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ABSTRACT. Quantum mechanics is spectacularly successful on the technical level. The 
meaning of its rules appears, however, shrouded in mystery even today, more than sixty 
years after its inception. Quantum-mechanical probabilities are often sajd to be "operator-
valued" and therefore fundamentally different from "classical" probabilities, in disregard 
of the work of Cox (1946) - and of Schrodinger (1947) - on the foundations of probability 
theory. One central question concerns the superposition principle, i. e. the need to work 
with interfering wave functions, the absolute squares of which are the probabilities. Other 
questions concern the collapse of the wave function when new data become avaHable. These 
questions are reconsidered from the Bayesian viewpoint. The superposition principle is 
found to be a consequence of an apparently little-known theorem for non-negative Fourier 
polynomials published by Fejer (1915). Combined with the classical Hamiltonian equations 
for point particles, it yields all basic features of the quantum-mechanical formalism. It is 
further shown that the correlations in the spin pajr version of the Einstein-Podolsky-Rosen 
experiment can easily be calculated classically, in contrast to EPR lore. All this demystifies 
the quantum-mechanical formalism to quite some extent. Questions about the origin and 
the empirical value of Planck's quantum of action remajn; finite particle size may be part 
of the answer. 

1. The Riesz-Fejer Theorem and Quantum-Mechanical Probabilities 
In his work on Fourier series L. Fejer (1915) published a.proof given by F. Riesz of 

the following theorem (see Appendix): Each nOll-negative Fourier polynomial (truncated 
Fourier series) of order n (maximal wave number n) can be expressed as the absolute square 
of a Fourier polynomial of (at most) the same order, 

n n 

o p(x) == L c/e i /x = I L akeikxl2 == 11,&(x)1 2 , (1) 
/=-n k=-n 

where the Fourier polynomial 1,&( x) is not restricted to non-negative values, in contrast to 
the Fourier polynomial p( x). Our notation anticipates the obvious application to quantum-
mechanical probability densities p and probability wave functions 1,& (without excluding 
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application to other inherently positive quantities such as intensities of classical energy-
carrying waves). Fourier techniques are most convenient whenever wave or particle propa-
gation constrained by initial or boundary conditions is to be described. Constraints such as 
point sources, slits, scatterers etc. define, together with the wave equation for the Fourier 
components, eigenvalue problems whose eigenfunctions are all those waves which are pos-
sible under the given circumstances. 

In quantum mechanics it is customary to introduce (infinite) Fourier series by the 
familiar device of the periodicity box. We note that 
(a) infinite Fourier series can be approximated by finite Fourier polynomials to any desired 

accuracy if the order n is chosen high enough; 
(b) the transition to Fourier integrals describing arbitrary non periodic processes is achieved 

if the box is made bigger and bigger. 
In view of these uneventful generalisations we may consider the Riesz-Fejer theorem as 
equivalent to the wave-mechanical superposition principle: Probabilities are to be calculated 
as absolute squares of wave functions that can be expressed as linear superpositions of 
orthogonal functions. In Eq. 1 the orthogonal functions are standing waves in a (one-
dimensional) periodicity box. Other possible orthogonal bases are generated by unitary 
transformations. Historically the superposition principle had been established first, as a 
rather puzzling empirical feature of the quantum world, before Born found that the absolute 
square of the wave function can be interpreted as a probability density. 

If, on the other hand, one starts with probabilities, the superposition principle, far 
from puzzling, appears as a theorem, valid not only in quantum mechanics but throughout 
probability theory (cf. e. g. Feller 1966 on L2 theory). The much discussed role of the 
phases of the superposed functions is also clarified: They ensure faithful reproduction of 
the nonnegative probability density p(x) in Eq. 1. Furthermore, there is no reason to con-
sider "operator-valued" quantum-mechanical probabilities as fundamentally different from 
"ordinary" ones. In fact, any such difference would contradict the results of Cox (1946), 
Schr6dinger (1946) and Renyi (1954) who found that any formal system oflogical inference 
must be equivalent to ordinary probability theory, with probability understood as a numer-
ical scale of rational expectation (or incomplete knowledge) in the tradition of Bernoulli 
and Laplace (and Heisenberg 1930), - otherwise it is bound to contain inconsistencies. 

With this understanding there is nothing strange about the "collapse of the wave 
function" when new data become available. Their utilisation by means of Bayes' theorem 
inevitably changes all prior probabilities to posterior ones. As this is not a physical but a 
logical change, questions about its sudden (superluminal) occurrence throughout physical 
space, or about the exact time of death of Schr6dinger's cat, do not arise for Bayesians -
who are quite prepared to reason even backwards in time. 

2. Mechanics of Particles with Uncertain Initial Coordinates 
Let us consider a classical particle. Its energy as a function of its location x and 

momentum p is given by the Hamilton function H = H(x,p); its motion is determined by 
Hamilton's canonical equations 

(2) (3) 

For given initial phase space coordinates, {x(O),p(O)}, one obtains the trajectory in phase 
space, {x(t),p(t)}, by integration of the canonical equations, for t < 0 as well as for t > O. 
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Fig. 1 - Classical particle trajectories in phase space without and with initial uncertainty 

207 

If the initial coordinates are uncertain, lying somewhere in a phase space domain D(O), 
there is a multitude of possible trajectories (Fig. 1). At time t the possible values of x (t) 
and p(t) lie in a domain D(t) that has the same size as D(O): The canonical equations 
imply that the divergence in phase space is zero, 

(4) 

(Liouville's theorem, valid already separately for each pair Xi, Pi). More generally the 
initial uncertainty can be described by a continuous probability density. Let us consider 
a time-dependent spatial probability density p(x,t) = 11jJ(x,tW in a periodicity box so 
large that the Fourier polynomials of the Riesz-Fejer theorem can be replaced by Fourier 
integrals. The resulting wave function and its Fourier transform, 

1jJ(x,t) = (21r)-3/2 J d3 k<p(k,O)ei(kx-wt) , 

<p(k,t) = (21r)-3/2 J d3 x 1jJ(x, 0) e-i(kx-wt) , 

(5) 

(6) 

both normalised to unity, are superpositions of waves propagating with phase velocities 
w / k in directions k/ k. The resulting averages, 

(x(t») = J d3x /1jJ(x, t)/2 X = J d3 k <p(k, t)* <p(k, t) , 

(k(t») = J d3k /<p(k ,t)/2 k = J d3x1jJ(x,t)* i!X 'Ij;(x ,t) , 

(7) 

(8) 

show that 1<p12 is the probability density in k representation corresponding to the probability 
density 11jJ/2 in x representation. Furthermore, the factor k in k representation is replaced 
by the operator -iO/f)x in x representation, and the factor x in x representation is replaced 
by the operator if) / f)k in k representation. Similarly one finds 

(9) 
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which shows that w is equivalent to the operator if) / &t in both representations. The familiar 
wave-mechanical uncertainty relations for Fourier transforms are 

1 
.6.x· .6.k· > -8·· , 3 - 2 '3 , 

where .6.xi and .6.kj are root-mean-square deviations. 

(i,j = 1,2,3), (10) 

For a free particle, not influenced by forces, one finds from Eqs. 7 and 8 the expectation 
values (best estimates under quadratic loss) 

J 3 ( io ow ) I ow ) (x(t)) = d k <p(k, 0)* ok <p(k, 0) + <p(k, 0) ok t = (x(O)) + \ ok t=o t , (11) 

(k(t)) = J = (k(O)) , (12) 

describing linear translation with group velocity (ow/ok). Their time derivatives, 

d(x) = lOW) 
dt \ ok ' (13) d(k) = 0 

dt ' 
(14) 

can be compared with the expectation values 

d(x) = I OH) 
dt \ op , (15) d(p) _ 0 

dt - , (16) 

that follow from Hamilton's canonical equations for a free particle. Evidently we can take 
k ex p and w ex H (if we disregard uninteresting additive constants). Denoting the common 
proportionality constant by n we get de Broglie's particle-wave transcription, 

H = nw , (17) p = nk , 

and, from Eq. 10, Heisenberg's quantum-mechanical uncertainty relations, 

n 
.6.x· .6.p' > -8·· , 3 - 2 '3 , (i,j=1,2,3), 

(18) 

(19) 

comparable to Liouville's theorem - see Figs. 1 and 2. The equality sign applies if IIW 
is a (three-dimensional) Gaussian, the maximum entropy distribution for given (x) and 
(x2 ). Expectation values of physical quantities that depend on both x and p, such as 
the Hamilton function H(p,x) = p2 /(2m) + V(x) of a particle with mass m moving in a 
potential V(x), can be calculated from 'IjJ or <p with the appropriate operators. For example, 
the best estimate of the orbital angular momentum with respect to the origin, x = 0, is 

(x X p) = J d3 X 'IjJ* (x x !) 'IjJ = J d3 k <po x nk) <p . (20) 

Real expectation values imply Hermitean (self-conjugate) operators. If 'IjJ is one of the 
eigenfunctions of the operator, the variance vanishes. If, for instance, 'IjJ is an eigenfunction 
of the operator H = ina; at, with eigenvalue E, satisfying the Schrodinger equation 

(21) 
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Fig. 2 - Phase space illustration of Heisenberg's uncertainty relations , Eq. 19. Left side: wave-like 

behaviour with well-defined momentwn (wave length) but ill-defined location. Right side: particle-
like behaviour with ill-defined momentum (wave length) but well-defined location. 

(for given boundary conditions), one has (H) = E and var H = (H2) - (H? = 0: The 
estimated energy is E without any uncertainty. 

Thus we obtain, for a classical particle obeying Hamilton's canonical equations, the 
basic formal apparatus of quantum mechanics - complete with wave-particle duality, oper-
ator calculus including commutation rules, uncertainty relations and Schrodinger equation. 
All we had to do was to admit finite uncertainties of the phase space coordinates. The 
lliesz-Fejer theorem permits tllen unrestricted use of Fourier series - the proper tool for 
dealing with boundary conditions and similar constraints - in a way that guarantees the 
non-negativity of aU probability densities. Planck's quantum of action appears naturally, 
as a "blurring" parameter, in such a probability theory of classical particles that move ac-
cording to the Hamiltonian equations. Its role as a limit to attainable accuracies in phase 
space is clear from Heisenberg's uncertainty relations (see Fig. 2). 

3. Spin Correlations 
Generalisation to several indistinguishable particles and to additional attributes such as 

spins is straightforward. In the spin version of the famous Einstein-Podolsky-Rosen (1935) 
experiment one considers a particle with spin zero that decays into two particles , each with 
spin 1/2, flying in opposite directions. Because angular momentum is conserved, the spins 
of the two particles must be antiparallel, 0"1 = -0"2' If one of the spin components of 
particle 1 i s measured as pointing up, the same spin component of particle 2 is immediately 
known to be pointing down (which can be confirmed experimentally). More generally, one 
finds that the correlation of arbitrary spin coordinates (a . O"J) and (b . 0"2) is gi ven by 

((a· 0"J) ( 0"2 . b)) = -a ' b = - cos(a, b) , (22) 

where a and b are unit vectors along two arbitrary analyser directions. This result is 
obtained quantum-mechanically if one describes the singlet state (total spin zero) by the 
antisymmetric fermion wave vector (wave function for the two discrete possibilities "spin 
up" and "spin down" of the two particles) 

(23) 
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and the spin coordinates by Pauli matrices, 

(i=1,2) (24) 

where the subscripts 1 and 2 refer to particles 1 and 2, and the subscripted matrix operators 
act only on column vectors with the same subscript. Expectation values are calculated as 
( •.• ) == '¢t ... '¢ which yields Eq. 22, and also 

(a'O'l)=O, (25) 
((a. O'd) = 1 , (26) 
(0';1) = = (0';1) = (O't) /3 = 1 (27) 

(similarly for b and 0'2). Because of var x == ((x - (X))2), cov (x, y) == ((x - (x))(y - (y))), 
one recognises (26) as the variance of (a . 0'1), and (22) as the covariance of the spin 
coordinates (a'O'l) and (b'0'2)' The latter is numerically equal to the correlation coefficient, 
r(x, y) == cov (x, y)/ v'var x var y. 

It is often stated that the correlation (22) cannot be obtained classically. Its confirma-
tion by experiment is then taken as evidence that the spin coordinates cannot exist simul-
taneously before a measurement reveals one of them, in accordance with N. Bohr's (1935) 
epistemological interpretation of quantum mechanics but at variance with the ontological 
view of Einstein, Podolsky and Rosen (1935). Since, however, the quantum-mechanical 
result (22) does not contain Planck's constant one expects that a classical derivation is pos-
sible - as, for instance, in the case of the Rutherford scattering formula. Let us therefore 
consider the spin 0'1 = -0'2 as an ordinary vector, for which all orientations are equally 
possible. Expectation values are then to be calculated classically as 

_ roo r+ 1 d( cos '19) t" dcp 
( ... ) = io dO'I p(O't} i-I --2- io 21l"'" (28) 

where P(O'l) is the probability density of the length 0'1 = 10'11 of both spin vectors and '19, 
cp are the polar angle and azimuth of 0'1. Without any difficulty one finds 

(29) 

which, with (O'r)/3 == 1 (cf. Eq. 27), is equal to the quantum-mechanical result. Hence 
the correlation measurements alone do not rule out the ontological viewpoint, i. e. reality 
of unobserved spin components. On the other hand, if one treats the quantum-mechanical 
spin eigenvalues, +1 or -1, measured along a and b, as determined by hidden variables, one 
gets the inequalities derived by Bell (1964) that are, in fact, contradicted by experiment. 
That Bell's inequalities are only valid for a certain class of hidden-variable models, and 
hence less general than is commonly believed, was pointed out by Jaynes (1989). 

4. Summary 
The formalism of quantum mechanics, in the traditional axiomatic presentation, seems 

mysterious. It emerges naturally, however, if one handles phase space uncertainties for clas-
sical point particles wave-mechanically, by means of the Riesz-Fejer superposition theorem, 
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- which by the way dispels any doubts about the linearity of the theory. Planck's quantum 
of action appears automatically, as a "blurring" parameter. The nonlocality (instantaneous 
collapse of the wave function throughout physical space if new information is taken into 
account) follows from Born's interpretation of 1.,p12 as a probability density and from the 
Bayesian scheme for the updating of knowledge. There is no reason to doubt that physical 
quantities, such as the spin coordinates in the spin version of the Einstein-Podolsky-Rosen 
experiment, have a reality independent of the observer, in obvious contrast to eigenfunc-
tion expansions and eigenvalues that reflect his choice of measurement. From this viewpoint 
quantum mechanics looks much like an error propagation formalism for uncertainty-afflicted 
physical systems that obey the classical equations of motion. 

What remains mysterious, however, is the irreducible uncertainty enforced by the em-
pirical finite and universal value of the blurring parameter "Ii. That this value is the same for 
electrons, nucleons, photons etc. is not too surprising since their mutual interactions con-
serve energy and momentum. Its role as a limit to the attainable information and control 
in microphysics has been clear ever since Heisenberg (1930) discussed his uncertainty rela-
tions: Phase space trajectories and orbits are always affected by a non-removable minimum 
blur. As finite particle size would produce a similar blur, one is tempted to ask if quantum 
mechanics can perhaps be viewed as a kind of minimum information (maximum entropy) 
generalisation of probabilistic Hamiltonian mechanics from mass points to particles with 
finite eztension (spatial distribution) and internal motion (momentum distribution, spin). 
How this conjecture compares with others, such as zitterbewegung, granular space-time 
structure, or superstrings, remains to be seen. 

Appendix: Proof of the Riesz-Fejer Theorem 

The proof presented by L. Fejer (1915) as due to F. Riesz is given here in slightly 
different notation. Consider the real Fourier polynomial 

n 

p(x) = p(x)* = L cleil", , (AI) 
l=-n 

Defining the polynomial g(z) as 

(A2) 

one can write p(x) = e-n;"'g(ei ",). If the Fourier polynomial is non-negative, this becomes 

(A3) 

The polynomial g(z) is of degree 2n if en f= 0, so that g(O) f= O. If z,. is a solution of 
g(z) = 0, 

(A4) 

then 1/ zi; is another solution, 

(A5) 



212 F.H. FROHNER 

One concludes that each root Zk is accompanied by another root 1/ z'k. (Recall that Z = 0 is 
not a root.) On the unit circle, Z = ei'P, both roots coincide. If the root Zk is of multiplicity 
m one has 2m roots on the unit circle. Thus a complete set of independent roots contains, 
for instance, those within the unit circle and half of those on the unit circle itself, with due 
account of multiple roots. One gets 

n 1 
g(z) = Cn II (z - zn)(z - z.) (A6) 

k=l k 

and, with Z = e ix , 

. 1 n eix - Zk 12 
p(x) = Ig(e'X)1 = Fn g y'Zk (A7) 

This is the absolute square of a Fourier polynomial of the same order as p( x) so we can 
write 

n 

p(x) = L c/e i /x = 1'¢(x)12 , -1l' < x::; 1l' (AS) 
l=-n 

,¢(x) = ei"'Jlz1 ,c'n' Zn 1 fl (eix - Zk) (0: arbitrary) , (A9) 

which completes the (constructive) proof that each non-negative Fourier polynomial can be 
written as the absolute square of an unrestricted Fourier polynomial of (at most) the same 
order (same highest harmonic), with an arbitrary phase factor. 
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