
1

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Onward! 2012, October 19–26, 2012, Tucson, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1562-3/12/10…$15.00.

1

Engineering(,) A Path To Science

Engineers build things; scientists describe reality; philoso-
phers get lost in broad daylight.

What I read in Brazil reminded me of my quest to dem-
onstrate that in the pursuit of knowledge, at least in software
and programming languages, engineering typically precedes
science—that is, even if science ultimately produces the most
reliable facts, the process often begins with engineering.

I believe it’s a common belief that engineers only follow
paths laid down by scientists, adding creativity and practi-
cal problem solving. Philip Kitcher, a philosopher of science
at Columbia University, in an essay for the New York Times

Abstract

Engineering often precedes science. Incommensurability is real.
Categories and Subject Descriptors A.0 [General]
General Terms Design
Keywords Engineering, science, paradigms, incommensu-
rability

t


In 1990, two young and very smart computer sci-
entists—Gilad Bracha and William Cook—wrote
a pivotal paper called “Mixin-based Inheritance”
[1], which immediately laid claim to being the first

scientific paper on mixins. In that paper they described look-
ing at Beta, Smalltalk, Flavors, and CLOS, and discovering a
mechanism that could account for the three different sorts
of inheritance found in these languages—including mixins
from Flavors and CLOS. They named their new mechanism

“mixins.”
My attention was directed to this paper by Gilad Bracha

himself when he told me in Brazil at AOSD in the spring of
2011 that most Lisp people who read the paper had strong
objections to what he and William Cook had written about
Lisp and CLOS.

That night I pulled the paper down from the ACM server
and read it while outside enormous puffed clouds dwelled
overhead, lit from beneath by the town of Porto de Galinhas
on the Brazilian coast; the smells of burning sugarcane and
bitter ocean pushed into my room.

t

The Structure of a Programming
Language

Revolution
Richard P. Gabriel

IBM Research
Redwood City, California USA

dreamsongs.com

us.ibm.com{rpg@

Programming
Language
Revolution

“I don’t want to die in a language
I can’t understand.”

– Jorge Luis Borges

2

Book Review on March 25, 2012 (“Seeing is Unbelieving”)
[2], wrote it this way:

The natural sciences command admiration through
the striking successes of the interventions into nature
they enable: satellites are sent into space, new tools
forged to combat disease. Those achievements rest on
the ability to develop rigorous chains of inferences that
take us from readily detectable aspects of the world to
reliable conclusions about more remote matters. As
the conclusions become established, they often yield
new methods of detection: a novel theory inspires
instruments like microscopes and spectrometers that
expand the range of the senses.

–Philip Kitcher, Seeing is Unbelieving, 2012 [2]

Sheldon Cooper, a character on The Big Bang Theory said
it this way:

Engineering, where the noble, semi-skilled labor-
ers execute the vision of those who think and dream.
Hello Oompa Loompas of science.

–Sheldon Cooper (character), "The Jerusalem Duality,"
The Big Bang Theory, 2008 [3]

I believe that, in general, this view of engineering and
science is false: I believe engineering and science are inter-
twined, and for programming languages and software cre-
ation techniques, it’s often the case that engineering precedes
science—and it’s very easy to see it. Let’s look at some defini-
tions of engineering.

…the practical application of science to commerce
or industry…the discipline dealing with the art or
science of applying scientific knowledge to practical
problems….

–http://wordnetweb.princeton.edu/perl/webwn, 2012 [4]

t

Engineering is the discipline, art, and profession
of acquiring and applying technical, scientific, and
mathematical knowledge to design and implement
materials, structures, machines, devices, systems,
and processes that safely realize a desired objective
or invention.

–http://en.wikipedia.org/wiki/Engineering, 2012 [5]

t

Engineering is the practical application of science
and math to solve problems….

–http://en.wikipedia.org/wiki/Engineering, 2012 [5]

t

(Scientific) knowledge, though, comes from interacting
with the world or the subject of investigation. Go to an auto

mechanic, describe your problem, and the mechanic almost
immediately says “let’s take a look,” followed by peering, mov-
ing cables aside, accessing innards, running tests, starting
the engine and listening, taking measurements (sometimes
using sophisticated sensors), and otherwise interacting di-
rectly with the thing itself. Isn’t this like science?—a mystery
in front of us, and we poke and prod in search of a theory, a
guess that explains it?

Skilled manual labor entails a systematic encounter
with the material world, precisely the kind of encoun-
ter that gives rise to natural science. From its earliest
practice, craft knowledge has entailed knowledge of
the “ways” of one’s materials—that is, knowledge of
their nature, acquired through disciplined perception.

–Matthew B. Crawford, Shop Class as Soulcraft [6]

One good example is the steam engine. Engineers began
its development while scientists were making their way from
the phlogiston theory of combustion to the caloric theory of
heat, both today considered hilarious.

Phlogiston theory was an attempt to explain oxidation—
fire and rust. The phlogiston theory held that combustible
resources contain phlogiston, a colorless, odorless, tasteless,
massless substance, which is liberated by burning. A phlogis-
ticated substance contains phlogiston and is dephlogisticated
when burned, leaving behind its “true” form: calx.

…[S]ubstances that burned in air were said to be
rich in phlogiston; the fact that combustion soon
ceased in an enclosed space was taken as clear-cut
evidence that air had the capacity to absorb only a
definite amount of phlogiston. When air had become
completely phlogisticated it would no longer serve to
support combustion of any material, nor would a metal
heated in it yield a calx; nor could phlogisticated air
support life, for the role of air in respiration was to
remove the phlogiston from the body.

–James Bryan Conant, ed.
The Overthrow of Phlogiston Theory:

The Chemical Revolution of 1775–1789.
Cambridge: Harvard University Press, 1950 [7]

Phlogiston seems like the opposite of oxygen as far as
combustion is concerned. In the 18th century, scientists no-
ticed that when metals became oxidized (rusted), they got
heavier, throwing the theory into question. For a time after
that, phlogiston was taken to be a principle and not a mate-
rial substance. Later this theory was more or less replaced by
the caloric theory, which held that heat consisted of a fluid
called caloric that flows from hotter to colder bodies. Caloric
is a weightless gas that can pass in and out of pores in solids
and liquids.

Funny as these theories sound today, steam engines be-
came practical during their dominance in science, and im-

3

portant other scientific discoveries were enabled by them:
the speed of sound was better estimated as the theory of ca-
loric was refined, and the idea that metabolism was related
to combustion was a direct tenet of the phlogiston theory.

Steam engines, though, kept huffing and puffing along
through the tail end of phlogiston, the entirety of caloric,
and now into thermodynamics.

…in areas of well-developed craft practices, techno-
logical developments typically preceded and gave rise
to advances in scientific understanding, not vice versa.

–Matthew B. Crawford, Shop Class as Soulcraft [6]

The relative roles of science and engineering are complex.
Scientists try to understand while engineers try to build. En-
gineering is the creative application of scientific principles to
design or develop new stuff.

Engineering is quite different from science. Sci-
entists try to understand nature. Engineers try to
make things that do not exist in nature. Engineers
stress invention.

–http://en.wikipedia.org/wiki/Engineering, 2012 [5]

t

What’s the effect of these differing opinions? What hap-
pens when engineering is reduced to science’s handmaiden?
In the fields of programming languages and software, and
in computer science in general, the effect has been to sepa-
rate engineers from scientists and put them into a little hier-
archy—engineers are for the most part left out of the (lofty)
scientific academy.

Nevertheless, people like Matthew Crawford see things
differently, and I do too.

I am going to use the Bracha & Cook paper as a lens
through which to see what it means in computer science for
engineering to precede science in the production of scientific
facts—a case study. We will learn that it’s absolutely natural,
and has worked wonderfully.

The case study centers on the discovery or invention of mix-
ins and method combination, spearheaded by Lisp program-
mers, researchers, and engineers beginning in the mid-1960s
and progressing through the 1980s. Mixins were introduced
in 1979 as the key idea behind Flavors. In 1989 CLOS—the
Common Lisp Object System, a descendant of Flavors—was
officially added to the Common Lisp standard. CLOS had a
version of method combination along with a(n unnamed)
notion of mixins.

Let’s dig in.
t

What is a mixin? This will be our first encounter with the
language difficulties this case study raised for me. There are
at least two understandings of the term “mixin” at work. The

case study, thus, began bumpy and stayed that way. I came to
realize that the Bracha & Cook paper is a dividing point, or
perhaps a bridge, between two different paradigms—or per-
haps “micro-paradigms.” This observation further raised the
question of incommensurability, a key part of Kuhn’s ideas
about scientific revolutions [8]. Beginning with the word

“mixin,” I was stumbling onto this idea too—that the notion
of incommensurability can explain some of the mysteries
in the Bracha & Cook paper. I’ll tell you about that later, but
first I need to explain (old-style) mixins. Along the way we’ll
see that engineering knowledge and scientific knowledge are
not always of a kind.

In the earlier micro-paradigm, the term “mixin” was part
of a constellation of concepts related to combining behavior
without requiring source code to be written. That is, you just
declared that a component to be a mixin, and a mechanism
behind the scenes combined the behavior of applicable meth-
ods for you. In the later micro-paradigm, the term mixin re-
fers to any abstract (uninstantiatable) class along with explicit
invocation of other “mixed-in” behavior. The following is the
current definition:

In object-oriented programming languages, a
mixin is a class that provides a certain functional-
ity to be inherited or just reused by a subclass, while
not meant for instantiation (the generation of objects
of that class). Mixins are synonymous with abstract
base classes. Inheriting from a mixin is not a form
of specialization but is rather a means of collecting
functionality. A class or object may “inherit” most
or all of its functionality from one or more mixins,
therefore mixins can be thought of as a mechanism
of multiple inheritance.

–http://en.wikipedia.org/wiki/Mixin, 2012 [9]

Because we’re going to be looking at the engineering pre-
decessors of the modern idea of mixins, we’ll start with the
earlier definition. Pre-1990 mixins have to do with two other
mechanisms: multiple inheritance and method combination.

Code. Check out Figure 1 on the next page.
CLOS is part of Common Lisp, and Common Lisp has a

Read-Eval-Print Loop (REPL). Definition 1 defines a class
named person which has a slot accessed by a method named
name. This class has no declared superclasses. But behind the
scenes it does, including one that defines a generic function
called print-object which is what all print functions even-
tually call. It simply outputs the person’s name.

At CL-USER 31 we see how the REPL works and the result
of printing the instance that represents me.

Now let’s define another class called graduate. This class
inherits from person because every graduate we care about
is human. And as it turns out, graduate is a mixin. The way
we can tell is that the method we’ve defined for print-object
is an :after method. An :after method is one that is called

4

t

The beginning of this essay contains a picture of the first
page of the Bracha & Cook paper, considered to be the first
scientific paper about mixins.

The primary engineering papers that preceded it are by
David Moon (“Object-Oriented Programming with Fla-
vors” [10]) and Howard Cannon (“Flavors: A Non-Hierar-
chical Approach to Object-Oriented Programming” [11]).

Citation counts are a standard measure of scientific rel-
evance in computer science. The table on the next page shows
citation counts for these papers. Notice that the Bracha &
Cook paper has twice the number of Google Scholar citations
as the Moon paper; and the Cannon paper, which first defined
multiple inheritance, method combination, and mixins, is
hardly cited at all—in fact, CiteSeer doesn’t even notice the
Moon and Cannon papers.

Bracha & Cook are careful about their claims, stating prin-
cipally that they have defined a new primitive called “mixins”

after all the applicable and invoked primary methods for the
generic function have been executed. It runs after.

At CL-USER 32 we see how this works. I’ve made an instance
of graduate with my name and having a PhD, and without
any source code apparently being written by me, my name
and degree get printed out together in the right order.

Now a similar new mixin, this for people who have a doc-
torate of some sort. Again it’s a mixin—the :before method
runs before any other applicable methods are invoked.

Finally the money shot. Definition 7 creates a class named
research-doctor with two parents, and because of meth-
od combination, printing my name in all its inherited glory
happens correctly without my having to say anything at all.

See Figure 2 for the class diagram for this example (arrows
point from superclass to subclass).

This example typifies but doesn’t exemplify how mixins,
multiple inheritance, and method combination work in Fla-
vors and CLOS. It shows how the mechanism works, but it
exemplifies poor design.

Definition 1: (defclass person () ((name :accessor name :initarg :name :initform “”)))

Definition 2: (defmethod print-object ((person person) stream)
 (format stream “~A” (name person)))

CL-USER 31 > (setq rpg (make-instance ‘person :name “Richard P. Gabriel”))

Richard P. Gabriel

Definition 3: (defclass graduate (person) ((degree :accessor degree :initarg :degree :initform “”)))

Definition 4: (defmethod print-object :after ((person graduate) stream)
 (format stream “ ~A” (degree person)))

CL-USER 32 > (setq rpg (make-instance ‘graduate :name “Richard P. Gabriel”

 :degree “PhD”))

Richard P. Gabriel PhD

Definition 5: (defclass doctor (person) ())

Definition 6: (defmethod print-object :before ((person doctor) stream) (format stream “Dr. “))

CL-USER 35 > (setq rpg (make-instance ‘doctor :name “Richard P. Gabriel”))

Dr. Richard P. Gabriel

Definition 7: (defclass research-doctor (doctor graduate) ())

CL-USER 37 > (setq rpg (make-instance ‘research-doctor

 :name “Richard P. Gabriel”

 :degree “PhD”))

Dr. Richard P. Gabriel PhD

Figure 1

5

tists study. Bracha & Cook were studying the reality created
by Birger Møller-Pedersen, Kristen Nygaard, Howard Can-
non, David Moon, Danny Bobrow, and the designers of CLOS.

From this (engineering) reality, Bracha & Cook came up
with a theory of mixin-based inheritance, creating a new
(scientific) reality.

Engineers and scientists understand these two realities
differently, using different vocabularies and more than that,
different language. Before 1990, programming language en-
gineers and programming language scientists published their
work in the same conferences and publications, and so they
had some basis to understand each other. In the early 1990s
this changed and engineering papers were effectively banned
from scientific conferences and publications.

t

 “Object-Oriented Programming with Flavors,” by David
Moon was the first engineering publication about mixins,
being published in the first OOPSLA conference in 1986.
Moon’s paper described an evolution of earlier work done
by Howard Cannon who informally published his paper on
Flavors at the MIT AI Lab. Cannon’s paper was the first to
describe the concepts of mixins, multiple inheritance, and
method combination as we know them today. Notice that
Cannon’s paper was written in 1979.

The MIT AI Lab at that time was in the middle of a tem-
porary paradigm in which heterarchy was preferred to hi-
erarchy. This was the milieu in which Minsky’s “Society of
Mind” emerged. It was the idea that a population of agents
and critics could more effectively demonstrate and give rise
to intelligence than a top-down, centralized approach. It was
a small revolution against hierarchy, and it’s reflected in the
title of Cannon’s paper: “Flavors: A Non-Hierarchical Ap-
proach to Object-Oriented Programming.” At that time at
the MIT AI Lab, Smalltalk was well known, as was the Ac-
tor model developed by MIT’s Carl Hewitt. The most famous
exploration of what message-passing means in actor-like
object systems was done by Gerry Sussman and Guy Steele;
it was called “Scheme.”

which can be used to define the inheritance mechanisms of
Smalltalk, Beta, and CLOS, as they understand them.

The diverse inheritance mechanisms provided by
Smalltalk, Beta, and CLOS are interpreted as different
uses of a single underlying construct. Smalltalk and
Beta differ primarily in the direction of class hierarchy
growth. These inheritance mechanisms are subsumed
in a new inheritance model based on composition of
mixins, or abstract subclasses. This form of inheri-
tance can also encode a CLOS multiple-inheritance
hierarchy, although changes to the encoded hierarchy
that would violate encapsulation are difficult.

–Bracha & Cook, Mixin-Based Inheritance, 1990 [1]

Historically, Flavors, Smalltalk, and CLOS are related as
shown in the diagram below. The Bracha & Cook paper was
published in 1990.

t

Scientists study and try to explain nature. Even if we as-
sume that software and programming language engineers
use then-current science to invent things, those new things
become part of the nature that subsequent computer scien-

Bracha & Cook
CiteSeer 375
ACM DL 203

Google Scholar 842

Moon
CiteSeer <not found>
ACM DL 102

Google Scholar 402

Cannon
CiteSeer <not found>

Google Scholar 55

Figure 2

research-doctor

person

graduatedoctor

Alan Kay
Smalltalk

1976

Danny Bobrow
LOOPS

1983

Danny Bobrow
CommonLOOPS

1986

David Moon
New Flavors

1986

CLOS
1989

Howard Cannon
Flavors

1979

6

But Cannon’s paper was not the first to talk about, essen-
tially, mixins. Warren Teitelman’s dissertation did (“Pilot:
A Step Toward Man-Computer Symbiosis” [12]), and it was
published in 1966, 24 years before the Bracha & Cook paper.

This demonstrates that at least in the case of mixins, engi-
neering can precede science by quite a margin. We’ve looked
at some of the concepts through examples, and now we’ll
look at some of the concepts and principles more abstractly.

—Because the scientific view that’s emerged is that these early,
engineering efforts were not based on solid scientific prin-
ciples, and perhaps not even on good engineering or design
principles. These guys were, after all, just hackers hacking
things together, so what could you expect?

t

Teitelman’s dissertation was about a programming sys-
tem called Pilot which assisted human programmers. His
early version of mixins was called “advice,” and even today
in aspect-oriented programming we hear that term. The idea
is that a procedure can be inserted at any or all entry or exit
points of any other particular procedure or class of procedure,
hence combining behavior. Advice not only provides before
and after functionality, but also what would become known
in CLOS as around methods.

Advising is the basic innovation in the model….
Advising consists of inserting new procedures at any

or all of the entry or exit points to a particular pro-
cedure (or class of procedures).

Since each piece of advice is itself a procedure, it
has its own entries and exits. In particular, this means
that the execution of advice can cause the procedure
that it modifies to be bypassed completely, e.g., by
specifying as an exit from the advice one of the exits
from the original procedure; or the advice may change
essential variables and continue with the computa-
tion so that the original procedure is executed, but
with modified variables. Finally, the advice may not
alter the execution or affect the original procedure
at all, e.g., it may merely perform some additional
computation such as printing a message or recording
history. Since advice can be conditional, the decision
as to what is to be done can depend on the results of
the computation up to that point.

–Warren Teitelman, PhD Dissertation, MIT, 1966

Here is the syntax of advice as envisioned in 1966.

(tell solution1, (before number advice),

 If (countf history ((solution1 -))) is greater

 than 2,

 then quit)

t

7

Cannon’s original Flavors system was aimed at non-hi-
erarchical object systems. Although he was interested in
independently specified behavior associated with a single
flavor, he observed that when behaviors don’t interact it’s
easy to combine them—by using disjunct messages and in-
stance variables.

The interesting complication comes when there are in-
teractions between mostly orthogonal issues and the desire
is to have modular interactions. The example he used was a
window with a border and a label. These mostly independent
but modular aspects interact by having to coordinate their
sizes and positions, and to respond to the same message
around the same time.

To restate the fundamental problem: there are sev-
eral separate (orthogonal) attributes that an object
wants to have; various facets of behavior (features)
that want to be independently specified for an object….
It is very easy to combine completely non-interacting
behaviors. Each would have its own set of messages,
its own instance variables, and would never need to
know about other objects with which they would be
combined…. The problem arises when it is necessary
to have modular interactions between the orthogonal
issues. Though the label does not interact strongly with
either the window or the border, it does have some
minor interactions. For example, it wants to get re-

drawn when the window gets refreshed. Handling these
sorts of interactions is the Flavor system’s main goal.

–Howard I. Cannon, Flavors, MIT, 1979 [11]

Check out the 1979 code for this example (Figure 3).
First the window is defined with a :refresh method

(Definitions 1 & 2). Then a border with an :after method
for :refresh (Definitions 3 & 4). Next the label, again with
an :after method for :refresh (Definitions 5 & 6). Finally
the mixed together thing: a window with border and label
(Definition 7).

Here is how the thing acts when a :refresh message is
sent to the mixed-together contraption:

First the window clears itself, and presumably the text is
redrawn (though the code doesn’t show that).

Then the border clears and redraws itself.
Finally the label does too.
This is an example of method combination and decent de-

sign of that era. Cannon tells us that in ordinary class-based
systems, the method to run can be determined at method-
invocation time because that requires only local knowledge.
But with Flavors, all relevant component Flavors need to be
examined to create a combined method, and the earliest this
examination can take place is when the Flavor is instanti-
ated—because that’s when the applicable methods are known.

In…class systems, which method(s) to run is largely
determined at run time. This is possible as only local
knowledge is necessary to make the decision. This is
not true of Flavors: …determining the methods to be
run requires inspecting all of the component flavors
and generating a combined method. It is from this
use of global knowledge that Flavors gain the ability
to modularly integrate essentially orthogonal issues.
At instantiation time, as the component flavors are
inspected, combined methods are generated….

–Howard I. Cannon, Flavors, MIT, 1979 [11]

Note that Cannon is careful to talk about the need to “mod-
ularly integrate essentially orthogonal issues.” This doesn’t
sound like a cowboy hacker.

The example shows three types of method: :before, :af-
ter, and primary. Method combination puts them together.
A mainline flavor combines with orthogonal side-flavors that
add behavior to the main flavor and enough state for minimal
coordination. Good design and modularity demand some-
thing like this. The poor design in the research-doctor
example—according to the Flavors notion of good design—is
that the traits of being a doctor, a graduate, and a person
are not essentially orthogonal as defined.

A method combination can be viewed as a template
for converting a list of methods into a piece of code
that calls the appropriate methods in the appropri-

8

ate order and returns the appropriate values. This
code is the combined method. The default…method
combination is called daemon combination. There
are three types of methods…: primary, before, and
after. Untyped methods default to primary type. The
combined method first calls all of the before methods
in order and throws away the value[s] they return,
then the first primary method is called and its value
is saved, then the after methods are called in reverse
order, and then the combined method returns the
value returned by the primary method.

–Howard I. Cannon, Flavors, MIT, 1979 [11]

Note that there can be several types of method combina-
tion. Note also that methods are divided into types which a
method combination type uses to determine the behavioral
roles of the different methods.

From one point of view, object oriented program-
ming is a set of conventions that help the programmer
organize his program. When the conventions are
supported by a set of tools that make them easier to
follow, then an object oriented programming system
is born. It is neither feasible nor desirable to have the
system enforce all of the conventions, however. Since

Cannon
Conventions

the Flavor system provides more flexibility than oth-
er object oriented programming systems, programmer
enforced conventions become correspondingly more
important. Therefore, the Flavor system is as much
conventions as it is code.

–Howard I. Cannon, Flavors, MIT, 1979 [11]

Here Cannon is talking about programming in a way that
illuminates the paradigm he was working in. In Cannon’s
community of practice, good design was important, and the
set of available tools and underlying mechanisms needed to be
flexible enough to express such a design when it came along.
Moreover, a good design can live on many programming
substrates using conventions if they are adaptable enough—

“structs with an attitude” was usually enough to support
OOP. Modularity was near the top of the list of traits of good
design for that community, and Flavors was aimed right at it.

t

I knew Howard back then. He was very young—about
20 years old. And I remember when someone emailed me
his paper—Howard was at MIT and I at Stanford. I remem-
bered the excitement, and I remembered how hard it was for
me to understand the paper. He was an undergraduate and
I a graduate student of seven years at that time.

Definition 1: (defflavor WINDOW (OBJECT) (X-POSITION Y-POSITION WIDTH HEIGHT))

Definition 2: (defmethod (WINDOW :REFRESH) (send SELF ‘:CLEAR))

Definition 3: (defflavor BORDER () (BORDER-WIDTH))

Definition 4: (defmethod (BORDER :AFTER :REFRESH) () (send SELF ‘:DRAW-BORDER))

Definition 5: (defflavor LABEL () (LABEL))

Definition 6: (defmethod (LABEL :AFTER :REFRESH) () (send SELF ‘:DRAW-LABEL))
 (send SELF ‘:DRAW-LABEL))

Definition 7: (defflavor WINDOW-WITH-LABEL-AND-BORDER (LABEL BORDER WINDOW) ())

Figure 3

(defflavor WINDOW (OBJECT) (X-POSITION Y-POSITION WIDT

(defmethod (WINDOW :REFRESH) (send SELF ‘:CLEAR))

(defflavor BORDER () (BORDER-WIDTH))

(defmethod (BORDER :AFTER :REFRESH) () (send SELF ‘:DR

(defflavor LABEL () (LABEL))

(defmethod (LABEL :AFTER :REFRESH) () (send SELF ‘:DRA
 (send SELF ‘:DRA

 (defflavor WINDOW-WITH-LABEL-AND-BORDER (LABEL BORDER

Window.lisp

9

Youthful geniuses are not unknown. Here is the poet Ar-
thur Rimbaud [13]…

If there is one water in Europe I want, it is the black
Cold pool where into the scented twilight
A child squatting full of sadness, launches
A boat as fragile as a butterfly in May.

…writing at sixteen years old.
t

Around this time a number of companies began producing
Lisp machines. In the United States in the 1980s, there were
five such companies: Symbolics, Lisp Machines Incorporated,
Three Rivers, Texas Instruments, and Xerox. Symbolics, which
grabbed most of the Lisp talent from MIT, pushed Flavors
forward with improvements and extensions, bringing it more
in line with Lisp. David Moon was one of the chief designers
and implementers of New Flavors, which was the topic of the
1986 Moon Flavors paper at OOPSLA.

A typical flavor is defined by combining several
other flavors, called its components. The new flavor
inherits…from its components. In a well-organized
program, each component flavor is a module that
defines a single facet of behavior. When two types of
objects have some behavior in common, they each
inherit it from the same flavor, rather than duplicat-
ing the code. When flavors are mixed together, Flavors
organizes and manages the interactions between them.
This multiple inheritance is a key aspect of the design
of Flavors….

–David A. Moon, OOP with Flavors, OOPSLA 1986 [10]

The Flavors system doesn’t seem too big on static concerns.
There is no hard compiler control of what the language means,
just local checking of syntax at read time and simple compiler
checks. Contrary to some popular beliefs, the underlying
Lisp is not untyped. Objects in memory have runtime types
associated with them. At the time, the terms for typing were
as follows: a statically typed language has its type correctness
checked at compile time; a dynamically typed language has
its type correctness checked at run time; and in a strongly
typed language it is not possible for an operator to be applied
to arguments of inappropriate types. Lisp is a strongly typed,
dynamic language.

Themes shared by Cannon and Moon—and prevalent
throughout the Flavors / CLOS literature—are good design,
modularity, and orthogonal concerns.

Each flavor defines certain constraints on the or-
dering of itself and its direct components. Taken to-
gether, these constraints determine a partial ordering
of all of the components of a flavor. Flavors computes
a total ordering that is consistent with the partial

Flavors
Well-

Organized
Programs

Constraints
On

Component
Flavors

ordering. Three rules control the ordering of flavor
components:

–David A. Moon, OOP with Flavors,OOPSLA 1986 [10]

When each flavor contributes a distinct chunk of behav-
ior—ideally orthogonal chunks of behavior—it makes sense
to linearize a multiple inheritance graph, because there will
be no unexpected interactions between behaviors: each con-
tributing flavor will be as if in its own single inheritance
chain. And having a single chain to reason about simplifies
method-combination computations—it represents an engi-
neering tradeoff. See Appendix: Fine Print.

In defining a flavor, the super-flavors mentioned don’t
describe direct inheritance but constraints on the order of
shadowing.

Here are the rules for linearization used in New Flavors.
(These changed slightly in CLOS to fix a weird and delight-
fully convoluted corner case.)

• A flavor always precedes its own components
• The local ordering of components of a flavor is pre-

served. This is the order of components given in the
defflavor form

• Duplicate flavors are eliminated from the ordering. If
a flavor appears more than once, it is placed as close
to the beginning of the ordering as possible, while still
obeying the other rules

–David A. Moon, OOP with Flavors, OOPSLA 1986 [10]

Modularity was a major concern, and in fact was the driv-
ing force behind the design of flavors. Those designers—and
I was friends with each of them—were as hardcore in their
faith in modularity as anyone. But for them, modularity was
the result of careful design, not magic enforced by a compiler
or a system. Any underlying programming system can, at
best, ease creating good designs.

No programming system can guarantee program
modularity or eliminate the need for careful design
of a program’s structure. However, a programming
system can make it easier to build modular programs.
Flavors provides organizational techniques for writ-
ing programs in a modular way and keeping them
modular as they evolve. Inheritance of methods en-
courages modularity by allowing objects that have
similar behavior to share code. Objects that have
somewhat different behavior can combine the gener-
alized behavior with code that specializes it. Multiple
inheritance further encourages modularity by allow-
ing object types to be built up from a toolkit of com-
ponent parts.

–David A. Moon, OOP with Flavors, OOPSLA 1986 [10]

t

Flavors
System
Guarantees

10

Those were my observations after reading the Bracha &
Cook paper in Brazil that night—a clear path beginning in
engineering inventiveness driven by a keen desire to sup-
port good design and modularity. The vocabulary of those
early engineering papers seemed a bit dated, but I lived in
that world for decades at the beginning of my career. What
I read supported the idea that engineering could and often
did precede science in the realm of programming languages.

My own experiences suggested something else, too. In the
1990s it seemed to me that scientists in the programming
community pulled back the welcome mat from engineers. I
noticed that the kinds of papers that could be published then
were different from when I was publishing at a good clip in
the 1980s. By the mid-1990s it was clear that a paper like
Moon’s from 1986 would never be published at OOPSLA or
any other programming language conference.

In the mid-1990s I went back to school and got my MFA
in Creative Writing, believing that when I finished I would
take up my research career again. When I returned in 1998
I was startled to learn that my field—advances in Lisp-like
languages approached in an engineering manner—had been
deleted, literally. The conference I routinely published in de-
leted “Lisp” from its name in 1996 (Lisp and Function Pro-
gramming became the International Conference on Functional
Programming); the journal I founded with Guy Steele deleted

“Lisp” from its name in 1997 (Lisp and Symbolic Computation
became Higher Order and Symbolic Computation). And when
I attended OOPSLA, I found I couldn’t understand any of the
papers. While in the 1980s, engineering-centric researchers
could publish implementation or new-language papers at
OOPSLA, in the late 1990s such papers went into “Practitioner
Reports.” In the 2000s, some universities introduced a new
faculty level, Professor of (the) Practice, extended to those who
had “developed a high level of expertise in fields of particular
importance” to the university in question. But some of those
schools enforced a stipulation that reflects the hesitancy with
which the title is granted: “appointees will hold the rank of
Professor but, while having the stature, will not have rights
that are limited to tenured faculty” [14].

It seemed like some kind of paradigm shift in the Kuhnian
sense happened. But what was it?

“I Don’t Want to Die in a Language I Can’t Understand”

Let’s start again.
…That night I pulled the paper down from the ACM server

and read it while outside enormous puffed clouds dwelled
overhead, lit from beneath by the town of Porto de Galinhas
on the Brazilian coast; the smells of burning sugarcane and
bitter ocean pushed into my room. I fell asleep after two or
three attempts to understand the apparently nonsensical pas-
sages I encountered in that old scientific text.1

1. Italic—see quote Kuhn Discovers Incommensurability below.

t

Later, back from Brazil, I went back and looked more
closely at the Bracha & Cook paper: the passages in their pa-
per on mixins in CLOS and Flavors were nonsensical, as if
the authors were confused or held mistaken beliefs.1

But Bracha & Cook are smart guys. They were young when
they wrote the paper, but they graduated from good schools
and good CS programs. I on the other hand was clearly start-
ing to head down the drain. It all reminded me of Feyerabend
talking about using voodoo as a starting place for a new take
on a scientific field—“anything goes,” as he wrote [15].

Later that spring, the New York Times published a long
essay in five parts called “The Ashtray” by Errol Morris [16].
It was about incommensurability—Kuhnian incommensu-
rability—the idea that paradigms exist in different, mutually
unfathomable linguistic domains. In the end, Errol Morris
rejected incommensurability. He wrote: “The past may be a
foreign country, but I do not believe that people there speak
a language that we can not understand.”

Looking at the Bracha & Cook paper, I felt I was staring
into the unsmiling face of modern day incommensurabilty.
And examining the paper through the lens of incommensu-
rability, I was struck by a couple of things. When discussing
CLOS, Bracha & Cook get several terms wrong and seem to
ignore others. When talking about method combination, they
throw out the very mechanisms that support what they want
to focus on: mixins. Their choice of papers to reference seems
odd: a paper about Flavors [10], a brief overview of CLOS from
an ECOOP paper [17], and a programmer’s guide written by
a technical writer at Symbolics [18]. This was after the CLOS
specification had been widely publicized—it was published
in full in September 1988 in SIGPLAN Notices [19].

My first thought was that this paper tagged the pivot point
of a Kuhnian paradigm shift.2 This was bolstered by my be-
lief that engineering papers had become rather suddenly
unwelcome at programming language conferences around
the same time.

My initial hypothesis was that the paradigms in question
were engineering on one side and science on the other. But
the paradigms in question turn out to be more technically
focussed.

t

But: how fascinating! —That incommensurability could be
real. I had lived through this micro-paradigm shift, and my
realization came as a surprise because it explained so much
while remaining hidden from me all these years.

The real paradigm shift? Systems versus languages. Be-
fore 1990, a person interested in programming could work
comfortably both in programming languages and in pro-
gramming systems, but not so easily after. To tell the truth,

2. A paradigm shift is not a clean demarcation between past and future—
paradigms co-exist. The Newtonian paradigm is still used for many com-
mon calculations.

11

I never even noticed the different words—language versus
system—never attached any significance to the word choice
until this exploration. I used the phrases interchangeably for
many years: Programming System / Programming Language.
Bracha & Cook wrote the following (underlines are mine):

A variety of inheritance mechanisms have been de-
veloped for object-oriented programming languages.
These systems range from classical Smalltalk single
inheritance, through the safer prefixing of Beta, to the
complex and powerful multiple inheritance combina-
tions of CLOS. These languages have similar object
models, and also….

–Bracha & Cook, Mixin-Based Inheritance, 1990 [1]

Bracha & Cook seem confused about the terms in this
quote. Perhaps the use of “systems” is an oversight. May-
be the word “mechanisms” should have been repeated? Or
maybe languages and systems at that time were unclear or
confused concepts.

But mostly Bracha & Cook write of languages, while Can-
non, Moon, and the CLOS guys write of systems. The follow-
ing are definitions of language and system:

[Language:] a formal system of signs governed by
grammatical rules of combination to communicate
meaning
[A] System is a set of interacting or interdependent
components forming an integrated whole

–http://en.wikipedia.org/, 2012 [20]

A system is a set of interacting components, though some-
times the interaction is in the realm of ideas—and thus a
language can also be a system. But the usual case requires a
set of actual, observable behavior. A real set of things doing
real stuff. —Even if in a computer.

A language is a system of signs but for the purpose of con-
veying meaning. A language is words on the page. Grammati-
cal correctness is important to a language.

You can see the overlap in meaning. But the difference is
clear: systems are about things happening, and languages are
about conveying meaning.

As we’ve seen in quotes from Moon and Cannon, for sys-
tems, good design by a human designer is essential, and
though the system can go only so far to help you, it should
go some distance. Today, one of the goals of programming
language designers is to make some kinds of bad or poor
design ungrammatical, thereby cutting them off.

Recall that Howard Cannon wrote that when conventions—
that is, good design principles—are supported by tools which
make them easier to follow, you have a programming system
(see quote: Cannon Conventions).

The Moon paper speaks of a programming system: here…

This paper describes Symbolics’ newly redesigned
object-oriented programming system, Flavors. Flavors
encourages program modularity,….

–David A. Moon, OOP with Flavors, OOPSLA 1986 [10]

…and here:

An object-oriented program consists of a set of ob-
jects and a set of operations on those objects. These
entities are not defined in a monolithic way. Instead,
the definitions of the operations are distributed among
the various objects that they can operate upon. At the
same time, the definitions of the objects are distributed
among the various facets of their behavior. An object-
oriented programming system is an organizational
framework for combining these distributed definitions
and managing the interactions among them.

–David A. Moon, OOP with Flavors, OOPSLA 1986 [10]

But note the slight ambiguity: “an organizational frame-
work for combining these distributed definitions and man-
aging the interactions among them” can refer to a system of
thought, but nevertheless, “managing interactions” sounds
very physical.

The “S” in CLOS stands for “System.” The Common Lisp
Object System.

The Bracha & Cook paper is one of the papers that marks
the demise of the System Paradigm and the rise of the Lan-
guage Paradigm. Of course, both paradigms existed since
the early 1960s, and both still exist, but while the System and
Language paradigms were of essentially equal prominence
before 1990, after, the System Paradigm disappeared almost
completely until the mid-2000s.

The Lisp world from which Pilot, Flavors, and CLOS
emerge naturally falls into the System Paradigm—to do well
with Lisp requires system thinking. Syntax—a hallmark in
the Language paradigm—is relatively unimportant for Lisp.
Lisp is about execution because you can “feel the bits between
your toes” [21]. Alan Perlis said it most eloquently, I believe,
when he wrote the following:

Pascal is for building pyramids—imposing, breath-
taking, static structures built by armies pushing heavy
blocks into place. Lisp is for building organisms….

–Alan Perlis [22]

When working with a system one must explicitly attend
to careful design, good organization, and modular thinking.
In Lisp, the underlying system is designed to help you. And
your design thinking is effected by altering the living, run-
ning system right in front of you.

CLOS is decidedly a system designed to create and ma-
nipulate executing systems. Here’s how you know: CLOS

12

Specifically, the criticism is that linearization of multiple
inheritance chains violates encapsulation by ignoring di-
rectly and explicitly specified inheritance relationships. This
is a good example of where the language and terminology in
the two paradigms are at odds. The example Bracha & Cook
are talking about is in Figure 1. Recall the classes used in
the example: person, which directly inherits from noth-
ing; graduate, which is a person; doctor, which is also a
person; and research-doctor, which is both a gradu-
ate and a doctor.

The directed acyclic graph that these class definitions spec-
ify is in Figure 2.

And here is the class precedence list:

(RESEARCH-DOCTOR DOCTOR GRADUATE PERSON

 STANDARD-OBJECT T)

The complaint is that the definition of Doctor specifies
that it directly inherits from Person, and the class precedence
list interposes Graduate.

The process of linearization has been criticized for
violating encapsulation. One argument is that the
relationship between a class and its declared parents
may be modified during linearization. This is demon-
strated by the example above, where in the lineariza-
tion the class Graduate is placed between Doctor
and Person, in contradiction of the explicit declara-
tion of Doctor that it inherits directly from Person.

–Bracha & Cook, Mixin-Based Inheritance, 1990 [1]

But notice something else: the definition of Person speci-
fies that it inherits from nothing, but here it inherits from
Standard-Object and also from the class named T. Stan-
dard-Object provides default behavior for a variety of meth-
ods on objects that share the structure and behavior defined
by Standard-Class. This hints that “direct inheritance”
and “direct superclass” mean different things in the two
paradigms—or at least are misdirections.

Language from the CLOS specification (not referenced in
the Bracha & Cook paper) probably gave rise to this confusion.

A class C1 is a direct superclass of a class C2 if C2
explicitly designates C1 as a superclass in its definition.

–Daniel Bobrow et al, The Common Lisp
Object System Specification, 1988 [19]

But, read that sentence carefully. It speaks of the class
C2 explicitly designating C1 in C2’s definition—that is, in the
defclass form that defines C2. Earlier, the specification states
the following using odd wording:

defines a protocol for updating class objects and instances,
while retaining identity, when a class is redefined. Were CLOS
a programming language, no protocol would be needed be-
cause the programmer would simply recompile and rebuild
the program—such a change is a text editing chore, not a
system update: CLOS describes how the affected objects in
the running system should be updated and how the program-
mer can determine how best to do this in the context of the
system’s domain.

A class that is an instance of standard-class can
be redefined if the new class will also be an instance
of standard-class. Redefining a class modifies the
existing class object to reflect the new class defini-
tion; it does not create a new class object for the class.

When the class C is redefined, changes are propa-
gated to its instances and to instances of any of its
subclasses.…Updating an instance does not change
its identity….

–Daniel Bobrow et al, The Common Lisp
Object System Specification, 1988 [19]

Similarly, CLOS supports a related protocol for changing
the class of an object.

The function change-class can be used to change
the class of an instance from its current class, Cfrom,
to a different class, Cto; it changes the structure of the
instance to conform to the definition of the class Cto.

–Daniel Bobrow et al, The Common Lisp
Object System Specification, 1988 [19]

In a programming language there would be no such thing.
CLOS is a system, and the meaning of “system” is a running,
executing thing, not a “system of thought.”

t

Bracha & Cook discuss some of the shortcomings of CLOS,
as understood by them based on a paper by Linda Demich-
iel and myself published at ECOOP [17] and a user manual
written by a technical writer at Symbolics [18]. Linda and
I wrote the CLOS specification [19] which was adopted by
X3J13, the Common Lisp standardization group.3 One of the
major criticisms of CLOS is that it uses a class precedence list
to determine inheritance.

A CLOS class may inherit from more than one par-
ent. As a result, a given ancestor may be inherited
more than once…. To remedy this situation, CLOS
linearizes the ancestor graph of a class to produce an
inheritance list in which each ancestor occurs only once.

–Bracha & Cook, Mixin-Based Inheritance, 1990 [1]

3. Linda and I did the actual writing; the author list is the list of CLOS
designers.

13

A class whose definition refers to other classes for
the purpose of inheriting from them is said to be a
subclass of each of those classes.

–Daniel Bobrow et al, The Common Lisp
Object System Specification, 1988 [19]

Again this defines terms that refer to what can be observed
in expressions found in CLOS source text, and later the speci-
fication describes what the CLOS system does in response to
those expressions—they are taken to be instructions on how
to alter the running CLOS system.

Each class’s class precedence list (and not text found in
defclass expressions) is the basis for inheritance in CLOS—
to the extent that inheritance exists in CLOS.

Each class has a class precedence list, which is a
total ordering on the set of the given class and its
superclasses. The total ordering is expressed as a list
ordered from most specific to least specific. The class
precedence list is used in several ways. In general, more
specific classes can shadow, or override, features that
would otherwise be inherited from less specific classes.
The method selection and combination process uses
the class precedence list to order methods from most
specific to least specific.

When a class is defined, the order in which its di-
rect superclasses are mentioned in the defining form
is important. Each class has a local precedence or-
der, which is a list consisting of the class followed by
its direct superclasses in the order mentioned in the
defining form.

A class precedence list is always consistent with the
local precedence order of each class in the list.

–Daniel Bobrow et al, The Common Lisp
Object System Specification, 1988 [19]

When talking about the source-code text used to modify
systems, some terms refer to the syntactic / textual (defining)
forms (“direct superclass”) while others refer to the reality in
the running system (“class precedence list”). This is a char-
acteristic of programming systems. When talking about text
that conveys meaning as in a programming language, most
if not all terms refer to relationships between textual items.

This is one of the confusions I found while reading the
Bracha & Cook paper. It is an example of incommensurabil-
ity in which those authors were befuddled by the technical
details of an earlier paradigm.

As we recall (see quote Constraints on Component Fla-
vors), Flavors shares the same stance regarding the flavors
mentioned in defflavor forms. Notice that these flavors
are called “components,” and the defining form is specifying
constraints not direct relationships.

Here is the crux: in a programming system, features in
the language that are used to define the system and changes
to it typically require the system to do something in order
to deliver the intention expressed in the language, while in

a programming language, the program text printed out on
paper is enough4—is all there is and is all that need be.

Moon is careful to point out that in well-organized pro-
grams each flavor defines a single facet of behavior (see quote
Flavors Well-Organized Programs). And rather than violat-
ing encapsulation, the purpose of linearization is to preserve
modularity.

Encapsulation is about information hiding, and the claim
Bracha & Cook make is that the information about direct
superclasses is modified by an outside process. But in CLOS
and Flavors, this “private information” is just a set of con-
straints, to be strictly observed. If they cannot be, an error
is signaled—both in Flavors and in CLOS.

Moon admits that a programming system cannot guar-
antee program modularity (see quote Flavors System Guar-
antees), and in fact, programming languages cannot either.
Parnas himself observed this in 2002 when he observed a
failure in being able to achieve perfect modularity in the very
piece of code he used in his famous 1972 paper to exemplify
his concept of information hiding and its principles.

My original example of information hiding was
the simple KWIC index program described in [his
famous 1972 paper]. This program is still used as
an example of the principle. Only once has anyone
noticed that it contains a flaw caused by a failure
to hide an important assumption. Every module
in the system was written with the knowledge that
the data comprised strings of strings. This led to a
very inefficient sorting algorithm because compar-
ing two strings, an operation that would be repeated
many times, is relatively slow. Considerable speed-up
could be obtained if the words were sorted once and
replaced by a set of integers with the property that
if two words are alphabetically ordered, the integers
representing them will have the same order. Sorting
strings of integers can be done much more quickly
than sorting strings of strings. The module interfac-
es described in [a companion to that famous 1972
paper] do not allow this simple improvement to be
confined to one module.

–David L. Parnas, The Secret History of
Information Hiding, 2002 [23]

t

Flavors defines two ways to support modularity: Inheri-
tance with which similar behavior can be specialized, along
with mixins with which object types can be built from a tool-
kit of (essentially orthogonal) component parts.

As Cannon points out, the purpose of method combina-
tion is to support modularity, and the purpose of lineariza-
tion is to make method combination practical—an engineer-

4. Along with a formal semantics for the underlying language.

14

ing concern:

In essence, the lattice structure is flattened into a
linear one. This is important [because] it makes the
use of global knowledge practical, since in certain cases,
the combined methods are not trivial, and could not
easily be generated dynamically.

–Howard I. Cannon, Flavors, MIT, 1979 [11]

And a question remains: are Bracha & Cook using the same
notion of inheritance as CLOS? In Smalltalk, inheritance is
straightforward: if a message is not handled directly by the
class of its receiver, the message is passed to the superclass of
that class, and so on. In CLOS it’s not quite as simple, though
the concept CLOS uses is strongly related to simple inheri-
tance. The language used in the CLOS specification speaks
of “applicability.”

A subclass inherits methods in the sense that any
method applicable to all instances of a class is also
applicable to all instances of any subclass of that class.

–Daniel Bobrow et al, The Common Lisp
Object System Specification, 1988 [19]

The Smalltalk notion of explicitly invoking a superclass
using message passing and the Beta notion of invoking a
subpattern using a call to inner (which smells like message
passing) form the basis of Bracha & Cook mixins. Hence the
paradigm disconnect with Flavors and CLOS. See Apendix:
Fine Print.

t

So far we’ve seen some examples of where Bracha & Cook’s
understanding of Flavors and CLOS seem to be slightly off
base, but this can be attributed to a lack of fluency or per-
haps the slant they are after in their paper. Kuhn’s notion of
incommensurability, though, goes far beyond that. I believe
the Bracha & Cook paper rises to the level of demonstrating
true incommensurability. Let’s explore.

The past is a foreign country.
They do things differently there.

–L. P. Hartley, The Go-Between, 1953 [24]

Incommensurability is an extreme symptom of one scien-
tific paradigm being different from another. The word refers to
things that do not share a common standard of measurement,
and its origin stems from such facts as that

√
 is irrational

(not a rational number), and so there is no way to measure it
using only rationals—all one can do is approximate it.

Kuhn’s own testimony of how he stumbled onto the idea
of incommensurability is similar to mine. Parts of the Bra-
cha & Cook paper seemed confused or mistaken, and some
passages were pure nonsense.

Incommensurability is a notion that for me emerged
from attempts to understand apparently nonsensical
passages encountered in old scientific texts. Ordinar-
ily they have been taken as evidence of the author’s
confused or mistaken beliefs. My experiences led me
to suggest, instead, that those passages were being
misread: the appearance of nonsense could be removed
by recovering older meanings for some of the terms
involved, meanings different from those subsequent-
ly current.

–Thomas Kuhn, The Road Since Structure [25]

Kuhn worked through his perceptions and discovered that
earlier nonsensical passages made sense once he understood
the older terms and their narrative, but without such work
at understanding, given two paradigms (an original and its
replacement), statements in one can look like craziness to
adherents of the other.

The most important and most controversial aspect of
Kuhn’s theory involved his use of the terms "paradigm
shift” and “incommensurability.” That the scientific
terms of one paradigm are incommensurable with
the scientific terms of the paradigm that replaces it.
A revolution occurs. One paradigm is replaced with
another. And the new paradigm is incommensurable
with the old one.

–Errol Morris, The Ashtray, NYT, 2011 [16]

The difficulty is the narrative. Kuhn realized that it wasn’t
simply a matter of defining technical words from one para-
digm into terms familiar in another—a good deal of the entire
theory surrounding the technical terms needs to be explained
in order to understand how the terms interact and play out.
Recall the description of the phlogiston theory of combus-
tion I gave before. I couldn’t have simply defined phlogiston
in isolation. If I had said phlogiston was…

…a substance contained in all combustible bodies,
released during combustion…

…you would think me mad because you would be interpreting
this statement in the paradigm of thermodynamics. Instead,
I wove a story about how this “substance” did its thing, and
thereby you came to understand—I hope—that it was a sen-
sible theory that happened to be wrong or perhaps not as ac-
curate as the caloric theory and, later, thermodynamics, but
when it was in force, it was used to do useful and accurate
computations about physical phenomena.

Sometimes the world after a paradigm shift is radically
different. Scientists in one paradigm are responding to a

Kuhn
Discovers
Incommen-
surability

15

different world from scientists in the other precisely because
their stories are different.

People in different paradigms speak different lan-
guages, and there is no way to translate the scientific
language of one paradigm into the scientific language
of another[—e]ven when they use the same words.

–Errol Morris,The Ashtray, NYT, 2011 [16]

We may want to say that after a revolution scien-
tists are responding to a different world.

–Thomas Kuhn, The Structure
of Scientific Revolutions [8]

When Copernicus proclaimed that the earth moved
around the Sun, scientists in the prevalent paradigm believed
him mad because the narrative surrounding the thing called

“earth” was that it had a fixed position—when you stood on
the earth you were standing on solid, unmoving ground.

Let’s return to the Bracha & Cook paper. I was a little con-
fused reading the following sentence…

Although there are several significant aspects of
CLOS inheritance, we focus only on standard method
combination and primary methods.

–Bracha & Cook, Mixin-Based Inheritance, 1990 [1]

…because my understanding was that “mixin” as a concept
inherited from Flavors referred primarily to classes that de-
fined only auxiliary methods. Therefore, this sentence says
that the authors of a paper reflecting on CLOS mixins have
chosen to ignore…mixins!:

In CLOS, mixins are simply a coding convention
and have no formal status. Although locally unbound
uses of call-next-method are a clear indication
that a class is a mixin, the concept has no formal
definition, and any class could be used as a mixin if
it contributes partial behavior.

–Bracha & Cook, Mixin-Based Inheritance, 1990 [1]

And though Howard Cannon writes specifically of object-
oriented programming being—from one point of view—a
set of coding conventions, mixins are quite recognizable in
CLOS code and marked quite clearly.

I felt exasperated and confused. Did these guys just not
get it?

t

Some (possibly interesting) facts. The CLOS spec indeed
does not mention mixins by name. Unlike Smalltalk and Beta,
CLOS uses generic functions and not message passing—to
better integrate with Common Lisp—so there is only a kin-
ship to message-passing-based inheritance to begin with. But
CLOS supports mechanisms that make it formally clear when

and how mixins are being used despite the concept being
informal. (Standard) method combination defines method
types which play specific roles; in general, classes with only
methods that declare specialized roles are considered mix-
ins—such methods are called “auxiliary methods.”

Methods have a clearly visible type in the Lispy sense of the
word. In source text the type is explicit—you can see it here…

(defmethod display :before

 (message (w announcement-window))

 (expose-window w))

…and as represented in the runtime you can see it in the ob-
ject inspector at the bottom of the next page.

Perhaps not formally defined but apparent—and formal.
Cannon discusses the notion of flavors this way:

A base flavor serves as a foundation for building
a family of flavors. It defines instance variables, sets
up defaults, and is often not instantiable. A mixin
flavor is one that implements a particular feature,
which may or may not be included. Mixins are almost
never instantiable, often have the word mixin in their
name, and often define a handful of instance variables.

When an essentially orthogonal feature is to be
implemented, a new mixin is defined, with no com-
ponent flavors.

–Howard I. Cannon, Flavors, 1979 [11]

A base flavor is the foundation; mixins can be added to
supply orthogonal behavior; mixins are not instantiated by
themselves; and mixins are named specially. In the way of
the programming systems paradigm, his characterization is
as formal as it can be. The formality Bracha & Cook seek is
more suitable to grammatical rules.

And the contribution of their paper is to provide a formal
definition of mixins suitable for a programming language.

Flavors though focuses on generic functions which aggre-
gate methods into a combined method.

When a generic function is applied to an object of
a particular flavor, methods for that generic function
attached to that flavor or to one of its components
are available. From this set of available methods, one
or more are selected to be called. If more than one is
selected, they must be called in some particular order
and the values they return must be combined somehow.

–David A. Moon, OOP with Flavors, OOPSLA 1986 [10]

Flavors has a few built-in method combination types, and
programmers can define their own. Each type, though, has
access to all applicable methods for an object, and constructs
a combined method that manages how the constituent meth-
ods are called and what is done with the values they return.

16

The method-combination type sorts the available
methods according to the component ordering, thus
identifying more specific and less specific methods.
It then chooses a subset of the methods (possibly all
of them). It controls how the methods are called and
what is done with the values they return by construct-
ing Lisp code that calls the methods. Any of the func-
tions and special forms of the language may be used.
The resulting function is called a combined method.

–David A. Moon, OOP with Flavors, OOPSLA 1986 [10]

This approach affords an additional pair of dimensions to
modularity. A programmer who is designing well will think
only about what a method must do while designing that meth-
od, and will think only about how methods interact while
designing or specifying a method-combination type to use.
These separate concerns are thereby separated.

CLOS adopts this same approach. And the method types
are explicit.

The role of each method in the effective method is
determined by its method qualifiers and the specific-
ity of the method.

Primary methods define the main action of the ef-
fective method, while auxiliary methods modify that
action in one of three ways. A primary method has no
method qualifiers. An auxiliary method is a method
whose method qualifier is :before, :after, or :around.

–Daniel Bobrow et al, The Common Lisp
Object System Specification, 1988 [19]

Bracha & Cook relied on Sonya Keene’s book [18] to un-
derstand CLOS, and though the CLOS specification does
not define or even mention mixins, her book does. This is
her glossary entry for it.

Mixin class: A descriptive term for a class intend-
ed to be a building block for other classes. It usually
supports some aspect of behavior orthogonal to the
behavior supported by other classes in the program;
typically, this customization is supported in before-
and after-methods. A mixin class is not intended to

interfere with other behavior, so it usually does not
override primary methods supplied by other classes.

–Sonya E. Keene, Object-Oriented Programming in
Common Lisp: A Programmer’s Guide to CLOS,

1989 [18]

Bracha & Cook seem to ignore this and restrict themselves
to primary methods, and they note that the best way to deter-
mine whether a class is a mixin is by observing whether it has
a (primary) method with a free use of call-next-method.

In CLOS…locally unbound uses of call-next-
method are a clear indication that a class is a mixin….

–Bracha & Cook, Mixin-Based Inheritance, 1990 [1]

But the real way to tell whether a class is a mixin in CLOS is
by observing whether it has no primary methods and only
:before and :after methods.

By the way, call-next-method is specified to be illegal
in :before and :after methods, thereby rendering Bra-
cha & Cook’s “clear indication” that a class is a mixin a tad
murky, and raising the possibility that they really wanted to
talk about their ideas and not those from the past.

An error is signaled if call-next-method is
used in a :before method.… An error is signaled if
call-next-method is used in an :after method.

–Daniel Bobrow et al, The Common Lisp
Object System Specification, 1988 [19]

t

A number of scientists and philosophers have concluded
that incommensurability is nonsense. The central reason for
this conclusion is the belief that reality is real, the truth is the
truth, and scientists are moving toward perfect understand-
ing slowly but surely. In this they are claiming implicitly that
unlike biological evolution, the evolution of scientific theories
has a fitness function directing it toward a definite goal: the
truth that underlies the real universe.

Part and parcel of their objections is that the idea of in-
commensurability implies there can be no notion of “better”
or “improvement,” or even “truth,” because the inability to

CLOS::DOCUMENTATION-SLOT NIL

FUNCTION #<interpreted function

 (METHOD DISPLAY :BEFORE (T ANNOUNCEMENT-WINDOW)) 20711DD2>

GENERIC-FUNCTION #<STANDARD-GENERIC-FUNCTION DISPLAY 20711DBA>

LAMBDA-LIST (MESSAGE W)

CLOS::PLIST NIL

CLOS::QUALIFIERS (:BEFORE)

CLOS::SPECIALIZERS (#<BUILT-IN-CLASS T 207B1043> #<STANDARD-CLASS ANNOUNCEMENT-WINDOW 20713DD3>)

17

comprehend one paradigm from the viewpoint of another
means that there is neither a way to compare them nor a solid
notion of what truth is. And therefore Kuhn’s view implies
strict relativism. Errol Morris, the director of “The Fog of
War” who was once a student of Kuhn’s wrote the following:

If everything is incommensurable, then everything is
seen through the lens of the present, the lens of now.…
There is no history. There is no truth, just truth for the
moment, contingent truth, relative truth. And who
is to say which version of the truth is better than any
other, if we can’t look beyond the paradigm in which
we find ourselves.

–Errol Morris, The Ashtray, NYT, 2011 [16]

This is the path to antirealism—the idea that science can
never figure out what the world is like because we live in a
sort-of manufactured conceptual or representational world
that dictates reality to us. The physicist turned philosopher—
a common transition, it seems—Andrew Pickering proposes
a way out of this that retains incommensurability as we’ve
seen it manifest in Bracha & Cook but avoids antirealism [26].

 He observes that the practice of science is one in which
scientists attempt to find a stable point between a conceptual
framework and the material agency of the world as revealed
through machines—or instruments. Scientists dream up and
build machines to explore reality. What the machine does
or reports is interpreted according to a conceptual frame-
work. When the machine reports something unexpected or
contradictory (a resistance in Pickering’s terminology), the
conceptual framework is adjusted along with the machine
(usually) (a pair of accommodations), and more observations
are made. Pickering calls this (and a bit more) the mangle5
of practice. Eventually, the conceptual framework, the ma-
chine, and the observations settle down, and—if the scientist
is lucky—a fact is manufactured.

An example he uses is the story of two physicists trying to
determine whether free quarks6 exist. William Fairbank and
Giacomo Morpurgo took similar approaches: each construct-
ed a machine that would perform a variant on Millikan’s oil
drop experiment—the experiment that originally measured
the fundamental electrical charge—but on much smaller
materials. The experiment works by measuring how much
a chunk of material is displaced by an electrical field while
suspended by a magnetic levitation field [27]7. By doing this

5. He means “mangle” mostly in the British sense of a wringer on an old-
fashioned washing machine, but also as in mutilation and disfigurement.

6. A quark is an elementary particle with fractional charge. Normally a
number of quarks combine to make up a hadron of integral charge. A free
quark is a single quark not part of a hadron.

7. Read especially Feynman’s comment in the section labeled “Millikan’s
experiment as an example of psychological effects in scientific methodology.”

they hoped to find globs of material with non-integral elec-
trical charge thus showing free quarks exist (in those globs).

Morpurgo used graphite for the material and built a ma-
chine that operated at room temperature. In an early experi-
ment he found a grain of graphite that demonstrated contra-
dictory behavior in his machine—essentially doing one thing
before lunch, and the opposite after lunch. This was his first
experience with resistance in this experiment. He came up
with an explanation for the anomaly by manipulating the con-
ceptual model that informed how to configure the machine
and interpret results—this was his first accommodation. In
the end, he was never able to find evidence for free quarks.

William Fairbank was expert in superconductors, and so
his machine operated at very cold temperatures and used
superconducting niobium balls. Fairbank and his students
found evidence of free quarks.

Pickering says this a clear-cut example of incommensu-
rability even though there are no linguistic comprehension
issues. He wrote:

…I remember that the punch-line…was incommensu-
rability. In the quark study, for example, it appeared
to me that the two central protagonists, William
Fairbank and Giacomo Morpurgo, lived in different
worlds. Those two physicists had found ways to ex-
hibit, respectively, the existence or non-existence of
free quarks; what counted as evidence for one was
something that needed to be explained away for the
other. And yet, this divergence did not quite fit the
Kuhnian mould. Kuhn’s basic idea was that incom-
mensurability arises from differences in paradigms,
which set people up to perceive the world and pay
attention to it differently. I could not see any split
between Fairbank and Morpurgo in that sense. The
relevant difference was rather that they had arrived
at different material set-ups, and that Fairbank’s ap-
paratus really did provide evidence for free quarks
while Morpurgo’s apparatus really did provide evi-
dence against their existence. It was as simple as that.

–Andrew Pickering, Reading the Structure, 2001 [28]

This seems a lot like our situation with the Bracha & Cook
paper versus the earlier mixin papers. I’ve already said that the
difference between Bracha & Cook and Cannon8 is embodied
in programming languages versus programming systems—
these terms each package both the machines or material set-
ups as well as the conceptual frameworks that go with them.

A programming system consists of an executing software
system, tools for examining and altering that system (typically
but not necessarily executing as part of that same system), and
a mechanism for people to express changes to that system.

8. Really it’s Cannon, Moon, and the CLOS designers, but Howard Cannon
originated the ideas, so I’ll abbreviate the list to “Cannon.”

18

That mechanism of expression typically looks like program
source text. The machine or material set-up is the executing
system, its tools, and program source text; and the concep-
tual framework is how the program source text describes or
specifies acts of examination or mutation.

A programming language consists of a set of program
source texts, an empty & idle computer, and a semantics that
states what computation the computer would perform when
executing the semantics specified by a syntactically legal
program source text. The machine or material set-up is the
computer and the program source text; and the conceptual
framework is the semantics.

Just like the two quark experiments, these two material
set-ups and conceptual frameworks are similar, and using
them similarly leads to different conclusions. For one thing,
programming systems exhibit behavior which can be ob-
served or modified while programming languages are for
specifying computations. Roughly speaking.

Bracha & Cook and Cannon are perfectly capable of un-
derstanding everything about each others’ material set-ups
and conceptual frameworks, but they don’t want to, because
they are in the mangle of their own practices—to use Picker-
ing’s terminology.

t

Our context is different from the one Kuhn talks about.
First, the study of programming has little pure nature, little
external reality to guide us—and mostly it’s a reality we’ve
created. Second, people can choose whether to view program-
ming through the lens of programming systems or through
the lens of programming languages. Each paradigm repre-
sents a community of practice, which takes study and en-
dorsement to master and then enter. And the choice of how to
extend reality is determined by the encompassing paradigm.

Third, I believe there is no question that Bracha & Cook
were trying to invent a new concept—mixin-based inheri-
tance—in the programming language paradigm, taking their
approximate cues from what they gathered from their read-
ings in the programming system paradigm. They plumbed
that paradigm to just the depth they needed.

Fourth, my intuition that programming systems versus
programming languages represents a micro-paradigm shift
might just be a difference of material set-up or more precisely
a difference between the kinds of “machines” the two camps
use to observe and manipulate the realm of programming in
order to manufacture scientific facts about it.

Fifth, you likely noticed that I interpreted the hell out of
those old Flavors and CLOS materials for you; I did this to
make their narratives clear so that it was apparent how far
off the Bracha & Cook paper was. But my close reading [29]
also demonstrates how hard it is for researchers in one para-
digm to get to the heart of the work in another, particularly
a paradigm from another era.

And sixth, computer scientists and practitioners benefited
tremendously from the (temporary) shift from programming
systems to programming languages, a move that focused
the research.

Perhaps incommensurability then is the potential for ap-
proximate understanding between two paradigms, and effort
expended determines how close is the approximation.

One thing that amazes me is that we could have noticed the
paradigm shift from programming systems to programming
languages right when it happened—using incommensurabil-
ity as the theoretical basis and “this looks like nonsense” as
the instrument. Gilad Bracha told me as much in Brazil that
spring evening.

t

Not many of us stop to reflect. We’re just programmers,
after all. Or software developers or engineers. And as ants
and termites do, we are content to follow where others have
gone, and most of us go where most have gone. But when we
do reflect, perhaps what we find is important—and surprising.

Scientists (in other fields) and some philosophers have re-
jected the idea of incommensurability because there is a real
world out there that is directing our inquiries into it. Real-
ity co-designs science. But in our field incommensurability
seems real. Our relationship to reality is not quite as fixed as
in the natural sciences—our engineers make the nature we
study. But are we, anyway, so different?

19

References

[1] Gilad Bracha & William Cook, Mixin-based Inheri-
tance. Proceedings of the Fifth ACM Conference on
Object-Oriented Programming, Systems, Languages,
and Applications. 1990.

[2] Philip Kitcher, Seeing is Unbelieving. New York Times
Book Review. March 25, 2012.

[3] Chuck Lorre & Bill Prady, “The Jerusalem Duality,”
The Big Bang Theory. CBS. Aired April 14, 2008.

[4] http://wordnetweb.princeton.edu/perl/webwn. 2012.
[5] http://en.wikipedia.org/wiki/Engineering. 2012.
[6] Matthew B. Crawford, Shop Class as Soulcraft: An In-

quiry Into the Value of Work. Penguin. New York. 2009.
[7] James Bryan Conant, ed. The Overthrow of Phlogiston

Theory: The Chemical Revolution of 1775–1789. Cam-
bridge: Harvard University Press. 1950.

[8] Thomas Kuhn, The Structure of Scientific Revolutions.
University Of Chicago Press. 1996.

[9] http://en.wikipedia.org/wiki/Mixin. 2012.
[10] David A. Moon, Object-Oriented Programming with

Flavors. The First ACM Conference on Object-Orient-
ed Programming, Systems, Languages, and Applica-
tions. 1986.

[11] Howard Cannon, Flavors: A Non-Hierarchical Ap-
proach to Object-Oriented Programming. Unpublished.
MIT AI Lab. 1979.

[12] Warren Teitelman, Pilot: A Step Toward Man-Comput-
er Symbiosis. MIT PhD Dissertation. 1966.

[13] Arthur Rimbaud, The Drunken Boat. (Translated by
Rebecca Seiferle). 1871.

[14] http://www.faculty.umd.edu/FacultyAppointment/titles/

POP.htm. 2012.
[15] Paul Feyerabend, Against Method: Outline of an Anar-

chistic Theory of Knowledge, 3rd edition. Verso. 1993.
[16] Errol Morris, The Ashtray. The New York Times.

March 6, 2011. http://opinionator.blogs.nytimes.com/

2011/03/06/the-ashtray-the-ultimatum-part-1/. 2011.

[17] Linda DeMichiel & Richard P. Gabriel, The Common
Lisp Object System: An Overview. ECOOP. 1987.

[18] Sonya E. Keene, Object-Oriented Programming in
Common Lisp: A Programmer’s Guide to CLOS. Addi-
son-Wesley. 1989.

[19] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Ga-
briel, Sonya E. Keene, Gregor Kiczales, David A. Moon,
The Common Lisp Object System Specification. Tech-
nical Document 88-002R of X3J13. LASC Volume 1,
Numbers 3–4. SIGPLAN Notices. June 1988.

[20] http://en.wikipedia.org/. 2012.
[21] Guy L. Steele Jr. & Richard P. Gabriel, The Evolution of

Lisp, quote from Drew McDermott. ACM Conference
on the History of Programming Languages, II. ACM
SIGPLAN Notices, Volume 28, Number 3. March 1993.

[22] Alan Perlis, from the Foreword to Harold Abelson &
Gerald Jay Sussman, Structure and Interpretation of
Computer Programs, 2nd Edition. MIT Press. 1996.

[23] David L. Parnas, “The Secret History of Information
Hiding.” Software Pioneers: Contributions to Soft-
ware Engineering. Manfred Broy & Ernst Denert, eds,
Springer-Verlag. 2002.

[24] L. P. Hartley, The Go-Between. 1953.
[25] Thomas Kuhn, The Road Since Structure. University of

Chicago Press. 2000.
[26] Andrew Pickering, The Mangle of Practice: Time, Agen-

cy, and Science. The University of Chicago Press. 1995.
[27] http://en.wikipedia.org/wiki/Oil_drop_experiment. 2012
[28] Andrew Pickering, “Reading the Structure.” Perspec-

tives on Science, Volume 9, Number 4. 2001.
[29] http://en.wikipedia.org/wiki/Close_reading. 2012.
[30] Richard P. Gabriel, Jon L. White, and Daniel G. Bo-

brow, CLOS: Integrating Object-Oriented and Func-
tional Programming. Communications of the ACM,
Volume 34, Issue 9. September 1991.

20

(defclass base-stream ...)

(defmethod open ((s base-stream))
 (pre-open s)
 (basic-open s)
 (post-open s))

(defmethod pre-open ((s base-stream)) nil)
(defmethod basic-open ((s base-stream)) (os-open ...))
(defmethod post-open ((s base-stream)) nil)

(defclass abstract-buffer ...)

(defmethod pre-open ((x abstract-buffer))
 (unless (has-buffer-p x) (install-new-buffer x)))

(defmethod post-open ((x abstract-buffer))
 (fill-buffer (buffer x) x))

(defclass buffered-stream (base-stream abstract-buffer) ...)

P1 A1

P3

P2

A2

T

P1 A1+

standard-
object

:before

:before

:before

:before

:after

:after

:after

:around

:around

:around

primary

primary

start

Fine Print
In “well-organized” programs, as
David Moon would say, a class
that inherits from two others
would have a class hierarchy
that looks like the one to the
right. Here, P1 supplies the pri-
mary methods, and A1 supplies
the auxiliary methods. The join
would be near the top of the hi-
erarchy, typically at standard-
object, which is part of the CLOS
infrastructure.

This structure is what Can-
non means by “essentially or-
thogonal,” and what Moon
means by “each component fla-
vor is a module that defines a sin-
gle facet of behavior.” Hence linearization does not violate encapsulation
because the interspersed classes are orthogonal. This is not guaranteed,
because, as Moon says, “no programming system can guarantee program
modularity or eliminate the need for careful design of a program’s structure.”

In CLOS, standard method combination recognizes primary, :around,
:before, and :after methods, as shown at the top of the right-hand col-
umn. Flavors, as discussed in the Moon Paper [10], did not have :around
methods. The diagram shows the order combined methods are invoked:
the most specific :around method is invoked first; call-next-method
invokes the next most specific :around method; if there are no :around
methods or call-next-method finds no other, all the :before methods
are invoked from most specific to least specific; then the most specific pri-
mary method is called; call-next-method invokes the next most specific
primary method; finally, all the :after methods are invoked from least
specific to most specific. In the diagram, methods with a grey background
are invoked automatically without needing call-next-method (and in
fact, it is illegal for :before and :after methods to mention it). It’s called

“standard” because it’s the most commonly used one; there are other built-
in method combination types (+, and, append, list, max, min, nconc, or,
progn), and programmers can define others.

Bracha & Cook consider only primary methods, which means they
consider only procedural method combination in Flavors and CLOS. They
examined Smalltalk’s use of super and Beta’s use of inner, which are how
those languages combine methods. In Smalltalk, the most specific class of
an object responds to a method invocation, and if that method needs to
use the method in its superclass that it overrides, it mentions super, which
refers that superclass. In Beta, subpatterns (essentially subclasses) are not
permitted to override methods defined in its superpatterns, so the superpat-
tern that declares the method virtual controls execution, and if it needs to
use the method’s enhancement in a subpattern, it mentions inner, which
refers to the current pattern’s relevant subpattern.

Bracha & Cook’s concept for mixins was to generalize super and inner;
they noticed that Flavors and CLOS also support a version of procedural
method combination when primary methods mention call-next-method,
and this is part of what Cannon originally called mixins. But Cannon and
later Moon, and, even later, CLOS considered mixins and method combi-
nation to be about the auxiliary methods—:around, :before, and :af-
ter methods—that is, about declarative method combination, which is an
abstraction of procedural method combination.

Bracha & Cook mixins express inheritance by combining classes in a
linear order. The rightmost class controls method execution, and a mention
of super invokes methods in the class “to the left.” Combined classes can
model Smalltalk inheritance or Beta enhancement depending on whether
the rightmore classes are taken to be more specific or more general—this
is sort of a coding convention. This also covers CLOS’s use of call-next-
method, so the evocative name, “mixin,” was used.

In 1991, Jon L. White, Daniel G. Bobrow, and I published a look at the
design landscape CLOS fits into, and we talked about procedural versus de-

clarative method combination. Here is what we wrote:
In CLOS, a method can be composed from sub-pieces that are des-

ignated as playing different roles in the operation through a technique
known as declarative method combination. The enhancement tech-
niques of Beta and Smalltalk are simple cases of procedural method
combination: Explicit calls are made to related behavior. Another
technique for procedural method combination is for a basic class to
have a method that calls other explicitly named methods, which will
be defined in derived classes. For example, consider a simple stream-
opening protocol, shown <below>. Notice that the method for open
defined on base-stream provides a template for the operations on
streams. The auxiliary methods pre-open and post-open have de-
fault definitions on base-stream, the base class, which do nothing.

Declarative method combination is an abstraction based on this
sort of procedural method combination. In this example code there are
four methods—open, pre-open, basic-open, and post-open. The
main sub-operation, basic-open, cannot be named open, since that
name refers to the whole combined operation. The other two names—
pre-open and post-open—are placeholders for actions before and
after the main one, i.e., those preparatory steps taken before the main
part can be executed, and those subsequent clean-up actions performed
afterwards. There really is just one action—opening—and all other
actions are auxiliary to it: They play particular roles. This constella-
tion of actions should have just one name, and the auxiliary names
need only distinguish their roles.

In declarative method combination, the role markers act like an
orthogonal naming dimension.…

–Gabriel et al, CLOS: Integrating Object-Oriented
and Functional Programming [30]

This discussion is in the context of talking about partitioned operations,
which are defined incrementally.

