for the year 2000 whet~ ms:my
of them will be at the peak of their career. I t seems to me to be more true ia corn..
puter seience than in many other fields tha t "specialization leads to triviality."

I am sure you have all heard that our scientific knowledge has been doubli~g :
every 15 to 17 years. I strongly suspect t ha t the rate is now much higher .in com~.
puter science; certainly it was higher during the l:)~vst 15 years. In all of our plans
we must take this growth of information into account and recognize that in a v e r y :
real sense we face a "semi-infnite" amount of knowledge. In many respects the
classical eoneept of a seholar who knows a t least 90 percent of the relevant knowb.
edge in his feld is a dying eoneept. Narrower and narrower specialization is
the answer, since in part the difficulty is in the rapid growth of the ir~terrelatio~> :
ships between fields. I t is my private opinion that we need to put relatively more
stress on quality and less on quanti ty and tha t the careful, critical, eor~sidered
survey m'tieles will often be more significant in advancing the field than new, non ~:
essential material.

We live in a world of shades of grey, but in order to argue, indeed even to think,.
it is often necessary to dichotomize and say "blaek" or "white". Of course in d o i n g

F o a s Y ~ ' ~ , G. E. What to do till the c o m p u t e r sc ient is t comes. Am. Math. Mo~lhly 75, 5
(May 1968), 454-461.

Journal of the Association for Computing Machinery, Vol. 16, No. I, January 1969

..... ':4 Co,~zpufer ~bcience 5

~,~ we do viole,,~ce W the truth, but there seems to be n o o th e r way to proceed. I
~:~g t}-~ere~'ore, that you will take m a n y of my small d i s t i nc t i ons in this l ight-- in
a s~q:~:< ~, I do no*~ bdieve them m:,-seIg bu t there seems t o b e no other simple way of
di.<~>.s:b~g the matter.

F~ e~ampte, let me make a.~ a r b i t r a r y distinction b e t w e e n science and engineer-
i~g by sayi~g that science is con.cerned with u'hat is p o s s i b l e while engineering is
~>~eemed with &oozi'ng, from among the many poss ib le ways, one that meets a
m~mber of often poorly stated economic and practical ob jec t ives . We call the field
~,~:~>mputer scie~ce" but I believe t h a t it. would be m o r e accu ra t e ly labeled "com-
p~:~er e~gb~eeri~g" were not thk roe likely to be m i s u n d e r s t o o d . So much of what
~:~:, do is ~:ot> a question of can it be done as it is a q u e s t i o n of finding a practical
~ y . i~; is ~ot usually a quetetiou of can %ere exist a m o n i t o r system, algorithm,
;~%:.<iuler~ or compiler, rather it: is a question of f inding a practical working one
,~i~.h a reas,:mable expenditure of t ime and effort. Whi l e I would not change the
m~.me k'c,m "comput, er science" W "compute r en g in ee r i n g , " I would like to see
fe~g" mitre of a practical, engineeri~g f lavor in what we t e a c h than I usually find in

Th#ere is a seceded reason for e.aking: tha t we stress t h e p rac t i ca l side. As far into
~{e f~aure as I can see, computer science departments a r e go ing to need large sums
{.,i ~ money, Now society usually, though not always, is m o r e willing to give money
~,,hca it. can see practical returns t h a n i t is to invest in w h a t i t regards as impracti-
<:~l a~ {ivi~.ie:~, amusing games, etc, I f we are to get the v a s t su m s of money I believe
we ~ii! ~:~eed, tt~en we had better ~ive a practical flavor t o o u r field. As many of you
~J'e v-.ell aware, we have already acqui red a bad r e p u t a t i o n in many areas. There
5 ~,~ b~e~ ~~x(eptio~s, of' course, bu t all of you know h o w poorly we have so far
r~~e~ {he ~e~:ds for software.

.... ~{,~rt of computer science lies a technological device, the computing
m ~hk~e. Without the machine a lmost all of what we do w o u l d become idle specula-
{i~m, ha~-diy diffe~.e~t from that. of t he notorious Scho la s t i c s of the Middle Ages.
The ~<a~:de~.s of the ACM clearly reeognized that m o s t o f wha t we did, or were
~>i~g t~ do, *'elated (m rids {eeh~:mlogieal device, and t h e y deliberately included
tt:e werd "machi~mry" in the title. The re are those w h o wou ld like to eliminate
~{~e ~:~*i, ia a s(mse to symbolically free the field f rom r e a l i t y , but so far these ef-
:f~: ~*~s have failed. I do ~mt regret the init ial choice. I still b e l i e v e that it is important
hit ,a.:~ ~.~) re~:oguize that the computer , the information p rocess ing machine, is the
~i>m~datic, n of our field.

f:[~v :si:~alI we produce this flavor of practicality tha t I a m asking for, as well as
tl~e ~epu~at, i(m for deliveri,~g what socie ty needs at the t i m e i t is needed? Perhaps
n>st important is the way we go a b o u t our business a n d o u r teaching, though the
research we do will also be very impor tan t . We need to a v o i d t h e bragging of useless-
v'a~:::~u and the game-playing that the pure mathematicians so o f t e n engage in. Whether
<,r ~ot a e plate mathematician is r igh t in claiming t h a t w h a t is u t ter ly useless
~o<l~y will be useful tomorrow (and I doubt very much t h a t he is, in the current
itu~ioa), it is simply poor p ropaganda for raising t h e l a r g e amounts of money

w~ ~eed to support the continuing g rowth of the field. W e need to avoid making
com~ u{er seie~:,ce look like pure mathemat ics : our p r i m a r y s t a n d a r d for acceptance
si~outd be experience in the real world, not aesthetics.

f:iere I setting up a computer science program, I w o u l d give relatively more

Ja~r~t of the As.~ociation for Computi.ug ~'~aehlnery, Vol. 16, No. I, January 1969

6 n . w . H A M ~ a - N O

emphasis to laboratory work than does Curriculum 68, and in particular I w o u l d
require every computer science major, undergraduate or graduate, to take ~ l ~ b o r ~ -
tory course ir~ which he designs, builds, debugs, and documents a r e a s o n a b l y s i z e d
program, perhaps a simulator or a simplified compiler for a particular m ~ c h i ~ e .
The results would be judged on style of programming, practical efficiency, f r ~ e d o n a
from bugs, and decurnentation. If any of these were too poor, I would r r o L l e t
the candidate pass. In judging his work we need to distinguish clearly b e t~o '~een
superficial cleverness and genuine understanding. Cleverness was essent ia l i r r t h e
past; it is rio longer sufficient.

I woukl also require a strong minor ilr some field other than computer s c i e n c e o~r*d
mathematics. Without real experience in using the computer to get usefu l r e s u l t s
the computer science major is apt to know all about the marvelous tool e x c e p t h o w
to use it. Such a person is a mere technician, skilled in manipulating the t o o l b u t
with little sense of how and when to use it for its basic purposes. I believe w~o s h o u l d
avoid turning out more idiot savants--we have more than enough " e o m p u t n i k s "
now to last us a loi,g time. What we need are professionals!

The Curriculum 68 recognized this need for "true-to-life" programming b y sa~y-
ing, "This might be an'anged through summer employment, a coopera t ive w o r k -
study program, part-time employment in computer centers, special projects c o u r s e s ,
or some other appropriate means." I am suggesting that the appropr ia te m e t e r , s
is a stiff laboratory course under your own control, and that the above s u g g e s t i o n s
of the Committee are rarely going to be effective or satisfactory.

Perhaps the most vexing question in planning a computer science c u r r i e u l u r x l is
determini,~g the mathematics courses to require of those who major in t h e f i e l d .
Many of us came to computing with a strong background in mathematics a n d t e n d
automatically to feel that a lot of mathematics should be required of e v e r y o n e .
All too often the teacher tries to make the student into a copy of himself. B u t i t is
easy to observe that in the past many highly rated software people were i g n _ o r a n t
of most of formal mathematics, though many of them seemed to have ~ n ~ G u r a l
talent for mathenlati(:s (as it is, rather ttmn as it is so often taught).

In the past I have argued that to require a strong mathematical content f o r c o m -
puter science would exclude many of the best people in the field. H o w e v e r , "v~ i th
the coming importance of scheduling and the allocating of the resources o f t h e
computer, I have had to reconsider my opinion. While there is some evider~ee t h a ~ ;
part of this will be incorporated into the hardware, I find it difficult to b e l i e v e t h a t
there will not be for a long time (meaning at least five years) a lot of s e h e d u t l i n g
and allocating of resources in software. If this is to be the pattern, then w e n _ e e d
to consider training in this fiekl. If we do not give such training, then the c o m p u t e r
science major will find that he is a technician who is merely programrair, g W h a t
others tel1 him to do. Ii'urthermore, the kinds of programming that were r e g a r d e d
in the past as being great often depended on cleverness and trickery and reql t :m. i red
little or no formal mathematics. This phase seems to be passing, and I am. f o r c e d ;
to believe that in the future a good mathematical background will be n~e,c:le(::[i f
our graduates are to do significant work.

History shows that relatively few people can learn much new m a t h e r n a t i e ~ in
their tl:firties, let alone later in life; so that if mathematics is going to p lay tx s i g r d ~ .
cant role in the future, we need to give the students mathematical trainir~g vvl-~.ile
they are in school. We can, of course, evade the issue for the moment by P r O v i d i n g

Journal of the A~sociation for Computing Machinery, Vol. 16, No. 1, January 1969

On~ Ma~',~ View of Computer Science

t~vo parallel ps~ths, one Mth and one without mathematics, with the warning that
t[~ ~o~mathe:maticaI path leads to a dead end so far as further university training
is c(mcerr~ed (assuming we believe that mathematics is essential for advanced
traipsing iI:~ computer science).

Once we grant t h e need for a lot of mathematics, then we face the even more
difficult task of say ing specifically which courses. In spite of the numerical analysts'
c{~:ims for t, he fundamenta l importance of their field, a surprising amount of com-
~)uter science ac t iv i ty requires comparatively little of it. But [believe we can de-
fe~:~d the requirement that every computer science major take a~ least one course
in the/ield. Our difficulty lies, perhaps, in the fact that the present arrangement of
(osmal mathematics courses is not suited to our needs as we presently see them. We
seem to ~lecd some abstract algebra; some queuing theory; a lot of statistics, in-
cludh~g the design of experiments; a moderate amount of probability, with perhaps
some elements of 5;Iarkov chains; parts of information and coding theory; and a
iittle (m ba,~dwidth and signalling rates, some graph theory, etc., but we also know
tohat the field is rap id ly changing and that tomorrow we may need complex variables,
topoh)gy, and other topics.

As I said, the planning of the mathematics courses is probably the most vexing
part of the curriculum. After a lot of thinking on the matter, I currently feel that
if our gr~Lduates are to make significant contributions and not be reduced to the
levet of technicians running a tool as they are told by others, then it is better to
give ~hem too much mathematics rather than too little. I realize all too well that
t}~is will exclude m a n y people who in the past have made contributions, and I am
~o¢ happy about m y conclusion, but there it is. In the future, success in the field
~,t ° computer science is apt to require a command of mathematics.

One of the complaints regularly made of computer science curriculums is tha~
~hey seem to almost total ly ignore business applications and COBOL I think that
i~ is r~o~ a question of how important the applications are, nor how widely a lan-
guage like Co~oL is used, that should determine whether or not it is taught in the
cc~mputer science depar tment ; rather, I think it depends on whether or not the
business administration department can do a far better job ~haa we can, and whether
~r ~ot what is pecul iar to the business applications is fundamental to other aspects
of computer science. And what I have indicated about business applications applies,
t believe, to most o the r fields of application that can be taught in oilier depar~-
~ne~xts. I strongly bel ieve that with the limited resources we have, and will have for
a long time to come, we should not uttempt ~ teach applications of computers
i~ the computer science department~rather, those applications should be taught
i~,~ their natural environments by the appropriate departments.

The problem of the role of analog computation in the computer science curricu-
lum is not quite the s a m e as that of applications to special fields, since there is really
s~() place else for it to go. There is little doubt that analog computers are eeonomi-
~t ly important and will continue to be so for some time. But there is also little
doubt that the field, even including hybrid computers, does not have at present
~he k~ellectual f e rmen t ~hat digital computation does. Furthermore, the essence
<'ff good analog computa t ion lies in the understanding of the physical limitations
o i the equipment and in the peculiar art of scaling, especially in the time variable,
~'hich is quite foreign to the rest of computer science. I t tends, therefore, to be
ignored rather than to be rejected; it is either not taught or else it is an elective, and

Journal of the Association for Computing Machinery, VoL 16, No. I, January 1969

8 ~: R .w.

tMs is probably the best we can expect at present when the center of interest is the
general purpose digital computer. '

At present there is a flavor of "game-playing" about many courses in computer
science. I hear repeatedly from friends who want to hire good software people that
they have found the specialist in computer science is someone they do not want.
Their experience is that graduates of our programs seem to b e mainly interested
in playing games, making fancy programs that really do not work, writing trick
programs, etc. and are unable to discipline their own efforts so that what they s a y
they will do gets done on time and in practical form. If I had heard this complaint:
merely once from a friend who fancied that he was a hard-boiled engineer, t h e n
I would dismiss it; unfortunately I have heard it from a number of capable, intel: : :
ligent, understanding people. As I earlier said, since we have such a need for
support for the current and future expansion of our facilities, we had better con~
sider how we can avoid such remarks being made about our graduates in the coming::
years. Are we going to continue to turn out a product that is not wanted in many:
places? Or are we going to turn out responsible, effective people who meet the r e a l
needs of our society? I hope that the latter will be increasingly true; hence my :
emphasis on the practical aspects of computer science

One of the reasons that the computer scientists we turn out are more interested:
in "cute" progranuning than in results is that many of our courses are being t a u g h t
by people who have the instincts of a pure mathematician. Let me make ano the r
arbitrary distinction which is only partially true. The pure mathematician s t a r t s
with the given problem, or else some variant that he has made up from the g iven
problem, and produces what he says is an answer. In applied mathematics i t is:
necessary to add two crucial steps (1) an examination of the relevance of the mathe:
matical model to the actual situation, and (2) the relevance of, or if you wish the
interpretation of, the results of the mathematical model back to the original situai :
tiom This is where there is the sharp difference: The applied mathematician must
be willing to stake part of his reputation on the remark "If you do so and so y o u
will observe such and such very closely and therefore you are justified in
ahead and spending the money, or effort, to do the job as indicated," wMle the
mathematician usually shrugs his shoulders and says, "That is none of my responsi~ :
bility." Someone must take the responsibility for the decision to go ahead on one
path or another, and it seems to me that he who does assume this responsibility
will get: the greater credit, on the average, as it is doled out by society. We needs
therefore, in our teaching of computer science, to stress the assuming of responsi~ :
bility for the whole problem and not just the cute mathematical part, This is another
reason why I have emphasized the engineering aspects of the various subjects and
tried to minimize the purely mathematical aspects.

The difficulty is, of course, that so many of our teachers in computer science a r e
pure mathematicians and that pure mathematics is so much easier to teach t h a n
is applied work. There are relatively few teachers available to teach in the s ty le
I am asking for. This means we must do the best we can with what we have, b u s
we should be conscious of the direction we want to take and that we want, where
possible, to giv m a practical flavor of responsibility and engineering rather than:
mere existence of results.

I t is unfortunate that in the early stages of computer science it is the talent and:
ability to handle a sea of minutiae which is important for success, But if the student

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 1969

One Man's View of Computer Science 9

is to grow into someone who can handle the larger aspects of computer science,
then he must have, and develop, other talents which are not being used or exer-
cised at the early stages. Many of our graduates never make this second step. The
situation is much like that in mathematics: in the early years it is the command
of the trivia of arithmetic and formal symbol manipulation of algebra which is
needed, but in advanced mathematics a far different talent is needed for success.
As I said, many of the people in computer science who made their mark in the
area where the minutiae are the dominating feature do not develop the larger
talents, and they are still around teaching and propagating their brand of detail.
What is needed in the higher levels of computer science is not the "black or white"
mentality that characterizes so much of mathematics, but rather the judgment
and balancing of conflicting aims that characterize engineering.

I have so far skirted the field of software, or, as a friend of mine once said, "ad
hoc-ery." There is so much truth in his characterization of software as ad hoc-ery
that it is embarrassing to discuss the topic of what to teach in software courses.
So much of what we have done has been in an ad hoc fashion, and we have been
under so nmch pressure to get something going as soon as possible that we have
precious little which will stand examination by the skeptical eye of a scientist or
engineer who asks, "What content is there in software?" How few are the difficult
ideas to grasp in the field! How much is mere piling on of detail after detail without
~ny careful analysis! And when 50,000-word compilers are later remade with per-
haps 5000 words, how far from reasonable must have been the early ones!

I am no longer a software expert, so it is hard for me to make serious suggestions
about what to do in the software field, yet I feel that all too often we have been
satisfied with such a low level of quality that we have done ourselves harm in the
process. We seem not to be able to use the machine, which we all believe is a very
powerful tool for manipulating and transforming information, to do our own tasks
in this very field. We have compilers, assemblers, monitors, etc. for others, and yet
when I examine what the typical software person does, I am often appalled at how
little he uses the machine in his own work. I have had enough minor successes
in arguments with software people to believe that I am basically right in my in-
sistence that we should learn to use the machine at almost every stage of what we
are doing. Too few software people even try to use the machine on their own work.
There are dozens of situations where a little machine computation would greatly
aid the programmer. I recall one very simple one where a nonexpert with a very
long FORTRAN program from the outside wanted to convert it to our local use, so
he wrote a simple FORTRAN program to locate all the input-output statements and
all tile library references. In my experience, most programmers would have per-
sonally scanned long listings of the program to find them and with the usual human
fallibility missed a couple the first time. I believe we need to convince the computer
expert that the machine is his most powerful tool and that he should learn to use
it as much as he can rather than personally scan tile long listings of symbols as I
see being done everywhere I go around the country. If what I am reporting is at
all true, we have failed to teach this in the past. Of course some of the best people
do in fact use the computer as I am recommending; my observation is that the run-
of-the-mill programmers do not do so.

To parody our current methods of teaching programming, we give beginners
a grammar and a dictionary and tell them that they are now great writers. We

Journal of the Association for Comput ing Yiachlaery, VoL 16, No. 1, J~nu~ry 1969

10 R . W . HAMMING

seldom, if ever, give them any serious training in style. Indeed I have watched for
years for the appearance of a Manual of Style and/or an Anthology of Good Program.
ruing and have as yet found none. Like writing, programming is a difficult and
complex art. In both writing and programming, compactness is desirable but in
both you can easily be too compact. When you consider how we teach good writing
- - t he exercises, the compositions, and the talks tha t the student gives and is graded
on by the teacher during his training in English--i t seems we have been very remiss
in this matter of teaching style in programming. Unfortunately only few program-
mers who admit that there is something in what I have called "s tyle" are willing
to formulate their feelings and to give specific examples. As a result, few program-
mers write in flowing poetry; most write in halting prose.

I doubt that style in programming is tied very closely to any particular machine
or language, any more than good writing in one natural language is significantly
different than it is in another. There are, of course, particular idioms and details
in one language that favor one way of expressing the idea rather than another,
but the essentials of good writing seem to transcend the differences in the Western
European languages with which I am familiar. And I doubt tha t it is much different
for most general purpose digital machines that are available these days.

Since I am apt to be misunderstood when I say we need more of an engineering
flavor and less of a science one, I should perhaps point out tha t I came to computer
science with a Ph.D. in pure mathematics. When I ask that the training in software
be given a more practical, engineering flavor, I also loudly proclaim that we have
too little understanding of what we are doing and that we desperately need to de-
velop relevant theories.

Indeed, one of my major complaints about the computer field is tha t whereas
Newton could say, "If I have seen a little farther than others it is because I have
stood on the shoulders of giants," I am forced to say, "Today we stand on each
other's feet." Perhaps the central problem we face in all of computer science is
how we are to get to the situation where we build on top of the work of others
rather than redoing so much of it in a trivially different way. Science is supposed
to be cumulative, not almost endless duplication of the same kind of things.

This brings me to another distinction, tha t between undirected research and
basic research. Everyone likes to do undirected research and most people like to
believe that undirected research is basic research. I am choosing to define basic
research as being work upon which people will in the future base a lot of their work.
After all, what else can we reasonably mean by basic research other than work upon
which a lot of later work is based? I believe experience shows tha t relatively few
people are capable of doing basic research. While one cannot be certain tha t a
particular piece of work will or will not turn out to be basic, one can often g i v e
fairly accurate probabilities on the outcome. Upon examining the question of the
nature of basic research, I have come to the conclusion that what d e t e rm in es
whether or not a piece of work has much chance to become basic is not so much
the question asked as it is the way the problem is attacked.

Numerical analysis is the one venerable par t of our curriculum that is widely
accepted as having some content. Yet all too often there is some justice in the re-
mark that many of the textbooks are written for mathematicians and are in fact
much more mathematics than they are practical computing. The reason is, o f
course, that many of the people in the field are converted, or rather only partially

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 1969

One Man's View of Computer Science 11

converted, mathematicians who still have the unconscious standards of mathe-
matics in the back of their minds. I am sure many of you are familiar with my
objections 3 along these lines and I need not repeat them here.

I t has been remarked to me by several persons, and I have also observed, that
many of the courses in the proposed computer science curriculum are padded. Often
they appear to cover every detail rather than confining themselves to the main
ideas. We do not need to teach every method for finding the real zeros of a function:
we need to teach a few typical ones that are both effective and illustrate basic con-
cepts in numerical analysis. And what I have just said about numerical analysis
goes even more for software courses. There do not seem to me (and to some others)
to be enough fundamental ideas in all that we know of software to justify the large
amount of time that is devoted to the topic. We should confine the material we
teach to that which is important in ideas and technique--the plodding through a
mass of minutiae should be avoided.

Let me now turn to the delicate matter of ethics. I t has been observed on a
number of occasions that the ethical behavior of the prog]'ammers in accounting
installations leaves a lot to be desired when compared to that of the trained account-
ing personnel. 4 We seem not to teach the "sacredness" of information ~bout people
~md private company material. My limited observation of computer experts is
that they have only the slightest regard for these matters. For e×ample, most
programmers believe they have the right to take with them any program they wish
when they change employers. We should look at, and copy, how ethical standards
are incorporated into the traditional accounting courses (and elsewhere), because
they turn out a more ethical product than we do. We talk a lot in public of the
dangers of large data banks of personnel records, but we do not do our share at
the level of indoctrination of our own computer science majors.

Along these lines, let me briefly comment on the matter of professional standards.
We have recently had a standard published ~ and it seems to me to be a good one,
but again I feel that I am justified in asking how this is being incorporated into
the training of our students, how they are to learn to behave that way. Certainly
it is not sufScient to read it to the class each morning; both ethical and professional
behavior are not effectively taught that way. There is plenty of evidence that
other professions do manage to communicate to their students professional stand-
ards which, while not always followed by every member, are certainly a lot better
instilled than those we are presently providing for our students. Again, we need
to examine how they do this kind of training and try to adapt their methods to our
needs.

Lastly, let me mention briefly the often discussed topic of social responsibility.
We have sessions at meetings on this topic, we discuss it in the halls and over coffee
and beer, but again I ask, "How is it being incorporated into our training program?"
The fact that we do not have exact rules to follow is not sufficient reason for omit-
ting all training in this important matter.

I believe these three topics--ethics, professional behavior, and social responsi-
b i l i ty -must be incorporated into the computer science curriculum. Personally

HAMminG, R . W . Numerical analysis vs. msthemat ics . Science 148 (Apr. 1965), 473-475.
4 CAREY, J . L., AND DOHERTY, W . A . Ethical Standards of the Accounting Profession. Am.
Ins t . CPAs., 1906.

Comm. ACM 11, 3 (Mar. 1968), 198-220.

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 1969

12 R.W. HAMmNG

I do not believe that a separate course on these topics will be effective. From what.
little I understand of the matter of teaching these kinds of things, they can best
be taught by example, by the behavior of the professor, They are taught in the
odd moments, by the way the professor phrases his remarks and handles himself.
Thus it is the professor who must first be made conscious that a significant part of
his teaching role is in communicating these delicate, elusive matters and that he is
not justified in saying, "They are none of my business." These are things that must
be taught constantly, all the time, by everyone, or they will not be taught at all.
And if they are not somehow taught to the majority of our students, then the f i e ld
will justly keep its present reputation (which may well surprise you if you ask your
colleagues in other departments for their frank opinions).

In closing, let me revert to a reasonable perspective of the computer s c i ence
field. The field is very new, it has had to run constantly just to keep up, and t h e r e
has been little time for many of the things we have long known we must some d a y
do. But at least in the universities we have finally arrived: we have es tabl ished
separate departments with reasonable courses, faculty, and equipment. We
now well started, and it is time to deepen, strengthen, and improve our field so t h a t
we can be justly proud of what we teach, how we teach it, and of the students w e
turn out. We are not engaged in turning out technicians, idiot savants, and c o m p u t :
niks; we know that in this modern, complex world we must turn out people who can
play responsible major roles in our changing society, or else we must acknowledge
that we have failed in our duty as teachers and leaders in this exciting, impor t an t
field--computer science.

2

F
tt
V~

as
ab

Journal of the A.~ociatlon for Compu~Lug Machinery, Vol, 16, No. I, January 19~9 Jo~,

