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Abstract:

This document reprints four articles that describe PIE, an experimental personal

information environment, from the vantage point of its application to software development.

PIE employs a description language to support the interactive development of programs. PIE

contains a network of nodes, each of whichcan be assigned several perspectives. Each

perspective describes a different aspect of the program structure represented by the node,

and provides specialized actions from that point of view. Contracts can be created that

monitor nodes describing different parts of a program's description. Contractual agreements

are expressible as formal constraints, or, to make the system failsoft, as English text

interpretable by the user. Contexts and layers _Lre used to represent alternative designs for

programs described in the network. The layered network database also facilitates

cooperative program design by a group, and coordinated, structured documentation.

The first article, "Descriptions for a Programming Environment," provides an overview

of PIE. The second article, "Extending Object Oriented Programming in Smalltalk," explores

the generalizations made to the Smalltalk language in order to combine its strengths as an

object language with capabilities usually found in AI description languages. This extended

dialect is used to implement the PIE system. The third article, "Representing Design

Alternatives," describes PIE's machinery for representing the evolution of a software design.

This machinery is described in greater detail in a separate report, CSL-80.5. The fourth

article, "Browsing in a Programming Environment," describes the user interface.

PIE has also been employed to represent office related information such as mail,

calendars, documents, lectures and expense reports. These capabilities will be described in

CSL-8!-4, PIE: An Experimental Personal Information Environment, to be published later in

1981.
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DESCRIPTIONS FOR A PROGRAMMING ENVIRONMENT I

I. Introduction

In most programming environments, there is support for the text editing of program

specifications, and support for building the program in bits and pieces. However, there is usually

no way of linking these interrelated descriptions in',_o a single integrated structure. The English

descriptions of the program, its rationale, general structure, and tradeoffs are second class citizens at

best. kept in separate files, on scraps of paper next to the terminal, or, for a while, in the back of

the implementor's head.

Furthermore, as the software evolves, there is no way of noting the history of changes, except

in some primitive fashion, such as the history, list of ]nterlisp [Teitelman78]. A history list provides

little support for recording the purpose of a change other than supplying a comment. But such

comments are inadequate to describe the rationale for coordinated sets of changes that are part of

some overall plan for modifying a system. Yet recording such rationales is necessary if a

programmer is to be able to come to a system and understand the basis for its present form.

Developing programs involves the exploration of alternative designs. But most programming

environments provide litde support for switching between alternative designs or comparing their

similarities and differences. They do not allow alternative definitions of procedures and data

structures to exist simultaneously in the programrrting environment; nor do they provide a

representation for the evolution of a particular set of definitions across time.

In this paper we argue that by making descriptions first class objects in a programming

environment, one can make life easier for the programmer through the life cycle of a piece of

software. Our argument is based on our experience with PIE, a description-based programming

environment that supports the design, development, and documentation of Smalltalk programs.

2. Networks

The PIE environment is based on a network of nodes which describe different types of

entities. We believe such networks provide a better basis for describing systems than files. Nodes

provide a uniform way of describing entities of many sizes, from small pieces such as a single

procedure to much larger conceptual entities. In our programming environment, nodes are used to

describe code in individual methods, classes, categories of classes, and configurations of the system

to do a particular job. Sharing structures between configurations is made natural and efficient by

sharing regions of the network.

1 Published in the Proceedings of the First Annual Conference of the American Association for Artificial Intelligence,
August 1980. pp. 187-194.
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Nodes are also used to describe the specifications for different pans of the system. The

programmer and designer work in the same environment, and the network links elements of the

program to elements of the design and specification. The documentation on how to use the system

is embedded in the network also. Using the network allows multiple views of the documentation.

For example, a primer and a reference manual can share many of the same nodes while using

different organizations suited to their different p:arposes,

In applying networks to the description of software, we are following a tradition of employing

semantic networks for knowledge representation. Nodes in our network have the usual

characteristics that we have come to expect in a representation language--for example, defaults,

constraints, multiple perspectives, and context-sensitive value assignments.

There is one respect in which the representation machinery developed in PIE is novel: it is

implemented in an obJect-oriented language. Most representation research has been done in Lisp.

Two advantagcs derive from this change of soil. The first is that there is a smaller gap between the

primitives of the representation language and the primitives of the implementation language,

ObJects are closer to nodes (frames, units) than lists. This simplifies the implementation and gains

some advantages in space and time costs. The second is that the goal of representing software is

simplified. Software is built of objects whose resemblance to frames makes them natural to describe

in a frame-based knowledge representation.

3. Perspectives

Attributes of nodes are grouped into perspective_. Each perspective reflects a different view of

the entity represented by the node. For example, one view of a Smalltalk class provides a

definition of the structure of each instance, specifying the fields it must contain; another describes a

hierarchical organization of the methods of the cla:_s: a third specifes various external methods

called from the class: a fourth contains user documentation of the behavior of the class.

The attribute names of each perspective are local to the perspective. Originally, this was not

the case. Perspectives accessed a common pool of am'ibutes attached to the node. However, this

conflicted with an important property that design environments should have, namely, that different

agents can create perspectives independently. Since one agent cannot know the names chosen by

another, we were led to make the name space of each perspective on a node independent.

Perspectives may provide partial views which are not necessarily independent. For example,

the organization perspective that categorizes the methods of a class and the documentation

perspective that describes the public messages of a class are interdependent. Attached procedures

are used to maintain consistency between such perspectives.

Each perspective supplies a set of specialized actions appropriate to its point of view. For

example, the print action of the structure perspective of a class knows how to prettyprint its fields

and class variables, whereas the organization perspective knows how to prettyprint the methods of

the class. These actions are implemented directly through messages understood by the Smalltalk

classes defining the perspective.
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Messages understood by perspectives represent one of the advantages obtained from

developing a knowledge representation language within an object-oriented environment. In most

knowledge representation languages, procedures can be attacl_ed to attributes. Messages constitute a

generalization: the), are attacl;ed to the perspective as a whole. Furthermore, the machinery of the

object language allows these messages to be defined locally for the p&spective. Lisp would insist

on global functions names.

4. Contexts and Layers

All values of attributes of a perspective are relative to a conlexL Context as we use the term

derives from Conniver [SussmanMcl)ermott72]. When one retrieves the values of attributes of a

node, one does so in a particular context, and only the values assigned in that context are visible.
Therefore it is natural to create alternative contexts in which different values are stored for

attributes in a number of nodes. The user can then examine these alternative designs, or compare

them without leaving the design environment. Since there is an explicit model of the differences

between contexts, PIE can highlight differences between designs. PIE also provides tools for the

user to choose or create appropriate values for merging two designs.

Design involves more than the consideration oi_"alternatives. It also involves the incremental

development of a single alternative. A context is structured as a sequence of layers. It is these

layers that allow the state of a context to evolve. The assignment of a value to a property is done

in a particular layer. Thus the assertion that a particular procedure has a certain source code

definition is made in a layer. Retrieval from a context is done by looking up the value of an

attribute, layer by layer. If a value is asserted for the attribute in the first layer of the context, then

this value is returned. If not, the next layer is examined. This process is repeated until the layers

are exhausted.

Extending a context by creating a new layer is an operation that is sometimes done by the

system, and sometimes by the user. The current PIE system adds a layer to a context the first time

the context is modified in a new session. Thus, a user can easily back up to the state of a design

during a previous working session. The user can create layers at will. This may be done when he

or she feels that a given groups of changes should be coordinated. Typically, the user will group

dependent changes in the same layer.

Layers and contexts are themselves nodes in the network. Describing layers in the network

allows the user to build a description of the rationale for the set of coordinated changes stored in

the layer in the same fashion as he builds descriptions for any other node in the network. Contexts

provide a way of grouping the incremental changes, and describing the rationale for the group as a

whole. Describing contexts in the network also allows the layers of a contcxt to themselves be

asserted in a context sensitive fashion (since all descriptions in the network are context-sensitive).

As a result, super-contexts can be created that act as big switches for altering designs by altering the

layers of many sub-contexts.
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5. Contracts and Constraints

In any system, there are dependencies between different elements of the system. If one

changes, the other should change in some corresponding way. We employ contracts between nodes

to describe these dependencies. Implementing contrzLcts raises issues involving 1) the knowledge of

which elements are dependent: 2) the way of specifying the agreement: 3) the method of

enforcement of the agreement; 4) the time when the agreement is to be enforced.

PIE provides a number of different mechanisms for expressing and implementing contracts.

At the implementation level, the user can attach a procedure to any attribute of a perspective, (see

BobrowWinograd77 for a fuller discussion of attached procedures); this allows change of one

attribute to update corresponding values of others. At a higher level, one can write simple

constraints in the description language (e.g. two atr.ributes should always have identical values),

specifying the dependent attributes. The system creates attached procedures that maintain the

constraint.

"]'here are constraints and contracts which cannot now be expressed in any formal language.

Hence, we want to be able to express that a set of participants are interdependent, but not be

required to give a fi_rmal predicate specifying the contract. PIE allows us to do this. Attached

procedures are created for such contracts that notify the user if any of the participants change, but

which do not take any action on their own to mainu_in consistency. Text can be attached to such

informal contracts that is displayed to the user when the contract is triggered. This provides a

useful inter-programmer means of communication and preserves a failsofl quality of the

environment when formal descriptions are not available.

Ordinarily such non-formal contracts would be of little interest in artificial intelligence. They

are, after all, outside the comprehension of a reasoning program. However, our thrust has been to

build towards an artificially intelligent system throug_L succcessive stages of man-machine symbiosis.

This approach has the advantage that it allows us to observe human reasoning in the controlled

setting of interacting with the system. Furthermore, it allows us to investigate a direction generally

not taken in Al applications: namely the design of memory-support rather than reasoning-support

systems.

An issue in contract maintenance is deciding when to allow a contract to interrupt the user or

to propagate consistency modifications. We use the closure of a layer as the time when contracts

are checked. The notion is that a layer is intended tc_ contain a set of consistent values. While the

user is working within a layer, the system is generally in an inconsistent state. Closing a layer is an

operation that declares that the layer is complete. After contracts are checked, a closed layer is

immutable. Subsequent changes must be made in new layers appended to the appropraiate

contexts.

6. Coordinating designs

So far we have emphasized that aspect of design which consists of a single individual

manipulating alternatives. A complementary facet of the design process involves merging two

partial designs. This task inevitably arises when the design process is undertaken by a team rather

than an individual. To coordinate partial designs, orLe needs an environment in which potentially
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overlapping partial designs can be examined without overwriting one another. This is accomplished

by the convention that different designers place theJ_r contributions in separate layers. Thus, where

an overlap occurred, the divergent values for some common attributes are in distinct layers.

Merging two designs is accomplished by creatittg a new layer into,which are placed the desired

values for attributes as selected from two or more competing contexts. For complex designs, the

merge process is, of course, non-trivial. We do not, and indeed cannot, claim that PIE eliminates

this complexity. What it does provides is a more finely grained descriptive structure than files in

which to manipulate the pieces of the design. Layers created by a merger have associated

descriptions in the network specifying the contexts participating in the merger and the basis for the

merger.

7. Meta-description

Nodes can be assigned meta-nodes whose purpose is to describe defaults, constraints, and

other information about their object node. Information in the meta-node is used to resolve

ambiguities when a command is sent to a node having multiple perspectives.

One situation in which ambiguity frequently arises is when the PIE interface is employed by a

user to browse through the network. When the user selects a node for inspection, the interface

examines the meta-node to determine which inform_ttion should be automatically displayed for the

user. By appropriate use of meta-information, we have made the default display of the PIE browser

identical to one used in Smalltalk. (Smalitalk code :is organized into a simple four-level heirarchy,

and the Smalltaik browser allows examination and modification of Smalltalk code using this

taxonomy.) As a result, a novice PIE user finds the environment similar to the standard Smalltalk

programming environment which he has already learned.

Simplifying the presentation and manipulation of the layered network underlying the PIE

environment remains an important research goal, if the programming environment supported by

PIE is to be useful as well as powerful. We have found use of a meta-level of descriptions to guide

the presentation of the network to be a powerful device to achieve this utility.

8. Conclusion

PIE has been used to describe itself, and to aid in its own development. Specialized

perspectives have been developed to aid in the description of Smalltalk code, and for PIE

perspectives themselves. On-line documentation is integrated into the descriptive network. The

implementors find this network-based approach to developing and documenting programs superior

to the present Smalltalk programming environment. A small number of other people have begun to

use the system.

This paper presents only a sketch of PIE from a single perspective. The PIE description

language is the result of transplanting the idea._; of KRL [BobrowWinograd77] and FRL

[GoldsteinRoberts77] into the object oriented programming environment of Smalltaik

[KayGoldberg77. lngalls78]. A more extensive discussion of the system in terms of the design

process can be found in BobrowGoldstein80, and GoldsteinBobrow80a. A viers of the PIE



6 DESCRIPTIONS FOR A PROGRAMMING ENVIRONMENT

description language as an extension of the object oriented programming metaphor can be found in

GoldsteinBobrow80b. Finally, tile use of PIE as a p:rototype office information system is described

in Goldstein80.
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EXTENDING OBJECT ORIE1VFEi) PROGRAMMING IN SMALLTALK 1

Object oriented programming is a powerful computational framework for many

applications, and Smalltalk [Kay72] is a good example of a language that embodies this framework.

Smalltalk is especially excellent for simulation, as one would expect from the fact that Simula

[Dahi66] is pan of its intellectual genealogy. Objects can represent the participants in a simulation;

messages can represent their interactions. However, the 1976 implementation of Smalltalk

[lngalls76] lacks a number of capabilities that we believe can extend its power considerably,

especially for applications (including simulation) that occur in the context of an overall design

process. These capabilities arise from the assignment of different kinds of description to objects.

(1) multiple perspectives: the assignment of more than one point of view that allows
inheritance of behavior from indepenetent superclasses.

(2) metadescription: the assignment of constraints to attributes that allows the system to
check new values and propagate their intended effects.

(3) identification: the assignment of identifers, unique across an entire computing
community that allow multiple users to manipulate a common set of objects.

(4) context sensitive description: the assignment of a situation marker to values that allows
alternative descriptions to coexist within a common workspace.

Our overall goal is to crossbreed Smalltalk with recent AI representation languages in

order to obtain a hybrid that exhibits the strengths of both lineages. We have pursued this

crossbreeding with the help and cooperation of Smaitltalk's originators, the Xerox PARC Learning

Research Group.

This paper first reviews Smalltalk, then discusses our implementation of each of the above

capabilities within PIE, a Smalltalk system for representing and manipulating designs. We then

describe our experience with PIE applied to software development and technical writing. Our

conclusion is that the resulting hybrid is a viable offspring for exploring design problems.

1. Current Smalltalk

Smalltalk-76 is a programming language based on three metaphors: simulation,

communication and classification. An atomic element of the language, termed an object, simulates

a computer. It has internal state and responds to a set of instructions termed messages. An object

1 Published in the Proceedings of the Lisp Conference, Stanford, California, August 1980.
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responds to a mcssagc in one or all of the following ways: it changes its internal state; it transmits

messages to other objects: it reads or writes an I/O channel such as the display. A sender need

have no knowlcdgc of the internal structure of a rcceiver: it need only know the receiver's message

set. For example, there exist display objects such as rectangles that store their position and extent,

and respond to messages to move, show and erase themselves.

Each object is associated with a single class. The objects associated with a given class are

called its instances. The class owns a dictionary that defines methods for a set of messages. When

a message is sent to an instance, that instance in mrn requests the appropriate method from its

class. The method returned by the class is then applied to the arguments of the message.

Smalltalk has predefined classes for Rectangle and BitRect, the latter being a class that includes a

state variable for storing the display state of the points enclosed by the rectangle. (Rectangle and

BitRect define behavior for classes that interact with a BitMap display).

Classes are hierarchical. A superclass is used to describe the behavior common to several

classes. Given superclasses, the protocol fi_r retrieving a method is extended as follows: when a

message is sent to an instance, the instance asks its class for the method associated with the

message. If the class knows this method directly, ir supplies it. If it does not, the class asks its

superclass. If the superclass responds with a method, this method is passed back to the object.

For example, Bifl_,ect is defined as a subclass of Rectangle. A method like blink is defined only in

Rectangle since its definition, a repetitive invocation of show and erase, applies to instances of

both classes. When blink is sent to an instance of BitRect, BitRect finds no associated method,

and hence passes the buck to Rectangle, which has the desired definition.

The root of the class hierarchy tree is the class Object. If a request for a method

associated with a message comes up to Object, and it does not know the definition of the message,

an error occurs.

Although one class may have a great deal i_a common with the behavior of another, they

may still differ on some methods. For example, the show method of BitRect differs from the

show method of Rectangle in that BitRect displays the contents of the rectangle while Rectangle

only displays the outline. The desired behavior is achieved by redefining the show method in the

subclass. Since method retrieval is bottom up, the redefinition in BitRect will dominate the

definition in Rectangle for instances of BitRect, yet be invisible to instances of Rectangle.

In addition to a mcthod dictionary, each class also owns a list of variable names. The

state of an instance is defined in terms of values for variables with these names as well as values

for any variables whose names appear in the superclass chain. For example, instances of BiSect

store state for contents, the instance variable defined in BitRect, as well as origin and extent, the

instance variables defined in the superclass Rectangle. When any method of an instance is
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activated by passing it a message, that activation can read and change the values of these instance

variables.

A message consists of selectors and arguments. For example, the method with selector

move: has an argument named distance. A particular call to this method might look like reetl

move: 3, where rectl is an instance of class Rectangle and the argument distance is bound to 3.

The three classes, Object, BitRect. and Rectangle, appear in Figure 1 with their associated

instance variables and some of their messages. The syntax employed in this and other figures of

this article is for didactic purposes only, and does not correspond to Smalltalk syntax for defining

classes.

The class Object with instance variables {} and methods {is: c/ass, ...}

The class Rectangle, a subclass of Object, with instance variables {origin, extent} and
methods {show, erase, move: distance, blink .... }

The class BitRect, a subclass of Rectangle, with instance variables {contents} and
methods {show, erase, ...}

Figure 1. A class hierarchy in Smalltaik.

2. Multiple Inheritance

Smalltalk-76 does not support multiple inheritance. Classes are organized into a strict

hierarchy and an instance can be associated with only one class, at a single position in the

hierarchy. However, there are situations in which one desires greater descriptive power. For

example, consider an environment for hardware design. Objects in this environment represent

circuit elements -- resistors, chips, wires, etc. There ,are at least two points of view from which one

may wish to examine these objects. The first is as circuit elements with associated electrical

behavior; the second is as display objects that know how to draw pictures of themselves. To

choose one point of view as primary, i_e., as the class, of the object, and copy methods of the other

points of view into this class, is clearly unsatisfactoqr. Equally unsatisfactory is making one class,

say DisplayObject, a subclass of another, say CircuitE.lement. Such subclassing would be erroneous

for other display objects that are not circuit elemenl:s. One would really like to be able to have

multiple superclasses.

We have explored two designs for multiple itltheritance. Both are based on the use of class

Node, which defines the basic representational unit. An instance of Node represents some entity:

a circuit part, a Smalltalk method, a paragraph of a document. Multiple inheritance is achieved by

assigning perspectives to nodes. A perspective is an instance of a class that represents the node
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from a particular point of view. For example, a node representing a part of a displayed circuit

design might have a CircuitElement perspective and a DisplayObject perspective. Class Node

_defines an instance variable perspectives that stores each node's list of perspectives.

In our first design for multiple inheritance, the state of the object was represented entirely

in the node. Perspective classes carried no state: they supplied method definitions only. This

required that perspectives have backpointers to thei;r node, since their methods manipulated the

state variables stored directly in this node.

Smalltalk-76 constrains the number of named state variables to be fixed when the class is

created. This is an efficiency constraint: it allows compiled code to reference instance variables by

their position in a vector of fixed length rather than by their name. However, in our scheme, we

prefer that it be possible to assert or delete perspectives at any time. Hence, an instance of Node

cannot know all of its state variables at creation time. Our solution was to give class Node a

second state variable whose value was a dictionary keyed by variable names. All variable access

went through this dictionary and the dictionary could be modified at run time. Flexibility was

obtained at increased computational cost. Figure 2 shows a node representing a resistor in a circuit

simulation.

R17, an instance of Node, with

state = [ohms = 100; connection1 = wire6; connection2 = wireS; location = (100,100)t

and perspectives = {CircuitElement; DisplayObjeet}

Figure 2. A Node with multiple perspectives and! a common set of state variables.

Our first design for multiple inheritance presumed that a state variable such as ohms had a

meaning independent of the individual perspectives. Hence, it was sensible for it to be owned by

the node itself. All perspectives would reference this single variable when referring to resistance.

This proved adequate so long as the system designer knew all of the perspectives that might be

associated with a given node, and could ensure this uniformity of intended reference.

When we extended PIE from a single user to a multiple user system, we encountered the

difficulty that two users might define perspectives that employed a variable of the same name,

although they had different purposes in mind for the variable. For example, one user might

define a perspective InventoryPart that used the variable location to point to the node representing

the bin containing the part, while another user might define a perspective DisplayObject that used

a variable of the same name to refer to the location of the part on the screen. The result would be

an unintentional clash. In our first implementation, both perspectives would be erroneously
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referencing the same variable in the common pool of node variables.

Our solution was to eliminate the central database owned by the node in favor of local

databases owned by each perspective. This new dtesign achieved privacy at the cost of additional

space. Furthermore, it required the user to supply functions for coordinating state variables in

different perspectives that represented the same Ctata. However, this seemed unavoidable if we

were to open the process of perspective creation to multiple users. Figure 3 illustrates our

representation for R17 using this second design. There is no longer a common pool of state

variables.

RI7, an instance

{A CircuitEicment with ohms =

A DisplayObject with location = (100, 100);

An InventoryPart with location = binl01}.

Figure 3. A node with state distributed among the perspectives.

of Node, with perspectives -

100, connection1 = wire6, and connection2 = wireS;

In both implementations, a message sent to a node consists of the message pattern and the

class of the intended perspective. Thus, to obtain the resistance, one would execute the following

statement: (R17 as: Resistor) ohms. The as: message to R17 causes R17 to return the perspective

of the desired class, in this case perspective 1. Perspective 1 is then sent the message ohms.

An alternative to passing the perspective to the node is to require that the node poll its

perspectives for any that understand the message. This approach has the advantage that flae source

code is more concise, but introduces the necessity to resolve cases in which more than one

perspective responds to the message. This resolution could be based on a predefined ordering of

the perspectives. We have not adopted this approach for two reasons: (1) In most cases, we have

found that the sender knows the point of view that the recipient should employ to understand the

message. (2) There is generally no good criterion for declaring that one perspective should

dominate another. In those few cases where the intended perspective is not known, we have

adopted the procedure that the node polls its perspectives for any that understand the message. If

an ambiguity exists, a user interrupt occurs.

The use of perspectives for multiple inheritance is not new. FRL [GoldsteinRoberts77]

had a scheme very much like our first implementation: KRL [BobrowWinograd77] has multiple

perspectives like those of our second implementation. Both of these implementations were based

on the assumption that one wants to make it easy to add a new perspective to an existing instance

at any time. We have adopted this assumption in PIE.
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An alternative approach is available if one ai[lows multiple inheritance for classes, but not

for instances; that is, an instance can be associated with one, and only one, class but a class can

have more than one superclass. In this case, it is only in the construction of a class that clashes

must be resolved between variable names occurrin[, in more than one superclass. This is the

approach employed by Thinglab [Borning77], a multiple inheritance, constraint satisfaction system.

To summarize, perspectives differ from o:rdinary Smalltalk objects in four respects:

• They expect to be part of a closely interacting system consisting of other perspectives and a

central node; hence they come with a backpointer to their node.

• They share some of their state with other perspectives in this system, but maintain a private

variable pool for their own purposes.

• They are intended to represent a point of view on an endty, rather than the entity itself,

• They can be attached at any time to a node, It is not necessary to assign all perspectives

when the node is created,

3. Metadescription

Perspectives express different descriptions of the entity represented by the node. Changing

these descriptions can lead to inconsistencies. We handle this problem by providing the node with

various kinds of information about itself. We term this information metadescription to distinguish

it from the primary description implicit in the node regarding the entity in the world that it

represents. For a general discussion of metade:_:ription see [BobrowWinograd77].

The first kind of metadescription we supp'[y is knowledge of the expected type of an

attribute. This information is supplied in a constraint dictionary. For each attribute, the constraint

dictionary supplies an expression that describes the class of the expected value. For example, a

value for the ohms attribute of the resistor perspective is expected to be of class Integer, while the

value of connectionl is expected to be a node with an associated Wire perspective. This

mechanism takes care of simple unary constrainls.

Secondly, we supply procedures that are tri:ggered by the retrieval or storage of a value.

These procedures typically serve to maintain consistency between dependent attributes. For

example, if a change is made by the user in the connectivity of the displayed schematic, then
,)

procedures attached to the instance variables beling altered can update the circuit element

perspectives to correspond to the new display linkages. Similarly, attached procedures can update

the inventory perspective as parts are added or deleted from the design.
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To take care of less formal cases in which only the user knows what to do, we have

dependency notification. A dependency list can be added to the metadescriptions of a node. The

user supplies this list for a node or attribute, but does not inform the system of what actions to

take if a change is made. Consequently, when the node is altered,, the user is reminded of these

dependencies by attached procedures, but no automatic actions are taken. For example, the user

might place a dependency link between a capacitor and an inductor to serve as a reminder that the

two elements are intended to operate together as a tuned circuit.

A more powerful dependency model replaces the dependency list with a pointer to a node

with a contract perspective. The contract perspective contains a list of participants and, at a

minimum, an English statement of the contract. We plan to formalize this contract progressively.

For the electrical world, contracts might include the mathematical formulae that describe the

circuit. For the programming domain, contracts would include the expected type of a variable.

See [Borning77] for a general study of constraints as the basis of a SmaUtalk system and

[SussmanStallman77] for a more detailed study of dependency relations in circuits.

4. Unique Identification

The object metaphor suggests that each user of Smalltalk has his or her own unique set of

objects. I run on my computer; you on yours. But the description metaphor suggests that you

and I may well be working on the same set of descriptions. Hence, we need a way to separate my

contributions from yours but, at the same time, to clearly identify that they are being generated to

describe the same topic. 1"o solve the first problem, we employ machinery to separate descriptions

into contexts. This is discussed in the next section. To solve the second problem, we employ

unique identifiers.

Consider the following scenario: I create a set of nodes representing a design and deliver

these nodes to your environment for subsequent development. To accomplish this delivery, I

generate a set of descriptions that can be used to recreate a set of Smalltalk objects with the same

state. This was our first implementation.

However, the following difficulty arises with this scheme. You modify and supplement

these nodes, and then generate a new set of descriptions. But when I reread them into my

environment, how can I determine which of these descriptions should be added to existing nodes,

rather than used to create a new collection of nodes'?.

Recognizing that two sets of descriptions describe the same intended object is a difficult

problem. However, in this special case, the problem can be solved easily. A node is assigned a

unique identifier when created. This identifier travels to the consumer when descriptions are
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generated. T'hc consumer checks to see if a node already exists with the identifer. If so, the

descriptions of this node are appcnded to those alreac_ly there. If no such node exists, a new node

with this unique identifier is created.

The computational cost of this scheme is not excessive, since the consuming environment

can maintain a table that a_ociates identifiers with existing nodes within that environment. Hence,

in consuming a set of descriptions, it is necessary onl:y to check this table to find the preexisting

node, if any. This is similar to the way Lisp atoms, or Smalltalk unique identifiers are

implemented, with the important difference that the identifers are generated by the machine in

such a way that two users can never create identical id.entifers. In fact, the identifiers consist of an

encoding of the time and machine of creation.

5. Contextualization

From a design standpoint, it is important that alternative descriptions be able to coexist in

the same environment at one time. Alternatives arise from a designer exploring different plans to

achieve his goals; or from the interactions of several designers on a joint project. For example,

one designer may propose a particular circuit to realize the specifications of a module; while

another designer may propose an entirely different circuit to accomplish the same goals. In a

design environment, descriptions are sensitive to who has created them and for what purpose. A

user must be able to examine and manipulate such descriptions from different points of view.

To implement context sensitive descriptions, we have altered the behavior of the

dictionaries that store the attribute/value pairs of perspectives. In Smalltalk-76, a dictionary is a

list of attributes and an associated list of values. We have replaced the value associated with the

attribute with another level of dictionary. This level of dictionary associates a layer marker with

different values. The layer marker is a tag for the situation in which the value was supplied.

Figure 4 shows a partial view of a layer structu:red description of R17.

R17, an instance of Node, with perspectives =

{A CircuitElement with ohms = [<layerl 100>], connectionl = [<layerl wire6>], and

connection2 = [<iayerl wireS> <layer2 wirel3];

A DisplayObject with location = [<layerl (100,100)> <layer2 (300, 300)]}

Figure 4 A partial view of the node R17 with layers indicated. Layerl stores the original design.
Layer2 stores a change in the display location of the resistor and an associated change in the
circuit connectivity.
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Storage and retrieval is therefore situation dependent. Storage is done with respect to a

layer. Retrieval is done with respect to a sequence of layers. The retrieval algorithm checks the

layers in order for a value, returning the first value in the layer sequence. This layer sequence is

called a context. These notions of layer and context are derived, from Conniver [Sussman72].

There are minor differences in the implementation, and major differences in the use of the

mechanism. This is discussed in more detail in [BobrowGoldstein80].

Values stored in a layer represent a coordinated set of values. Suppose the connectivity of

R17 in a circuit is changed as a display object. An attached procedure (or the user) might make

the corresponding change in the circuit simulation. These two changes are meant to be

coordinated, and are therefore placed in the same layer. By "coordinated", we mean that one sees

either both changes or neither in any view of the circuit. All retrievals in a context will get either

both these values (if the layer is included in the context) or neither.

The flexibility to represent alternative descriptions in layers comes at the cost of increased

complexity. We have designed several display interfaces to explore different mechanisms for

simplifying the presentation of this inherently more complex database. For example, one interface

provides a way for a user to view two different contexts simultaneously with differences between

the two highlighted. We have also explored the use of metadescription to default some of the

contextual choices that would otherwise fall on the user, e.g., selecting the default layer for

assertions and the default context for retrieval. Finally, we have supplied commands that suppress

the context machinery. The user stores and retrieves state in a context free fashion. This is faster,

occupies less space, and has no cognitive overhead for remembering alternative contexts. But the

user no longer can explore alternatives or separar.e his contributions from those of a codesigner.

All three of these strategies have proved useful in some circumstances, but it remains an "_mportant

research goal to make the context machinery atvailable to the user in a convenient fashion.

6. Use of PIE

The PIE system provides an environment for doing softwfire development. Perspectives

are provided for representing Smalitalk classes and methods. A user of PIE is therefore able to

build a collection of nodes that represent a software system. Unique identifers and contexts allow

users to engage in cooperative design and to explore alternatives. When a design is complete, it

can be installed in Smalltalk by generating executable code from the node descriptions. Other

designs described in separate contexts remain unaffected by this installation. Metadescription is

used to express type knowledge regarding method variables, thereby obtaining the strengths of a

typed language while still preserving the underlying flexibility of an untyped interpreter.

The utility of this descriptive base for developing software is illustrated by the following
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experiments: (1) We have successfully redesigned PIEs user interface within PIE. Ordinarily, such

redesigns would clobber the coding environment it.sell', but the separation between description and

installed code prevents such conflict. (2) We are able to describe a method as belonging to

multiple classes, despite the fact that the Smalltalk kernel does not allow this. At the descriptive

level, a node representing a method may be linked to more than one class. Within Smalltalk itself,

a method is local to a class. For compatibility, all that is necessary is that installation of the

description involves placing copies of the compiled code in each class. However, at the descriptive

level, the designer can treat the method as a single integral entity; editing it affects its occurrence

in all of its classes. (3) Multiple perspectives and me_,adescription support improved browsing and

prettyprinting of code, thereby improving the user's ability to examine his designs. (4) Unique

identifiers and contexts provide a mechanism for generating an incremental system release. The

new system is created by transmitting a layer with the changes to a consumer and then asking the

consumer to do a reinstallation. Separating release changes into layers allows the consumer to

examine the alterations of the release and exercise sorae choice regarding which parts he wishes to

accept, before performing the reinstallation.

The same machinery has also been used to support a document design environment.

Nodes are used to represent the structure of the document; i.e., the document is a tree of nodes

whose root represents the document as a whole and whose terminals are the individual paragraphs.

The nonterminals of the tree are chapters, sections and sub-sections. Again, contexts and identifers

facilitate coauthoring and exploring alternative organizations, two capabilities not well supported by

present text editing environments. Metadescription c_n be used to express formatting constraints.

Multiple perspectives allow a paper to appear as either an abstract, a citation, a bibliographic

reference, the outline for a lecture, or a formatted document, depending on the desired point of

view.

The PIE system code occupies approximately 200 kilobytes and 100 pages of listing in a

Smalltalk system of approximately 1 megabyte and 1000 pages of listing. Storage space for nodes

grows as layers increase, and previous or alternatiw." values for attributes of nodes are stored.

Retrieval time increases with the number of layers in the retrieval context. However, neither price

has proved exorbitant since PIE has been used largely as an interactive design tool. In this

application, time is primarily limited by the responses of the user, i.e. there is more thinking than

computing. Space is released when the design is complete and an installed package of code is

created.
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7. Conclusion

We conclude by reconsidering Smalltalk's utndedying metaphors of simulation,

communication and classification in the light of our addition of descriptive machinery to the

language.

In Smalltalk-76, objects simulate computers and therefore have a fixed identity. They use

a predetermined set of state variables and resporkd to a fixed set of messages. In PIE, nodes have

a flexible set of state variables which can grow oi" shrink as the attributes of individual perspectives

are changed. Furthermore, the message set can change as new perspectives are supplied or old

perspectives deleted. Nodes are more analogous to an evolving biological species than to an

inanimate computer. At any moment in time, a member of the species has a fixed anatomy and

physiology. Over time, however, both the anatomy and physiology evolve.

In Smalltalk-76, objects have an unambiguous message semantics. A message is sent to an

object and that object, in turn, requests the appropriate method from its class. In PIE, nodes have

multiple perspectives and more than one perspective may supply a method for a given message.

The user must specify the perspective, or allow the node to decide, Communication is still an

applicable metaphor, but the complexity of communication has increased as the underlying objects

have moved from a monolithic to a pluralistic society.

In Smalitalk-76, objects participate in a simple, hierarchical classification scheme. In PIE,

nodes are the locus of a set of descriptions and behaviors, each generated from a different point of

view. Classification, with its implication of simple hierarchy, has been replaced by description,

with its more open-ended connotation.

Thus, the evolution from SmaUtalk to PIF has produced a change in the behavior of the

basic computing element. In Smalltalk, objects have a fixed structure and engage in

communication based on a simple classification scheme. In PIE, nodes have an evolving structure

and engage in a more complex communication based on the use of descriptions. We believe that

this evolution yields a more flexible environment for exploring design problems.
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1. Introduction

A major activity in artificial intelligence research is the design of complex systems.

Yet most software environments do not support this activity well. They do not allow within the

system description of different properties of a design nor the flexible examination of alternative

designs. All designers create alternative solutions, develop them to various degrees, compare

their properties, then choose among them. Yet most software environments do not allow

alternative definitions of procedures and data strucl:ures to exist simultaneously; nor do they

provide a representation for the evolution of a particular set of definitions across time, It is our

hypothesis that a context-structured database can substantially improve the programmer's ability

to manage the evolution of his soRware designs

Present computing environments support the creation of alternative designs only with

file services. Typically users record significant alternatives in files of different names; the

evolution of a given alternative is recorded in files of the same name with different version

numbers. We contend that this use of files provides both an impoverished structure as well as

an inflexible one. The poverty is a result of the fact that file names are simply a limited length

sequence of characters, hardly an adequate scheme to describe the purpose and contents of a

file, and its relation to other files. It can be an adequate reminder to the originator of the

nzune, but is often opaque to a new reader. The ri_gidity is a reflection of the fact that one

typically cannot use pans of files as part of a new composite design, except by tedious text

editing. Finally. the most serious limitation is that files are "off-line" in the sense that the

alternative designs are not stored within the computin? environment in a form that can be easily

manipulated by the programmer. Although lntedisp [Teitelman, 78] provides some facilities for

manipulating pieces of a file (e.g. individual function definitions), it still suffers from the "off-

line" limitation.

To ameliorate this software bottleneck, we have constructed a computing environment

in which "on-line" descriptions of alternative software designs can be readily created and

manipulated. We use a context-structured description-centered dahabase to describe code. Such

databases have been explored in artificial intelligence research for over a decade as a

mechanism to represent alternative world views. [e.g. Hewitt, 71; Sussman & McDermott, 72].

1 Published in the Proceedings of the Conference on Artificial Intelligence and the Simulation of Behavior.

Amsterdam, July 1980.
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Our application of this machinery is novel in several respects. (I) Previous

applications have focussed on the use of such database,.; by mechanical problem solvers. We are

exploring the use of such databases in a mixed-initiative fashion with the user primarily

responsible for their creation and maintenance. (2) Previous applications have always demanded

a uniform overhead in space and time for adopting the context machinery. We are exploring

configurations for a design environment that allow the programmer to trade flexibility for

efficiency, decreasing the system's investment in tracking the evolution of particular parts of a

design at the price of not being able to represent alternatives simultaneously in primary

memory. Thus, employing the design environment is :not an all or nothing choice for the user.

(3) Previous applications have been to problems of limited complexity. In our application of

context structured databases to software design, we are exploring their utility in a world several

orders of magnitude more complex.

To understand the pros and cons of context structured environments for software

design, we have implemented a prototype cnvironmsnt and conducted several experiments,

The environment is called PIE, an acronym for personal information environment. PIE allows

the user to build context sensitive descriptions of code, documents, and, indeed, any object for

which a machine representation exists. PIE has been employed (1) to allow a programmer to

create alternative software designs, examine their properties, then choose one as the production

version, (2) to coordinate the interactive design of two programmers, and (3) to coordinate the

documentation and definitions of an evolving package of code.

2. The Smalltalk Environment

To describe PIE further, we must first introduce Smalltalk [Ingalls, 78; Kay, 74], the

programming environment in which it has been implemented. Smalltalk is an object-oriented

programming language. (See Dahl & Nygaard [66] on Simula and Hewitt et al [73] on "actors"

for related work on such programming languages). Behavior arises from the transmission of

messages between objects. Each object is, in essence, a simulation of a computer. It can

respond to some number of messages and it maintains its own state between message

invocations,

The message set of an object is specified by ,(;malltalk's class structure. Each object is

an instance of a class. When a message is sent to the object, it asks its class for the method

associated with that message. The class either contain_ the definition directly, or if not, passes

the request to its superclass. For the object to understand the message, its definition must occur

somewhere in this superclass chain. Thus, objects of the same class are analogous to computer

products of the same model.
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Figure 1 shows a fragment of the definJLtion of a SmaUtalk class for Spaceship. The

fragment shown indicates that instances of Spacesl_ip understand messages that simulate motion

and collision and that each instance carries its own private state regarding its position and

velocity.

Class new title: Spaceship
superCiass: Object "class Object is the root of the supeeClass hierarchy."

declare: 'allSpaceships' "o class mriable -shared by all instaocef
fields: 'position velocity' "'inatance _zeinble$-- each instance has pricate versions of these"

Moving "methods are divided into "protocols'- this one is called Moving"

accelerate: dv "dr is the argument of the m_hod with selector accelerate" •

[velocity ,- velocity + dv]

move [position.-position+velocity. "roints understand the message +"

self crashes => "self refers to this instalJc_ =) indicates a conditional expresaion"

[+ self explode] "/.f condition is tm¢. Jm_e returns with value of self ¢.rplod¢"

self display. "done _f condith)n is false -- display _s a mc_sage this instance underslands_

Collisions "another protoCOl"

crashes I ship "sh_ is a local variable for the activiat_n"

"This assumes that all ships are of unit size and collide only when at the same point"

[for: ship from: allSpaceships do: [ ship collideAt: position =>[ttrue]].tfalse]

collideAt: place

"a method to test Oe I collide with another object at place."

[position=place =>[1"true] tfalse]

Figure 1: Partial Definition of a Smalltalk class

We chose Smalltalk over Lisp, the usual vehicle for AI research, because Smalltalk has

a superior set of interactive display facilities. DLISP [Teitelman, 77] provides enough

capabilities we believe, but was not available on i_e same fast hardware. These interactive

display facilities were of critical importance to allow the functionality of the design environment

to be delivered to a user. No matter how powerful the design tools, no expe,-nnents would

have been possible with an interface based on an iinadequate communication channel. Using

Smalltalk, however, has required that we reimplement machinery common to such AI languages

as FRL [Goldstein & Roberts, 77] and KRL [Bobrow et al, 77]. This has proved

straightforward because the object oriented structure of Smalltalk is congenial to the frame-

based viewpoint of a AI representation languages.
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3. The PIE Environment

To describe Smalltaik code, we created a class of Smalltalk objects called nodes.

Nodes are analogous to KRL units, or FRL frames: they consist of a set of attribute value pairs

with support for attached procedures, the use of defaults, meta-descriptions and inheritance.

PIE provides convenient ways of viewing n.qationships between nodes, and viewing

and changing the properties of nodes. One can automatically create nodes which describe

cxisting pieces of the Smalltalk system, and conversely, make the system congruent with a

description of it. Node23 in Figure 2 is a dcscriptic,n that might have been been computed

from one method of the Smalltalk code shown in Figure 1.

Node23
class
selector
localVariables
variablesUsed
methodBody

[for: ship

Node l7 "Nodel7 is the nod,. describing the class Spacedffp"

'crashes "Fhis is a unique ,rtrln$ - like a LLcp Atom"

('ship) -l'his is a set of aanique $_S$"

('ship 'allSpaceships 'position 'mySize)
"if'his is an editable paragraph"

from: alISpaceships
do: [ ship collideAt: position =>[ttrue]].)false]

comment

'This assumes that all ships are of unit size, and collide
only when at the same point'

Figure 2. A node describing the method for crashes

In PIE, changing the values of any of these attributes does not automatically change

the object being described by the node. The node d_;cribes an intended object in the system,

not necessarily the version that exists in the system. This is worth emphasizing as one of the

principles characterizing our point of view towards the design process.

_, The Description Principle: In a system there should exist a descriptive level at

which objects can be described without actually affecting the objects themselves.

4. Representing Alternative Designs

Using node structure, there are two distinct ways to have alternative descriptions of

the same object: coreference and context. We have explored both, with our current preference

being for the use of contexts.

Coreference uses separate nodes to describe separate alternatives. In Figure 3, Node25

is a description of an alternative version of crashes. The intended identity of the Node23 and

Node25 (they are both are describing the same object) i,.;made explicit with the coreferentNode$
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attribute.

Node25
class Node18 "'Nodel8 is the r,rode describing the class Spaceship which differs

from Nodel7 in having an additional insta'nce variable -- mySize"

selector 'crashes

IocalVariables ('ship)
variablesUsed {'ship "allSpaceships "position 'mySize)
method Body "'adifferent method body"

[for: ship from: allSpaceships
do: i ship collidcAt: position of." mySize =>['ttrue]].,false]

comment 'Uses mySize for each ship to determine overlap'
coreferentNodes (Node23)

Figure 3. An alternative method for crashes

However. coreference has certain difficulties. The first is that it does not represent the

manner in which two descriptions may differ on some attributes but otherwise be identical.

The second is that the coordination of the choice of Node23 vs. Node25 and other choices in

the system for consistency is not expressed. For this reason we have chosen to explore another

way of expressing alternatives.

In this second method, all descriptions (v_dues of attributes) of any node are relative to

a context. Context as we use the term extends the notion of context as used in Conniver

[Sussman & McDermott, 72], and has certain similarities to the vistas of partitioned semantic

nets [Hendrix, 75].

The Context Principle: All attribute-values in the system are relative to a

context, and alternatives in a system are expressed by alternative contexts.

When one retrieves the values of attributes of a node, one does so in a particular

context, and only the values assigned in that context are visible.

5. Incremental Design

Design involves more than the consideration of alternatives, it also involves the

incremental development of a single alternative. Every programmer is aware that software has a

life cycle: following its birth, it undergoes progressive refinement in response to changing

external requirements. PIE supports the incremenual modification of a design by providing a

fine structure to contexts that we have not, as yet, discussed,

A context is structured as a sequence of layers, it is these layers that allow the state

of a context to evolve. The assignment of a value to a property is done in a particular layer.
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Thus the assertion that a particular procedure has a certain source code definition is made in a

layer. Retrieval from a context is done by looking up the value of an attribute, layer by layer.

If a value is asserted for the attribute in the first layer of the context, then this value is

returned. If not, the next layer is examined. This 1;)rocess is repeated until the layers are

exhausted.

Figure 4 shows a layer C containing some coordinated changes to the spaceship class

of Figure 1. This layer contains those changes n_:essary to allow the class to use size

information in determining collisions. In a context which contained this layer dominating those

containing the information implicit in Figure 1, the changes would be visible. Those attribute-

values such as the superclass of Spaceship that are not contained in layer C would be found in

less dominant layers.

Nodel 7 "the node for the class Spacestgp"

fields: ('position 'velocity 'mySize)
methods (... Node23 Node27 ...)

"a change in a declaration"

Node23 "the nodefor the methodcrashes_
methodBody

[for: ship from: allSpaceships
do: [ ship coilideAt: position of: mySize = >[,true]].tfalse]

Node27 "the nodefor the method that testsfor a collision"
selector 'collideAt:of:

methodBody
[(position + mySize>place-size)and: (position-myS:ize<place + size) = >['ttrue]
*false]

Figure 4. Layer C, containing coordinated changes to use mySize

Figure 5 shows several spaceship nodes in which the values of attributes have not

been filtered by a context sensitive lookup. Instead, we see the underlying data structure, which

is an association list of layers and values. Layer B is the base layer in which all the nodes were

presumed to have been originally defined for this example.



REPRESENTING DESIGN ALTERNATIVES 0,5

Nodel 7 "the nodefor the classSpaceship"
fields: l.,ayerB ('position 'velocity)

LayerC ('position 'velocity 'mySize)
Node23 "the nodefor the methodcras_a"

methodBody
LayerB

[for: ship from: allSpaceships
do: [ ship collideAt: position = >[,true]].tfalse]

LayerC
[for: ship from: allSpaceships
do: [ ship collideAt: position of: mySize = >[tLrue]].tfalse]

Figure 5. An unlayered view of node structure

Extending a context by creating a new layer is an operation that is sometimes done by

the system, and sometimes by the user. The current PIE system adds a layer to a context each

time the context is modified in a new session. Thus, a user can easily back up to the state of a

design during a previous working session. The user can create layers at will. This may be done

when he or she feels that a given groups of changes should be coordinated. Typically, the user

will group dependent changes in the same layer.

Given the existence of layers, a complex design developed over many stages can be

summarized into a single new layer. The old layers, reflecting past choices, can then be deleted.

Thus, the designer, if he wishes, can compress the past, achieving a more compact

representation at the price of no longer representing the dynamics of the design.

6. Coordinating Designs

So far we have emphasized that aspect of design which consists of a single individual

manipulating alternatives. A complementary facet of the design process involves merging two

partial designs. This task inevitably arises when the design process is undertaken by a team

rather than an individual. To coordinate partial designs, one needs an environment with these

properties: (1) non-interference. Two designs may overlap. It must be possible to examine the

overlap without the designs overwriting one another. (2) incompleteness. It must not be

necessary for a design to be complete before it is examined. (3) merging, it must be

convenient to create a common design from the individual contributions. It was encouraging

for us to learn that the context/layer machinery created to manage alternatives lent itself well to

meeting these requirements for coordinating partial designs.
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Non-interference between the overlap of t_o partial designs was accomplished by

adopting the convention that different designers place their contributions in separate layers.

Thus, where an overlap occurred, the divergent values for some common attributes were

separated by distinct layers. Handling incomplete designs of software was facilitated by the

distinction between intensional node descriptions and the actual code definitions. Since the

node descriptions were. not installed code, they could be partial and hence non-executable with

no difficulty.

Merging two designs can be viewed as a process that creates a new layer into which

are placed the desired values for attributes as selected fi'om two or more competing contexts. It

is hence very much like the summarization process de:_:ribcd earlier, but it is relative to more

than one context and requires user interaction. For complex designs, the me_e process is, of

course, non-trivial. We do not, and indeed cannot, claim that PIE eliminates this complexity.

What it does provides is a more finely grained descJ:iptive structure than files in which to

manipulate the pieces of the design.

Understanding how to merge two designs is facilitated by examining commentary

supplied by the designers regarding the rationale of their choices. But this raises the classic

software problem of coordinating documentation with design. Fortunately no additional

machinery is required in PIE to address this problem. Commentary such as the rationale of a

procedure, or its dependencies on other procedures, can be stored as attribute value pairs within

the node describing the procedure in question. A request to be informed of the rationale of

some change is answered by fetching this information from the same layer as the one which

records the change, thus keeping them coordinated. Figure 4 shows how the rationales of

various method definitions are recorded in the layer along with the altered definitions.

7. Complexity.

We claimed in the introduction that PIE copes with problems several orders of

magnitude more complex than those previously represented in AI systems such as Conniver.

By complexity we mean both the size of the data base in the system, and the variety of

operations done on contexts. The Conniver database was never effÉcient enough to implement

any useable subsystems. McDermott's [McDermott, 74] examination of the Monkey and

Bananas problem within Conniver exercised it to it:s limit.

PIE is able to build a context sensitive description of any class within Smalitalk.

Thus, it can be applied to any programming problem that a Smalltalk programmer undertakes.

This is analogous to using Conniver to build a programmer's interface to Lisp. Attacking

problems of this size is, in part, possible because we have more computational resources than

were available in the early 70's. PIE runs as a stand alc_ne job on a processor with at least the
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power of a KA10. However, it is also possible b(w.ause we have implemented machinery to

allow the programmer to move between context sensitive and context free descriptions at will.

Thus, there is a more congenial marriage between PIE and Smalltalk than there was between

Lisp and Conniver. This is discussed in the next section.

An interesting side effect of PIE's ability U_ describe any code within Smalltalk is that

it can and has been used to describe itself. Thus, PIE's present capabilities have passed the test

of being sufficiently powerful to support its own development, for example, by allowing us to

examine alternative implementations of the PIE user interface within PIE.

8. Efficiency versus Flexibility

PIE allows the user to wade flexibility for efficiency. At one extreme, the user can

employ standard Smalltalk mechanisms for defining new code. If this route is chosen, then no

evolutionary history is maintained, and no context overhead is paid. However, if the user

wishes to pay the price of some decrease in efficiency of storage and retrieval time, then he can

first build a set of nodes describing Smalltalk code, then continue his development in a context

structured fashion. From this point forward, the evolutionary history is maintained. If the user

reaches the point where he once again prefers efficiency to flexibility, the context definitions

can be converted to pure Smalltalk and the layers deleted. If desired, the user can first store

the layers remotely, preserving the ability to recreate the context description later. All these

facilities are curenfly implemented.

This discussion suggests how a central design facility can serve as the nucleus of a

network of remote servers that provide current packages to users. Periodically, the design server

can release new layers to these servers with updates to particular designs. The servers can then

generate new Smalltalk versions and release these d_;igns to clients. Clients who wish to know

what has changed, can get a description from the new layer.

9. Interaction

PIE's ability to represent non-trivial alternative designs raises deep problems related to

the user interface. How can we make available this power in a useable form? What are the

cognitive requirements of the pregrammer? Presently we are employing an interface modelled

on the standard Smalltalk interface for examining anti altering code. This interface, called the

browser, displays a hierarchy of descriptions of Smalltalk code to the user. The user can

examine any method by a process of selection that specifies first a category of classes, then a

particular class, then a protocol of methods within the class, and finally a particular method.

This scheme of organizing code into a four-level taxonomy has been adopted in PIE to

minimize the overhead for a Smalltalk user learning to employ the PIE environment. However,
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PIE makes this classification context dependent. As with the standard Smalltalk browser, the

user can alter the definitions of any object viewed. But these alterations are made in the

dominant layer of" the associated context, and do not affect the Smalltaik kernel itself, whereas

making changes with the standard Smalltalk browser forces immediate incorporation of any

changes.

Research is needed to explore whether this interface is adequate given the increased

complcxity of a context structured environmcnt. In Snaalitalk, the hierarchy of code definitions

is the primary structural organization. In PIE, this hierarchy is now context dependent. Has

this additional complexity made the Smalltalk organization inadequate? Will we need a

classification scheme with more levels of division, or will some other kind of organization be

appropriate? Just one of the problems that we will have to consider is that in a design

environment, there is no need for a particular method description to be associated with only a

single class, even though the actual Smalltalk system requires that the method be separately

compiled for each class to which it belongs. Hence, a strict hierarchy is obviously inadequate.

9. Conclusions

This paper presents only a sketch of the PIE system; our research is reported in

greater detail in Goldstein & Bobrow [80]. We have not discussed here issues in the design of

the user interface,although a successfulinterfaceiscriticalto deliveryof thesecapabilities to

the user. We only suggest here that layered networks are applicable to more than software: an

extended example in cooperative writing of a document is given in the larger work. Finally, the

system has as yet had only limiteduse. We do not know which featureswillbe used most,

which need to be automated to be helpful,and which may prove to be too complex to be

useful. Recording anti analyzing this experience is an important part of our research program.

A major theme of Artificial Intelligence research has been the development of

languages to describe complex evolving structures. In general, these structures have been the

belief structures of an artificial being about some subject matter (e.g., the SRI consultant's

[Hart,75] beliefsabout the stateof a water pump being constructed,or SAM's [Schank etal,

75] beliefsabout what went on in a storyitjust read). We have been exploringthe premise

that these techniquescan be used to describethe complex evolving structureof a software

system,and as such can provide aidsto the designer c)fsuch a system. One use of artificial

intelligenceisto amplify human intelligence.We suggestthatthe (recursive)applicationof AI

techniques to AI can have ,a powerful effecton the development of the field.
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BROWSING 1N A PROGRAMMING ENVIRONMENT 1

1. Introduction

A browser is a software development tool that supports the incremental examination of a

system by accessing some kind of information network. A user starts at a canonical place in this

network, and selects entities that represent parts of the system. This causes the browser to display

the substructure of the system connected to the selectf.-d entity, and some information about that

entity. In this manner, a browser can be employed to engage in a hierarchical examination of a

system by proceeding level by level from subsystem to module to sub-module, until the terminal

structure--possibly individual procedure definitionsmis reached. In addition, the browser allows a

user to add or _dter structure at any point in thi,_ examination process.

Most programming environments allow a user to retrieve and manipulate different parts of a

software system, if the programmer knows their exact name and location; but do not support well

the examination of structure whose exact description the programmer does not know. In such

situations, the programmer will frequently be reduced _ examining file directories, hoping that the

file names reveal the contents of the file. A browser seeks to ameliorate this difficulty by allowing a

user to examine different regions of a software system based on their general classification. Thus,

the underlying database imposes an organization on the software system analogous to the

organization imposed on a library by the Dewey d_:cimal system. The browser provides an

electronic analog of moving from a general classification to the stacks, and then subsequently

browsing there.

Browsers were introduced into Smalltalk by Larr]_ Tesler in 1977, and have since become a

mainstay of the Smalltalk programming environment. (The general nature and goals of Smalltalk

are described in Kay [77]; the 1976 implementation in Ingalls [78]; and the Smalltalk browser in

Goldberg and Robson [79].) In recent research, we have extended the simple, hierarchical system

model provided by Smalltalk and developed a generaliz_ltion of the Smalltalk browser to manipulate

these richer descriptions [GoldsteinBobrowS0a,b,c; BobrowGoldsteinS0]. We have dubbed this

extended environment PIE, an acronym for Personal Information Environment.

In the next two sections, we describe the Smalltalk system model and its associated browser.

This is followed by two sections that describe the PIE system model and its browser. The following

nine questions are used as a framework for comparing the functionality of thcsc two browsers.

1 Published in the Proceedings of the 14th itawaii Conferen_ on System Science, January 1981.
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6)

7)

1) Overview: How much of the infi)rrnation network can

2) Path: What part of his path to the current position

3) Presentation." What should be displayed on the screen

4) Operations: What operations can be performed on the view

5) Multiple Views: Can more than one view of the network be seen?

same form?

Consistency: What guarantees of consistency are there between

the user see at one time?

is visible to the user?

for each selection?

for each selection?

Are they all of the

multiple views?

Alternative Access:. Can the user find a known entity in the system without tracking

through the network?

8) Integration: Is the data environment integrated with the operational environment of the

underlying system?

9) Changeability: Can the user change the format in which information is displayed?

2. The Smalltalk System Model

Smalltalk is an object oriented programming system, where behavior arises from the

transmission of messages between objects. Objects are grouped into classes, all of which have

identical internal structure, and respond to the same set of messages. An object is like a simulation

of a computer; it can respond to set of instructions, maintaining its state between invocations.

Smalltalk generalizes Simula67 [Birtwistle73] and is related to the Actor languages developed by C.

Hewitt [Hewitt73].

The Smalltalk informaUon network partitions all classes into categories for ease of access.

Thesc categories are not mutually exclusive, although multiple category membership is generally

avoided. (Since classes are stored in files corresponding to their category, multiple category

membership gives rise to redundant storage and possible inconsistencies between versions.) A

method is the code which implements the class specific: response to a message. The set of methods

of each class is partitioned into mutually exclusive groups called protocols. Neither categories nor

protocols has any significance for the Smalitalk interpreter; rather they are artifacts of the desire to

browse through the system.

There is a subclass hierarchy in the Smalltalk system that does have semantic significance. A

class can inherit behavior and structural description fi-om another class called its superclass. All

instances of a particular class contain the fields specified in the superclass. If the subclass has no

specialized behavior (method) for responding to a particular message, it will request that its

superclass respond to the message. This inheritance is a very powerful way of sharing behavior.
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3. The Smalltalk Browser

Figure 1 shows a sequence of views of a Smalllalk browser as a user selects a path through the

network. The browser is a rectangular region on the display screen called a window and is built

from 6 sub-windows called panes. The top pane i_; the title pane and shows the label 'Smalltalk

13rowser'. Below it is a row of four list panes thai; display, from left to right, categories, classes,

protocols and methods. The lower pane is a text pane that displays text associated with the most

recently selected item.

Figure la shows the browser in its initial state with the leftmost list pane displaying part of the

list of categories defining the Smalltalk system. The pane can be scrolled to view other categories in

the list The browser enters the state shown in Figure lb in response to the user selecting the

category Data Structures. A selection is made by moving a cursor over the item to be selected and

depressing a button on the device controlling the cursor. Selections appear in inverted video in the

actual system, but are shown in boldface in the figures. The most recent selection is in bold italics.

The selection of Data Structures causes the classes of"this category to be displayed in the second list

pane and a template for defining a new class to appear in the text pane. In Figure lc, the user

selects Set, a class whose instances provide the behavior of sets by appropriately manipulating an

array. This selection causes the class' protocols to be displayed in the third list pane and the

definition of the class to appear in the text pane. The user can edit this definition to modify the

title, superclass, or fields of the class. In Figure ld, the user selects the Access protocol, causing its

methods to appear in the last list pane and a template for defining new methods to appear below.

In Figure le, the user selects the has: element method and its definition appears in the text pane.

Figure 2 shows the path that the user has traversed in the system taxonomy. (This particular

graphic view is not generated by SmaUtalk.)

The organization entries under categories and lC_rotocols are not actually items of that type, but

rather data structures that can be edited to alter the taxonomy. For this reason, the organization

entries are not shown in Figure 2. Changing the category organization by selecting it and editing

the text that appears below can move existing classes to different categories. The protocol

organization serves a similar function for its class.

3.10ven, iew

The browser shows a slice of the four level system taxonomy that extends through all four

levels but is of limited breadth. Figure 2 show;; this slice relative to a graphic view of the

taxonomy. At his diseretion, the user can select any element in the displayed slice of the taxonomy.

To see other elements on a given level, the user mu:;t scroll that pane, thereby changing the slice of

the tree seen in the pane.
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3.2 Path

Since the hierarchy is only four deep, the user can see the entire path from the root. The user

cannot see, and the brows"r does not maintain, a history of other nodes that have been selected

before, but arc not on the path.

3.3 Presentation

Selection causes text and sub-structure to be displayed. Sub-structure is displayed in the list

pane to the right. Text consisting of either templates or definitions is displayed below. For

categories and protocols, a template is shown for defining new classes and methods respectively; for

classes and methods, their definition appears. The reason for this difference is that categories and

protocols have no semantic significance other thar_ grouping a set of subordinate elements.

3.4 Operations

For each of the list panes, operations are defined for deleting, printing and filing the selected

clement. These commands are available from a menu that is not shown.

Insertion is not an explicit menu command. Instead, it occurs in two different ways. New

classes and methods are inserted in their respective categories or protocols as a side effect of

compiling their definitions. Old classes and methods can be rearranged by manipulating the table

that the browser presents when the organization entry is selected in the category or protocol pane.

Manipulating this table is also the mechanism for creating new categories and protocols,

A limitation is that the browser does not permit: the creation of partially defined classes or

methods. A class or method must be compilable to bc successfully included in a category or

protocol; this is a result of the browser assumption that the data structure it is viewing is the one

currently installed in the system. This has undesirable consequences for program design when the

designer wishes to delay certain dec.isions. In this respecL the marriage between the browser and

the software environment is too intimate.

3.5 Multiple Views

Several browsers can be brought to the screen at once and can overlap. Commands are

provided to move a browser to a new region el" the screen and to view an obsct,rcd browser. The

result is that the display screen is like a desktop with multiple browsers representing different pieces

of paper.

This browser provides a command to spawn additional text windows that display the selected

method. These windows maintain a constant view of the method, allowing the user to browse to

other regions of the network. They are incomplete views of the method, however, in that they do

r,ot display its class or prottx:ol, and hence these attributes of the method cannot be altered through

this window.
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The hardcopy format of Smalltalk codc represe_nts a third view of the system. 1his. view is a

depth first listing of the tree. Users occasionally pret_r this view to the browser in order to obtain a

perspective on a segment of code. The hardcopy format cannot be manipulated within the system.
."

The browser does not support other taxonomic views of the s)/stem such as an examination of

the class/subclass hierarchy.

3.6 Consistency

The view seen on one browser is almost coml_ietely independent of that seen on a second,

even if they are both looking at the same method or c?ass definition.* This means that if a method is

changed using one browser, the definition seen on l_e screen for the other is not altered because

that browser is unaware that the underlying model it is viewing has changed since it fetched the

definition. Only if an explicit request is made to fe_.'h the definition again is the underlying model

queried, thereby ensuring that the view is consi_tent.

* The exception is that browsers do check whether tht; list of classes has changed whenever th_ are
reactivated. If a class has been added or deleted from this list, the browse_ reenters its initial state.

No check is made for changes to the definitiom; of existing clas_, protocols, or mefltods.

The reason for the inconsistency is two-fold. First, the view in the browser is just that, a

computed view, and changes to that view are not reflected immediately in the model. Only when

the method is compiled is the underlying system model altered. This is desirable since the user

should be able to complete a set of changes to a procedure before it is altered permanently.

Otherwise compilation might be attempted on an inconsistent state. Second, when a change does

occur to some software object, there is no way for that object to inform the appropriate views since

the underlying system model has no knowledge of existing views.

There are at least two solutions to this problem. Onc is to give each object responsibility for

updating views of imelf, using a "notification protocol"; for example, a class whose method changes

would notify all browsers which have informed it of their current intcresL A sccond solution is to

give each view the responsibility for keeping itself updated, and to provide a way for it to check

what the last time an object it is viewing changed. Then any time a viewer becomes active, it can

compare its last update time with this list to see if updating is required.

3. 7 Alternative Access

The only means to move through the network is by progressive selection of displayed objec_

No browser commands exist to select an object via a partial description or even by specifying its

name.

3.8 Integration

The browser does not support access to other kinds of data such as manuals, primers, and

system specifications nor does it support examination and manipulation of instances of classes.
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The browser is integrated in a limited fashion with a history list of changes in the sense that

defining or redefining methods affects this list. However, deleting a method has no effect on the

history nor can the history list be examined through the browser. No distinction is made between

different kinds of modifications such as the difference between adding a breakpoint and making a

permanent change made to the code.

3.9 Changeability

The user can change the size, number and position of browsers on the display screen by

invoking commands supplied by the browser, but no, commands are supplied to alter the relative

widths of various panes.

The user can alter the behavior of the browser in two ways. He can redefine methods in the

browser (using the browser itself), although bugs in these changes could make the interface

inoperative. Or he can subclass the classes used to define the browser and make whatever changes

he wishes in these subclasses. This is a safer strategy, :fince old style browsers are unaffected, but all

behavioral changes must be programmed in Smalltalk itself. It is equally parsimonious in that

subclasses inherit all of the behavior of their superclasses, except for messages that they define

directly.

The browser does not support idiosyncratic behavior for particular objects of a given type: all

classes, for example, are treated identically.

4. Summary of Smalltalk Browser Strengtks and Weaknesses

4.1 Strengths

The Smalltalk browser provides an excellent way of examining and editing the Smalltalk

system code as evidenced by its universal adoption within the Smalltalk community and relative

stability. Its browsing capabilities and the assoeia_Ied system architecture of a taxonomy of

constructs serve a useful documentation role. Users oRen familiarize themselves with new software

by browsing through new categories in a system release. The browser provides a uniform way to

examine and manipulate the software, and guides noviices with templates for creating new entities.

4.2 Weaknesses

The SmaUtalk browser keeps no history of its interactions except for the names of methods

that have been changed. It only reflects the current st_ate of the world; there is no way to go back

and forth between different consistent states. The system does not help a user to maintain any

design constraints other than the ones implicit in the programming language. For example, a

programmer cannot indicate that two methods in a class are dependent, and that subsequent

modifications to one should be checked for compatibility with the other. There is no incremental
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way of modifying the behavior of the browser by attaching your own procedure to provide a

specialized function in the interface: for example, one cannot provide specialized templates for new

methods of a particular class.

The Smalltalk browser also reflects deficiencies in the underlying system model. SmaUtalk

provides for comments for classes and methods but not for categories of classes or protocols of

methods. Class comments are separately manipulable from the class definition; method comments

are not. Storing a method comment requires that the procedure be recompiled.

5. The PIE System Model

PIE was motivated, in part, by the goal of providing a more complete and more integrated

representation for Smalltalk systems. It provides a network structured database whose nodes

describe all the entities in the system and employs techniques developed for describing entities in

knowledge representation languages like KRL [l_obrowWinograd77].

Nodes provide a uniform way of dcscribing entities of many sizes, from a small piece such as

a single procedure to a much larger conceptual endty. For example, nodes are used to describe

code in individual methods, classes, categories of el,asses, and configurations of the system to do a

particular job. Sharing structures between configurations is made natural and efficient by sharing

regions of the network.

The uniform use of node structure extend:; to software documentation. Manuals and

specifications can be embedded in the network using nodes representing the chapters, sections and

paragraphs of the material and can be cross-linked I:o the relevant software. Because software and

documentation coexist in the same environment, it is easier to develop them in a coordinated

manner.

Nodes are distinct from the system objects that they represent. Changing a node does not

immediately alter its corresponding software object. For example, the node representing a class can

be created and a partial definition supplied. This node can be stored, examined and edited. It does

not affect the underlying Smalltalk environment, however, until its description is compiled.

Attributes of nodes are grouped into perspcctiwm. Each perspective reflects a different view of

the entity represented by the node. For example, the strueturalSpec of a Smalltalk class dcfines the

structure of each instance by specifying the fields it must contain; the proceduralSpec defines the

protocols; the interfaceSpec defines the set of messages required by external clients, and the

documentSpec describes the implementation and its use.

Perspectives may provide partial views which _tre not necessarily independent. For example,

the proceduralSpec and the interfaccSpec both des:ribe certain methods of the class. Attached

procedures are used to maintain consistency between such perspectives.
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Each perspective supplies a set of specialized actions appropriate to its point of view. For

example, the print action of the structuraISpec pcrspoctivc of a class knows how to prettyprint its

ficld._ and class variables, whereas the proceduraISpec perspective knows how to prettyprint the

methods of the class. These actions are implemented directly through mcssag_ understood by the

Smalltalk classes defining the perspective.

All values of attributes of a perspective arc relative to a context. Context as we use the term

derives from Conniver [SussmanMcl)ermott72]. When one retrieves the values of attributes of a

node, one does so in a particular context, and only die values assigned in that context are visible.

Therefore it is possible to create alternative contexts in which different values are stored for

attributes of various nodes. [-'or nodes representing .software, these contexts typically describe

alternative designs. One can compare and test alternatives without leaving the design environment.

Contexts are themselves nodes in the network. ']'his allows a description of the rationale for

the set of changes to be stored in the context node in the network, in the same way that

de_riptions for for a method node contain comments on their purpose.

In any system, there are dependencies between different elements of the system. If one

changes, the other should change in some corresponding way. We employ contracts between nodes

to describe these dependencies. These contracts are themselves nodes with specialized behaviors.

"l_ese behaviors include installation of procedures to maintain consistency of simple constraints

expressed in a formal language, and notification to :r.he user when changes have been made to

contract participants. Use of contracts raises a number of questions which we have just begun to

explore: e.g. when should one check agreements and still avoid seeing temporary states of

inconsistency during the process of change.

Finally, the PIE system provides perspectives which allow the system to describe itself.

Perspectives themselves are described in the system, and small modifications to the behavior of a

particular perspective can be made by manipulation of the network structure. Nodes can be

assigned meta-nodes whose purpose is to describe defaults, constraints, and other information about

their object node. Information in the recta-node is used to resolve ambiguities when a message is

sent to a node having multiple perspectives.

6. The PIE Browser

The PIE browser was constructed as a generaliz;_tion of the Smalltalk browser, in order to

minimize the overhead of Smalltalk users immigrating into thc PIE environment, it is shown in

Figure 3a. Two additional panes have been added in the middle of the browser. The left pane lists

thc perspectives of the most recently selected nodc while the right pane lists the attributes of the

selected perspective. The title pane shows the node at which the browsing begins and thc context

from which the network is being viewed.
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In Figure 3b, the user has selected the node representing the Data Structures category. This

causes the two perspectives of this node to be displayed. The first is the perspective describing

categories: it includes a classes attribute and additional attributes describing the most recent file and

modification dates to classes in the category. The second is the description perspective, common to

many nodes, that specifies a tide and optional text t33r the node. In this case, the text attribute is

employed to store a comment regarding the category, and this comment is displayed in the text

pane.

In Figure 3(:, the user has selected the category perspective and its attributes appear in the

attribute pane. In Figure 3d, the classes attribute is selected and its value, a list of nodes

representing the classes of this category, appears in the second list pane. The attribute is used as a

label for the pane. In Figure 3e, the user has selec:ted the Set node, and its perspectives appear

below. Thus, moving from one node to the next in the network requires selection of a node, then a

perspective, then an attribute. Figure 4 shows a graphic representation of the PIE network and the

path traversed by the user.

6.1 Overview

As with the Smalltalk browser, the user can see a slice of the network. In addition to nodes

surrounding previous selections, this slice includes the perspectives and attributes of the current

selection. We have explored browsers that show the perspectives and attributes of every node in the

path, but these trade breadth of view for increasing complexity on the screen.

The labels on the four upper list panes are dynamic and computed from the selection. The

Smalltalk browser employed static labels since the s_xne attribute was always displayed in a given

list pane.

6.2 Path

Thc PIE network is not restricted to a depth of :Four. However, the PIE browser contains only

four list panes, a constraint derived from the size of tJae screen. To go deeper into the network, the

user can shift the view to the left. In Figure 5, the user has moved the view one to the left. The

origin of the browser is now the Data Structures category and the right.most pane is available to

show subordinate nodes linked to the has: element method. In this case, the user is examining

nodes representing constraints on the definition of the." method. If the user tried to see substructure

which would logically be to the right of the fourth pane, P1E blinks the browser to indicate that it

cannot show the requested information in the current browser configuration. The user can then

shift the view as described, or spawn a new browser rooted further down the tree, and continue.

The PIE browser does not maintain a chronological history of selections. Hence, it is limited,

like the Smalltalk browser, to displaying only four steps in the path to the current selection. An

unfortunate consequence of this lack of historical information is that while the view can be shifted

to any node in the network, the browser cannot recreate selections made from that node. Hence, a
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shift to the righL for example, from the Data Structures node back to the Code node, would require

that the user remake his selection choices to again be examining the has: element method.

6.3 Presentation

To minimize the interactions required by the user, the browser can operate in a mode in

which it makes various default decisions on its own initiative. These decisions are based on

additional descriptions provided in the network. Fo7 example, the network contains descriptions

that specify that the category perspective should be selected by dcfault over the description

perspective and that its classes attribute should be displayed. As a result of these default

specifications, the selections of Figures 3c and 3d arc made by the system and selecting the data

structures category in Figure 3b produces the display of Figure 3e immediately. Hence, the user

nced not engage in any morc interaction with thc PIE, browser than with the Smalltalk browser to

conduct similar actions. The user can override these defaults by making explicit perspective or

attribute selections.

The specification of the defitult display behavior of a node is described in meta-nodes linked to

perspective types and to particular nodes. In the former case, the met,a-node applies to all instances

of the perspective. In the latter case, its advice is idiosyncradc to a particular node. These recta-

nodes can be examined and edited from the browser.

Templates for creating new nodes of a particular type are available upon request and are

stored in the recta-node of the perspective. They are shown automatically only if they are specified

to be the default display information. Many perspectives, not just those for classes and methods,

have templates.

6.4 Operations

The PIE browser supplies four standard operations: insertion, deletion, filing and printing.

Insertion consists of adding a node to the list and assigning it a perspective. Default knowledge is

employcd to supply a particular perspective when the list is constrained to be a set of nodes of a

particular kind. For example, the classes attribute of the category perspective has the default

description that all of its elements have a class perspective assigned. Descriptions of nodes can be

stored without having to compile them. Therefore partial descriptions of methods can be left in the

network and returned to later.

Insertion of nodes of arbitrary type eliminates the need for an organization entry. Categories

and protocols are created by adding nodes with those perspectives. Rearranging an old organization

is accomplished by moving nodes from one attribute set to another.

The PIE browser also differs from the Smailtalk browser in that special actions specific to

perspectives at a node can be invoked by the user through a special menu. This menu is computed

from the selected node, using default description that specifies a subset of the messages of a
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perspectiveto be usercommands. The PIE browser can view nodes with arbitraryperspectivesin

any pane. Hence, the abilityto interrogatethe perspectivefor itsassociatedcommands was

necessary.Since the Smalltaikbrowser viewsonly fourkindsof objectsand theseobjectsare tiedto

particularpanes, this generalitywas not included.

6.5 Multiple views

There are three different senses in which multiple views are available to the user of PIE. The

first is similar to that of the Smalltalk browser. There can be more than one instance of a browser

on the screen at a time, viewing different parts of the Smalltalk system.

A second kind of multiple view comes from the notions of context embodied in the PIE

network. The value of any attribute is context dependent. The user can change the view seen in

the browser by changing the context associated with that particular browser. This causes the

browser to recompute all fields seen.

Thc third arises from the fact that the user can :request an outline view to be generated of the

substructure of the selected node. A portion of the subtree descending from the selected node is

shown in an indented outline format. The default perspective and attribute of each node is used to

determine which part of the subtree to display. For class Set, this outline would include the Set

node, the protocolnodes of itsstructuralSpecpersp_:tive,and the method nodes of each protocol.

This outlineis very closeto the standard hardcopy view of SmaIltalkcode--a factthat is not

accidental. The defaultshave been chosen to make this view the preferred one.

6.6 Consistency

As with the Smalltalk browser, there are no" backpointers from nodes to views. This means

that a change made to the network through one browser is not reflected in another browser's view

computed earlier. One approach to solving this problem is presently being introduced into

Smalltalk by providing backpointers from software objects to their views. A separate control

process is assigned responsibility for maintaining consistency. Another approach that we are

considering is to describe the browser itself in the PIE network in order to take advantage of the

contract machinery provided by PIE to maintain consistency between descriptions. However, this is

still an unexplored area.

6.7 Alternative Access

A browser provides one way to get access to a node in an information network. Sometimes it

is useful to shift the point of view of the system to a node which matches a given description

without having to browse through one level at a time. This is provided in PIE. A user can specify

the perspective type and some distinguishing feature.; of a node. For example, he can search for

classesentitledSet,any classthatisa subclassof theseclasses,or even any classwhose comment

includesthe substring'set'. PIE engages in a a searchand causes the view to be shiftedto the
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selected node. If more than one nodc matches the ,:[escription, PIE offers the user a[l matches.

Selection of a match causes the view to be shifted to the selected node.

Some indexing facilities are providcd to limit the potential candidates for a match: each

perspective maintains a list of the nodes to which il has been assigned, This is a very simple

scheme, but the present size of the Smalltalk system--consisting of several hundred classes owning

several thousand methods--does not require anything more elaborate.

One novelty of our searching machinery with respect to traditional database design is that no

general set of indices are maintained. Rather, each perspective has its own matching protocol.

Thus, if a perspective receives a description like 'set' without a specification of the attribute of the

perspective to which this description must match, the perspective itself decides which attributes can

be used as the basis of a match. For example, the structuralSpec perspective checks the tide and

superclass attributes, but not the ficld variable or class variable declarations. This is in contrast to

most data base environments where entities are matched against a pattern by a standard algorithm

which matches the values of attributes, perhaps using range tests. Because PIE is integrated in the

Smalltalk system, each entity can run its own idiosyncratic program to test whether it matches a

description.

6.8 Integration

The PIE browser integrates the examination of data, code, documentation, and system

description since all of this information is uniformly described in the network. The browser also

integrates the computation of views of the database with the underlying programming language. In

most data bases, "views" are supported which compute virtual relations from real ones that exist in

the data base. However, the programming language to compute these views is impoverished,

usually being restricted to expressions in the relational calculus. The advantage of this language is

that it makes the update problem easier by providing an expression calculus with no side effects for

specifying howto compute a view each time. In PIE, the full power of the Smalltalk language is

available, but we must provide notification and time stamp mechanisms to help with the update

problems.

6.9 Changeability

In addition to the ways that the Smalltalk browse_r can be altered, the behavior of the PIE

browser is affected by changes to the information network. A user can alter the default display

behavior of perspectives by editing the meta-nodes involved. For example, the user can change the

meta-node to cause the default text displayed when a cla_s is selected to be the comment describing

the class rather than the class definition.
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7. Summary of PIE Browser Strengths arid Costs

7. I Slreaglhs

Some strengths of the PIE browser arise from file improvements in the PIE system model over

the standard Smalltalk model. The network database that the browser manipulates is arbitrarily

deep, allows multiple perspective:_ and context-sensitive description, integrates the representation of

text and software, and supports search and matching behavior. Other strengths arise from the

availability in the network of interface-specific des_:ription. This includes description of default

• perspectives and attributes for display, and idiosync_ratic behavior of particular entities. This self-

description minimizes the user's workload for expected actions.

7.2 Weaknesses

The PIE browser shares a number of weakness(_ with the Smalltalk browser. For example, it

does not maintain a history of user interactions ancl it does not provide any means to maintain

consistency between multiple views. However, the PIE model provides a possible solution to both

of these weaknesses. Nodes can be employed to represent the history of a design and to represent

contracts between multiple views. This solution has the appeal of building upon existing machinery

and maintaining a highly integrated system model. These are current research issues for us.

Another potential weakness common to both the Smalltalk and the PIE browsers is that they

do not present thc network in a two dimensional graphical notation such as the one shown in

Figures 2 and 4. Indeed, since those figures were used to elucidate the network structure being

examined by the browsers, one might very well ask why it is not the format actually generated by

the intcrfaces. The answer, of course, is that the pane-oriented structure of both browsers is simpler

to implemcnt than a gcneral two-dimensional layout 13rogram. However, a research issue is whether

this implementation simplicity comes at a serious cost in comprehcnsibility to the user. Expcriments

need to be performed with users of different levels of expertise to investigate which graphical

metaphors are most uscful in clarifying the presentation of a network description of software.

8. Conclusions

PIE reflects a natural evolution of the Smalltalk system model to provide a more extensive

description of an evolving software design. The PIE browser has evolved in parallel. An

unexpected result is that the boundaries between the two have become fuzzy as the network

describing the software system is employed to describe the desired display behavior. Specifications

of system semantics do not usually include such descriptions. However, the availability of more

powerful machines, coupled to the increasing complexity of software, makes their inclusion both

possible and necessary.
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Thc PIE system and its associated browser is largely independent of the semantic details of

Smalltalk. It is based on the existence of a network description of a software system. It could be

the basis for programming environments for other software languages, to the extent that those

languages supported display facilities and a network database which can hold representations of

code easily accessible by the language processors. Experiments reported in [Cattellg0] are planned

for exploring these ideas in a programming environment for Mesa, a PASCAL-derived systems

programming language.
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Messages understood by perspectives repre,_ent one of the advantages obtained from

developing a knowledge representation language _ithin an object-oriented environment. In most

knowledge representation languages, procedures can be attached to attributes. Messages constitute a

_eneralization: they are attacl',cd to the perspective as a whole. Furthermore. the machinery of the

object language allows these messages to be defined: locally for the perspective. Lisp would insist

on global functions names.

4. Contexts and Layers

All values of attributes of a perspective are relative to a context. Context as we use the term

derives from Conniver [SussmanMcDermott72]. When one retrieves the values of attributes of a

node, one does so in a particular context, and only the values assigned in that context are visible.

Therefore it is natural to create alternative contexts in which different values are stored for

attributes in a number of nodes. The user can then examine these alternative designs, or compare

them without leaving the design environment. Since there is an explicit model of the differences

between contexts, PIE can highlight differences between designs. PIE also provides tools for the

user to choose or create appropriate values for merging two designs.

Design involves more than the consideration of alternatives. It also involves the incremental

development of a single alternative. A context is structured as a sequence of layers. It is these

layers that allow the state of a context to evolve. The assignment of a value to a property is done

in a particular layer. Thus the assertion that a particular procedure has a certain source code

definition is made in a layer. Retrieval from a cont*ext is done by looking up the value of an

attribute, layer by layer. If a value is asserted for the attribute in the first layer of the context, then

this value is returned. If not, the next layer is examined. This process is repeated until the layers
are exhausted.

Extending a context by creating a new layer i:; an operation that is sometimes done by the

system, and sometimes by the user. The current PIE system adds a layer to a context the first time

the context is modified in a new session. Thus, a u:;er can easily back up to the state of a design

during a previous working session. The user can create layers at will. This may be done when he

or she feels that a given groups of changes should l:,e coordinated. Typically, the user will group

dependent changes in the same layer.

Layers and contexts are themselves nodes in the network. Describing layers in the network

allows the user to build a description of the rationale for the set of coordinated changes stored in

the layer in the same fashion as he builds description:; for any other node in the network. Contexts

provide a way of grouping the incremental changes. ,_nd describing the rationale for the group as a

whole. Describing contexts in the network also allows the layers of a context to themselves be

asserted in a context sensitive fashion (since all descriptions in the network are context-sensitive).

As a result, super-contexts can be created that act as big switches for altering designs by altering the

layers of many sub-contexts.
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5. Contracts and Constraints

In any system, there are dependencies between different elements of the system. If one

changes, the other should change in some corresponding way. We employ contracts between nodes

to describe these dependencies. Implementing contrac-ts raises issues involving 1) the knowledge of

which elements are dependent; 2) the way of specifying the agreement: 3) the method of

enforcement of the agreement; 4) the time when the agreement is to be enforced.

PIE provides a number of different mechanisms for expressing and implementing contracts.

At the implementation level, the user can attach a procedure to any attribute of a perspective, (see

BobrowWinograd77 for a fuller discussion of attached procedures): this allows change of one

attribute to update corresponding values of others. At a higher level, one can write simple

constraints in the description languagc (e.g. two atu_butes should always have identical values),

specifying the dependent attributes. The system cr,_ates attached procedures that maintain the
constraint.

There are constraints and contracts which cannot now be expressed in any formal language.

Hence. we want to be able to express that a set of participants are interdependent, but not be

required to give a fi)rmal predicate specifying the contract. PIE allows us to do this. Attached

procedures are created for such contracts that notify die user if any of the participants change, but

which do not take any action on their own to maintain consistency. Text can be attached to such

informal contracts that is displayed to the user when the contract is triggered. This provides a

useful inter-programmer means of communication and preserves a failsoft quality of the

environment when formal descriptions are not avaiilable.

Ordinarily such non-formal contracts would be of little interest in artificial intelligence. They

are, after all. outside the comprehension of a reasonin._; program. However, our thrust has been to

build towards an artificially intelligent system through succcessive stages of man-machine symbiosis.

This approach has the advantage that it allows us to observe human reasoning in the controlled

setting of interacting with the system. Furthermore, it allows us to investigate a direction generally

not taken in AI applications: namely the design of memory-support rather than reasoning-support
systems.

An issue in contract maintenance is deciding when to allow a contract to interrupt the user or

to propagate consistency modifications. We use the closure of a layer as the time when contracts

are checked. The notion is that a layer is intended to contain a set of consistent values. While the

user is working within a layer, the system is generally in an inconsistent state. Closing a layer is an

operation that declares that the layer is complete. After contracts are checked, a closed layer is

immutable. Subsequent changes must be made in new layers appended to the appropraiate
contexts.

6. Coordinating designs

So far we have emphasized that aspect of design which consists of a single individual

manipulating alternatives. A complementary facet of the design process involves merging two

partial designs. "['his task inevitably arises when the de'sign process is undertaken by a team rather

than an individual. To coordinate partial designs, one needs an environment in which potentially
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This cGtcgory ¢onta_tts ¢[o,sses that d_fi, n_ o,Ustro,(;t
d4z_a types.

II

Fi_. 31_. The Do.t(_ Structure node is sel_cteG _n4 Lts pcrspectLoes appear.
Tt_¢ ¢omrrmrtt is t_ _¢xt at_r_ut¢ of the descri, p_LorL pcrspectLu¢ an4 is
_Lsp_je_ by _fa.u_t.



~CATEGORIES~
Data Structures

W_t_to_s

Numbers

~PERSPECTIVES ~

Category

DescrLptio_

~PERSPECTIVES ~

~ATTRIBUTES ~

closes

fue
moaiftea

Tl_isc_tegory corttaLrtsclasses that defLng abstract
dam types.

Fi_. 3c. The category perspectLue is se[ecte, a ariel Lts attributes appeox.

PIE Browser.

~CATEGORIES ~

Data Structures

WLrulo_s

Numbers

OrigLrL: Co_.

".CLASSES*,.

Array

Dictionary

Set

~PERSPECTIVES ~

C_ego_

DescrLption

~PERSPECTIVES ~

Co_text: Sel:Re_tes_.

"ATTRIBUTES"

c/_ses

fu_
moa_,ftea

T_ls category cot_talns cto_sses that a_fine abstract
aata types.

r_.3a. The classes attribute is selzcted ¢ma the List of classes appears.

PIE.BROWSER.CD



~CATEGORIES ~

Data Structures

WLndows

N_rr_ers

~PERSPECTIVES ~

StructuroLSpec

ProcecLur_Sp¢c

Docun_rLtSpec

~CLASSES ~

Arra 9

DLc_ion_r_j

Set

_'_ATTRIBUTES ~

.,,ATTRIBUTES ~

F j.3e. The Set nod_ is seLected an_ Lts pen;pecttues _ppear.

m Data m
Structures

Windows

Category

Description

m_ classe._ m..
filed ,
modified,

__ title

Array

Dictionary

Set

- Vector

" String

- Structural

" Procedural

" Document

= Interface

Numbers

nodes perspectives attributes nodes perspectives

Fiz3. 4. A _ro.phtc reprcsentatLort of the PIE network,. The path selected
m the browser is showrL m bold, the visible sLice of the necworl¢ m Ltc_tcs.



PIE ero_user.

~CATEGORIES ~

Dat_ Stru_;turcs

W_Y_lows

Numbers

--PERSPECTIVES"

Met.hod

DescrLptto_
~PERSPECTIVES ~

~ATTRIBUTES ~

mess_¢
GOYL_rO.C_S

~METHODS ~

dcLcr.¢: ¢LcYrucn[

t_zs: eft'merit

Lnscr_: cLcmct_t

I'u_S: ¢LcwLcf_t

"Use scqucnti_ access to d,¢_¢r_'_Lr_ Lf ¢l_mcnt is in the set"

[for_ t from: 1 to: _ do**

[i.f_ (¢l_merLt = (array Iool_up: t)) merL= [return: true]].

return- foCs¢ ]

r_. 5_. The user ts four Leuem deep m t_e PIE nctWOlle,.

",.CLASSES"

Array

DtctLo_ry

S¢_

~PERSPECTIVES ~

DescrLption
~PERSPECTIVES ~

"-PROTOCOLS'-"

InLtWJ,i2nt, lon

Access

Prmttt_

--METHODS ~

k,_zs: e/emen¢

t'mscrt: cLcmct_¢

"-ATTRIBUTES ~

_eftnLtior_

message

~CONTRACTS ~

represcn_iot_

Lnl_i_ization

"CONTRACTS--

TI_¢ origin _ been sl_i,f_¢_t to the [)_ Structures node, oJ_o_Lr_j
_h¢ user co utcw tl_¢ nc_wom one I_:ucLdeeper.

PIE-BROWSER.SHIFT.


