
Playground: An Object Oriented Simulation System
with Agent Rules for Children of All Ages

Jay Fenton
Kent Beck

Apple Computer Vivarium Project
292 S. La Cienega Blvd.
Beverly Hills, CA 90211

Abstract
Programming languages for children have
been limited by primitive control and data
structures, indirect user interfaces, and artificial
syntax. Playground is a child-oriented pro-
gramming language that uses objects to struc-
ture data and has a modular control structure,
a direct-manipulation user interface, and an
English-like syntax. Integrating Playground
into the curriculum of a classroom of 9- to lo-
year-olds has given us valuable insights from
the programs intended users, and confirmed
many of our design decisions.

Introduction
The Apple Computer Vivarium Project was
started in 1986 by Ann Marion and Alan Kay
and represents a broad research initiative to
investigate the phenomena of learning. To
provide a living laboratory for study and ex-
perimentation, Apple established a relationship
with the Open School, a public school in the
Los Angeles Unified School District. As part
of this research program, we have created the
Playground programming system.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-333-7/89/OOlO/O123 $1.50

Playground is an object oriented programming
environment that allows children to construct
simulations by endowing graphical objects
with laws to obey. Playground is inspired by
our intuition that biology provides a good
metaphor for understanding complex dynamic
systems. Children will write programs by
constructing artificial animals and turning
them loose in an environment. Each object is a
separate creature, with sensors, effecters, and
processing elements, that can act of its own
accord.

Our exposition begins with a demonstration of
Playground as it would be experienced by a
new user. The language is then presented in
terms of examples. Next, we consider the
influences that led us to adopt agent rules as
our unit of computation. The following sec-
tion deals with implementation details: how
we make agent rules work and how they make
animation and communication easy. We then
recount our experiences teaching this language
to children and conclude with our ideas for
future directions.

Overview
The basic elements of the Playground environ-
ment are illustrated by the program’s screen
display as shown in figure 1.

October 1-6, 1989 OOPSLA ‘69 Proceedings 123

’ & File Edit Smalltalk Playground Plaqer UJindow

ange costume to gray box;
make sound named 'explosion sound'.1

Figure 1: Playfield Overview

When first started, Playground behaves like an
object oriented drawing program, permitting
the user to construct pictures using geometric
primitives. Circles, squares, bitmaps, text, and
composite objects can be placed anywhere on
the screen. Any object or collection of objects
can be selected and manipulated through
menus. Objects can be opened up and their
constituents browsed.

In Playground, objects occupy a planar surface
called the Hayfield. This Hayfield can be
viewed as a world inhabited by organisms.
Each organism in the environment is a Play-
&round Object. The Hayfield mediates the
interactions between the objects within it. Any
object can be opened up and investigated,

becoming itself a Playfield with constituents.
To introduce an object, select a prototype
from the gallery of predefmed objects. Then
click on the Playfield to introduce a copy. This
object can then be selected, moved, or resized.
When an object is selected, the editing area
above the Playfield becomes active, permitting
the user to edit the agent rules.

Agent rules describe cause-and-effect relation-
ships that apply to the simulation. When an
appropriate set of circumstances comes up, the
agent rule is triggered and the designated
sequence of operations is followed. Agent rules
run in parallel.

124 OOPSLA ‘89 Proceedings October 1-6, 1989

As the rules execute, they can move an object
or change its appearance. The animation code
reacts to these changes by repainting the
screen as needed to achieve a real time presen-
tation.

Agent rules are entered using the caption pane,
which is displayed above the Playfield. The
appropriate agent name is selected in the agent
nanze list pane on the left. The caption pane
applies to whatever object is selected on the
Playfield.

In figure 1, the user has selected Agent1 for
the square object. This is indicated by the
system highlighting the agent name in the
pane on the left, and drawing small rectangles
called “birdies” at the corners of the selected
object. By moving the birdies the user can
resize or reshape the object.

Each organism controls how it is presented to
the outside world. This is done by donning a
costunze, a generic shape such as a circle or
square, or a bitmap graphic. A costume defines
both the physical appearance of an object and
how it interacts with the user. For example,
graphical objects can be resized, while text
objects can have their font changed. An object
can also move, change size or color, font, etc.
under control of agent rules.

An object can sense the presence of other
objects on the Playfield in various ways. Play-
ground provides functions that return sets of
objects that are nearby, are of a certain type,
that overlap, and so on.

All Playground objects may avail themselves of
a background of predefined behaviors which
implement a useful naive physics [Gardin89]
of location and motion over time. Each object
has a heading and velocity which control
motion across the Playfield according to the
rules of turtle geometry as defined in the Logo
programming language [Papert801.

Language
In our experience with children, we have
found that a surface syntax that closely re-
sembles that of a natural language makes
teaching a programming language easier.

Grammar
Playground is defined by a phrasal grammar
that uses a syntax closely resembling that of a
natural language.

Each Playground clause corresponds to a
“message send” in a conventional object
oriented language. The user program is parsed
according to these phrasal grammar rules,
which then generate Smalltalk SO code for
compilation. References to undeclared names
are allowed, and are resolved at run time using
a dynamic binding function.

Here are some sample Playground sentences:

Change costume to black box.
Move arrow to 30 @ 50;Make sound ‘loud growl’.

In the first example sentence the current ob-
ject, or self; is commanded to change its cos-
tume into a black box. In the second sentence,
the object named “arrow” is commanded to
move to the given coordinate, and then the
‘loud growl’ sound is triggered.

The semicolon serves as the non-yielding
statement separator. The period designates a
yield point. During each simulation cycle,
every active agent runs up to the next period.
Thus process multiplexing occurs at predict-
able places.

Examples
We have implemented several diverse models
in Playground to test its range. Figure 2 illus-
trates a simple “shooting gallery” video game.

Note that if an agent rule does not specify a
condition, it runs continuously.

October 1-6, 1989 OOPSLA ‘89 Proceedings 125

’ & File Edit Smalltalk Plag.lqround Plauer Window

shot

tube

button

Set speed to 10.

fish
move: Go td 30 @I 40.

Go to 250 @ 40.

-
hit: When over shot.

Set costume to explosion.
Wait 2 ticks;Set costume to fish.

move: Move by 0 @ -30

r-l
Set costume to black box;

mouse
FIRE click:

Move shot to tube center.
Set costume to white box.

Figure 2: Shooting Gallery Example

Figure 3 shows a predator/prey simulation,
with a fixed number of predators.

Figure 4 illustrates a conventional music nota-
tion editor with real-time playback. In this
example, musical note symbols placed on the
staff are triggered by the playback head object
in sequence, playing a melody in real time.
The sequence can be edited while it is playing.

While the previous examples give some idea of
the expressive power of the Playground sys-
tem, to delve deeper we must consider the
background influences that led us to this
formulation.

Influences
We have studied many fields in searching for
the ideas in Playground. A review of these
sources of inspiration will help explain the
decisions presented in the rest of this paper.

Animal Behavior Models
Since Playground uses the metaphor of biol-
ogy, it is instructive to study some of the
theories of animal behavior that the field of
biology offers. Biology is, of course, a vast and
fascinating field, riddled with controversy. For
a general introduction, see [Grier19841. We
take particular interest in the cognitive mecha-
nisms humans have applied in analyzing animal
behavior. This means even ideas that are
wrong are interesting, if they give insight into
how humans grapple with understanding
behavior.

126 OOPSLA ‘89 Proceedings October 1-6, 1989

Predator/Prey example:

Preditor

I Wander
I

Set angle to 360 random;
Set speed to 40. Wait 2 seconds. I

1 Hunger 1 Set hunger to hunger + 1
When hunger > 10 excite ‘go to food’. I

1 F:Z 1 Set angle to my bearing to food

Find I I Food Set food to nearest prey object

I Eat I When I am over food then remove food;
Set hunger to 0. I

Prey

1 Wander 1 Set angle to 360 random. Go forward 4 steps

1 Flee 1 Inhibit Wander. Set angle to (my bearing to
predator)-1 80. Go forward 6 steps.

I Avoid
I Set predator to nearest predator object

Repro- I I When 30 random = 1 then
duce Clone yourself.

Figure 3: Predator/Prey

Music Notation example:

IE
. l :...

Mouse
Click Ask PlayBackHead to retrigger

:
Staff

I I

b
Note

II.
PlayBack

Head

I I Play When i am over PlayBackHead.lnhibit myself for notetime.
Make sound named ‘guitar’ at a pitch of XtoFreq(bounds y).

I I

Scan I I Over Move by notewidth,O;Wait notetime ticks.

Done I I Check When I am not over staff then inhibit Scanover.

Re-
I I trigger Move to staff leftstaff center y

October 1-6, 1989

Figure 4: Music Sequencer

OOPSLA ‘89 Proceedings

1

127

Classical ethology is concerned with observing
and describing the behavior of animals. In the
classic theory, the organism detects sz&n stim-
uli, a particular configuration of sensory input,
occurring in the environment. These stimuli
then influence the organism’s innate releasing
mechanisms, or drive centers. Each drive center
has an energy level. These drive centers are
organized in a hierarchy, so that drive conflicts
can be resolved. The path through the hierar-
chical tree is determined by the drive centers
with the highest energy level.

When a drive center is stimulated and permit-
ted control of the organism; a fixed action
pattern is undertaken that “releases” the drive
energy. There is a close correspondence be-
tween the classical ethological theory and the
rule-based expert system approach to artificial
intelligence.

Sign Innate Fixed Action
Stimulus I$ Releasing 4

Mechanism
Pattern

Figure 5: Classical Theory
taken from: [GrierW]

For example, in the three-spined stickleback
fish, if a male detects another fish with a red
belly assuming the vertical threat posture, the
fighting drive center is stimulated. If no
higher-priority drive, such as hunger, overrides
the fighting drive, the fixed-action pattern for
fighting is undertaken. [Tinbergen l]

Playground seeks to combine ethological and
Society of Mind theories by adopting the
agent rule [TraverGB] as the fundamental unit
of computation. An agent rule is an independ-
ently executing entity sensitive to particular
sign stimuli. This rule can be excited or inhib-
ited by other agents to achieve purposeful
control of the organism. When a rule fires, it
then triggers a sequence of operations.

Society of Mind
The massively parallel organization implied by Agent rules differ from conventional expert
neurobiology has inspired the “Society of system rules in several ways. Agent rules can be
Mind” theory [Minsky85]. Each mind consists gated by excitation and inhibition mecha-
of a swarm of communicating agents, each ‘nisms. They are seen as being strongly situated
running in parallel, attending to aspects of the and are encouraged to use specific references
problem at hand. These agents are organized rather than variables. An agent rule may con-
hierarchically, and are composed of networks tain a state that persists over time; thus sepa-
of subagents, the primitive components of rate instantiations of an agent rule must exist
which are neurons. Specialized agents attend for discrete organisms.

Higher Drive \ m
\

Vertical

d

\
Posture 1

~~,yD~~~ q- iEz:ms

(@@@@

\ /
Sign Stimulus Fixed Action Patterns

Figure 6: Stickleback Behavior

to memory storage and retrieval, command
and control, symbolic processing, and so on.

While the Society of Mind theory has yet to be
established by neurobiological evidence, it
holds out hope for the unification of symbolic
and connectionist theories of Artificial Intelli-
gence. As we propose plausible explanations
for how such internal societies must function,
we again reveal how the mind attempts to
comprehend highly parallel systems.

Agent Rules

126 OOPSLA ‘89 Proceedings October 1-6, 1989

Other Influences
Another influence on Playground’s develop-
ment has been the theory of Idealized Con-
ceptual Models [Fauconnier85] [LakofI?37], or
ICMs. In ICES, abstract theories are repre-
sented metaphorically using objects and rela-
tions grounded in direct experience. We hope,
therefore, to be able to model a wide range of
phenomena by prefabricating a world with the
same properties, operators, and relations as
human direct experience, and providing facili-
ties for the construction of metaphors.

There are, of course, a vast array of other
influences. The list includes: The philosophy
of scientific reasoning and modeling; gaming
techniques; ontological engineering; intelli-
gence gathering and analysis; graphical repre-
sentations of models; audio, film, and video
production; air traffic control systems; comic
books; magic; and linguistic theory.

Technical Design
Playground has been implemented in C and
Smalltalk/V.

Playground objects are universal particles of
identity to which any combination of relations
or agents can be attached. Instead of having
rigid classes, the capabilities of objects are
patched together on the fly. This requires a
very flexible object system. Every Playground
object can contain an arbitrary collection of
properties. These can include the source code
and compiled code for all locally defined agent
rules, the list of active processes for a particular
object, animation control tables, and any other
attached objects or relations.

Any number of agents can be attached to an
object. The code for the agent is either stored
locally or reached through other objects that
have been designated as examples.

The user can branch from one Playfield to
another by programming agent rules. It is also

possible to write agent rules that connect one
Playfield to another, serving as editors or to
characterize functional transformations.
Every Playground object can also be a Playfield
if desired. By using appropriate linking instruc-
tions in agent rules, Playground can f-unction
as a multimedia hypertext system.

The Playfield serves as a bounded universe for
causality. Objects on the Playfield affect each
other through orderly mechanisms. New forms
of causality can be added by creating new
types of events and adding agent rules that
react to these event messages.

The rules attached to an object can reach
across environment boundaries in a limited
way. Thus objects can be created which cause
general properties to be introduced into the
environment they occupy. For example, it is
possible to introduce objects into a Playfield
which add physical laws that all objects within
the Playfield are to obey, in the manner of the
Alternate Reality Kit[Smith861.

Serialization, Pushing, and Pulling
A network of parallel agent rules can be simu-
lated sequentially. This is of course required
on conventional serial computers, and is useful
for parallel systems as well. For example, most
fixed action patterns enumerate a sequence of
actions that take place over time. While this
can be modeled in parallel hardware, it is
much more compact and convenient to con-
struct a sequencing automation that triggers
each operation in turn. Algorithms can be
created to compile parallel dataflow diagrams
into sequential instruction streams; see Fabrik
[IngallsSS].

There are two fundamental ways to drive a
simulation based on agent rules: pushing and
pulling. In puLhg, or event polling, an agent
rule tests for conditions explicitly, hoping to
detect appropriate configurations in other
objects that would enable it to run. In pushing,

October 1-6, 1989 OOPSLA ‘89 Proceedings 129

or dependency tracing, when another object ance, motion, symbolic meaning, etc. when it
generates an event, it notifies the objects that is convenient to do so, only incurring over-
are interested in the change. head for such properties when required.

Each method has its advantages and disadvan-
tages. Pulling can waste time checking for
conditions that have not changed, while
pushing requires overhead to track the de-
pendency relationships amongobjects.

Playground supports a mixed mode strategy.
Each agent rule can test for the events and
situations under which it is to run. When a
rule is posted, the condition part is inspected,
and-if appropriate-the rule is registered
with the system so that it runs only when the
appropriate events have taken place. These
events can be user interface events, events
generated explicitly by other objects, or
changes of values for a given object. A pro-
gram may also trigger an agent explicitly, an
operation similar to sending a message in a
conventional object oriented language.

The Playground system comes with a set of
predefined facets implementing a wide range
of mundane properties of universal utility.
These predefined facets can be specialized or
overridden as desired. Whenever any value for
a slot in a facet is changed, the timestamp field
is updated and any other agents that are
watching the value of this facet are notified.

Rule Compilation
The Playground language is implemented
using a phrasal parser. This design was sug-
gested by the phrasal lexicon theory described
by [Becker751.

Facets
A Playground object is composed of one or
more facets. A facet is a conventional object
with a fixed slot structure that represents a
class of properties attached to an identity. The
facet idea is an adaptation of the multi-valued
relation scheme of KODIAK[Wilensky87].
Some examples of facets used in Playground
are: Physical Appearance, Motion, Symbolic
Meaning, and Process Header. All identities,
including those used by Smalltalk, can have
other facets attached to them. Facets help
avoid the guilt of having too many NIL in-
stance variables!

The language is specified by a large set of
shallow production rules which enumerate the
phrases the language will accept. There are
two kinds of rules: phrasal rules and non-
phrasal rules. A phrasal rule must contain one
or more terminal symbols. A nonphrasal r&e
mentions only abstract grammatical categories.

Playground rules are entered as text strings in
the edit pane. Playground converts these
textual strings into an array of tokens such as
word, number, special character, etc. The
terminal symbols in the phrasal rules are
matched against the, tokens, giving a list of
nonterminal symbols to seek..

All Playground facets share a common super-
class of PlayObject. Each facet has a timestamp
field, a list of subfacets, and a backpointer to
the primary identity this object is a facet for.
Each facet kind can add its own fixed and
optional slots to this base structure. For ex-
ample, any object can be given visual appear-

This list is run down, and successful phrase
matches are retained on the parse chart for
further analysis. Analysis then proceeds from
the top down, seeking a coherent overall
structure. The result is a parse tree.
Each phrasal rule contains information on how
to convert its meaning into a Smalltalk/V
expression. The compiler then transverses the
tree, activating the “generate expressions,”
converting our phrasal syntax into conven-
tional Smalltalk. At appropriate places in the

130 OOPSLA ‘89 Proceedings October l-6, 1989

code, special yield messages are inserted. The
result is submitted to the Smalltalk/V com-
piler,‘giving a Smalltalk method which, when
executed, generates an instance of a Play-
ground lightweight process.

For example, the Playground agent script:

When I am over nest;
Change costume to black box.
Make sound from file ‘meow sound’.

when compiled against the phrasal grammar:

COMMAND ::= when VALUE
generate: ‘self when: &2’.

FUNCTION ::= i am over VALUE
generate: ‘(self over: &4)‘.

COMMAND ::= change costume to VALUE
generate: ‘(self costume: &4)‘.

COMMAND ::= make sound from file VALUE
generate: ‘(self sound: &5)‘.

NAME ::= black box
generate: ‘BlackBox’.

will generate the following sequence of Small-
talk/V code:

temporaryMethod
(codeSeq procobject 1
codeSeq:= [(procobject semaphore) wait.

self when: (self over: (self bindingAt: #nest)).
self costume: BlackBox. Processor yield.
self sound: ‘meow sound’.
procobject noteDone].

procobject := (PlayAgentProcess new: nil running:
codeseq).
procobject SetAutoRepeat.
^procObject.

Whenever a given agent becomes active, this
process generator method is executed, which
adds a Playground lightweight task to the run
list for the host object. These tasks exploit the
multitasking capability of Smalltalk/V.

Animation and Communication
Every viewable graphical object has a bound-
ing rectangle, a depth coordinate, and a cos-
tume. The bounding rectangle and depth
coordinate give the location in the Playfield
that the object occupies. The costume points
to a costume object, which can be a string,

form, primitive shape, or composite. An object
can change its costume at will, to animate or
to present different editing capabilities to the
user. Whenever the costume is changed, the
bounds are adjusted to accurately describe the
extent of the costume.

One type of useful Playground object is called
an observable collection. An agent can allocate
an observable collection and add other Play-
ground objects to it, and automatically receive
notification of any changes occurring to its
members. This is how animation and telecom-
munications are accomplished.

The animation code uses an observable collec-
tion to track all objects on the Playfield. When
any object changes, it is added to a list of
changed objects. During each animation cycle,
this list is retrieved and examined. For each
object that has changed, the old and new
object boundaries are accumulated into a dirty
region list of non-overlapping rectangles. For
each dirty cluster, the screen is redrawn in
back-to-front order in an offscreen buffer,
which is then copied onto the user’s display
screen (see figure 7).

A similar method is used to accomplish tele-
communications. Each object to be shared
with remote stations is added to an observable
collection, which again accumulates a list of
those objects that have changed recently. The
telecommunications code goes down this list,
comparing the present slot values for the
object with previous values, broadcasting the
changes discovered. The recieving code like-
wise keeps a list of changes recieved, which it
then applies locally.

Both the animation and telecommunications
methods require that two copies be kept of
each object, one giving the current state, the
other representing the previous state.

October 1-6, 1989 OOPSLA ‘89 Proceedings 131

Observable Objects
Collection List Animatio rl . .

Disnlav

u
/ #n r--,

Updates
Agent Y Agent

II

Playfield
Objects

0

0
Screen
Display

List

Figure 7: Animation Process

Local Area Network

Communication /\ u fl. n.
Local Image

of Shared
AgencY / \;’ I--- Playfield

/\
Local

Playfield 0 0 0 0 ’ Va’ues

\/ \/
Animation
Agency

I7
A

Display
Screen

User A User B

132 OOPSLA ‘89 Proceedings October 1-6, 1989

Figure 8: Telecommunications Process

Figure 8 shows how the telecommunications
mechanism informs observers at remote
stations about the motion of the fish and
bubble objects.

History
Work on Playground began during the sum-
mer of 1986. During the past three years,
three distinct versions of the program have
been created and tested.

Playground 1 is coded in Lightspeed C for the
Macintosh. The Playground 1 programming
language used a functional notation similar to
LISP but with fewer parentheses. Program
statements were tokenized, then interpreted
using recursive descent. Playground 1 achieved
high animation and telecommunications
performance.

Playground 2 is implemented in Digitalk
Smalltalk/V [Digitalk88] running on the
Macintosh II series of computers. The high
interpretation overhead of Smalltalk forced us
to emphasize language experiments at the
expense of animation and communication.
The first language tried was a modified SELF
syntax [Ungar]. A SELF style delegation
scheme was also tried and dropped in favor of
a direct copying scheme.

Playground 3 is also implemented in Small-
talk/V and uses the operating environment
created for Playground 2. The language was
changed to the more natural syntax previously
described in this paper.

The following table shows the same statement
written in the three versions of Playground:

Version 1: mousedown: moveto (shot,mousex,l50).
Version 2: notice: MouseDown.shot moveTo: (MouseX @ 150).
Version 3: On mouse click move shot to MouseX @ 150.

We have found children to be most demand-
ing and stimulating test subjects. In early
testing with a more artificial concrete syntax,
some children were still able to construct
simulations of surprising complexity.

School Testing
Playground has undergone testing using
groups of children at the Open School. Gener-
ally we do exploratory testing using small
groups of 5 to 8 children first, gearing up for
larger scale tests involving a class of 30 to 60
children taught by their regular teacher.

The Playground 2 version of the language was
tested using a group of 60 fourth and fifth
graders during the spring of 1989. The chil-
dren were taught in two groups of 30. Each
group met twice a week for 4 weeks. Each
session lasted 1 hour. Each session opened
with 20 or 30 minutes of demonstration and
discussion, followed by a “lab” period where
pairs of children completed the assigned
programming exercises.

The material was presented in the following
sequence:

l How to run and quit the Playground program. Use of
user interface to create and modify graphical objects. How
to name objects and give them rules. The coordinate
system and how to make an object move by writing a simple
agent. How to run and freeze the Playfield.

l Create random motion of objects by changing their
speed and heading. Construct agents that display the
internal states of other objects. Change an object’s cos-
tume. Assign properties to objects. Simple counting.

l Construct agents enabling a “Fish” object to detect
food and move toward it when hunger has grown high
enough. Detect when fish is over food and eat it, resetting a
“hunger” counter. Use of “clone” command to create
multiple instances.

l Construct “Plankton” and “Plant” objects and have
grow, reproduce, and die. Enhance fish to follow a life cycle
as well. Count birth and death statistics.

October 1-6, 1989 OOPSLA ‘89 Proceedings 133

Unfortunately, the spring experiment was
curtailed due to a system-wide teachers strike.
If the experiment had not been halted, we
would also have covered the following:

l Add a “Shark” predator to eat the fish. Add agents to
the fish to notice sharks and evade them. Have fish weigh
hunger against fear. Study the predator/prey balance and
population ecology.

l Construct other simulations such as video games and
animated stories using Playground’s features.

Fortunately, the strike was settled in time to
be able to debrief the children and teachers
approximately 3 weeks after the experiment
was halted.

The students remembered quite a lot about
Playground, even after having been away from
it for 3 weeks during the strike and its afier-
math. The children generally enjoyed using
Playground, and most succeeded in accom-
plishing their assigned tasks. They were natu-
rally annoyed at the bugs, unnatural syntax
conventions, the relatively low speed of the
interpreted environment, and deficiencies in
error handling and reporting.

One child astounded us by creating an elabo-
rate aquarium that included two species of
plankton, a whale, jellyfish, seaweed, rays, fish,
and crabs, using some features that were not
explained in the workbook or by the teacher.

The Open School students had a long list of
suggestions on how to improve Playground.
The following list is an excerpt from our notes:

Q: What improvements should we make to Play-
ground?

A: Build in video games. Add flip book animation.
Speech synthesis. Speed it up. Put in a sound menu with
many sounds and the ability to add more. Proximity detec-
tor. FullPaint and HyperTalk painting tools. Mouths that
move as objects talk. VCR-type control panel. Realistic
movement. Grouping of objects. More commands. Directed
animation (frog sticking out tongue). Path animation, More
shapes, spelling checker, study box to remember mistakes.

Speech recognition, clairvoyant typing, color mixing, get rid
of typing coordinates. Better command keys for run and
stop (Enter and Space were suggested). Rotation of
objects. Make screen bigger. Linked Playfiefds like
HyperCard’s

Q: What sorts of things would you like to be able to do
with Playground?

A: Social Studies, Sports, Race Track, Gymnasium,
Cartoons, Science Fiction, Olympics, Westerns, Murder
stories, Chemistry, Treasure Hunt, Trigonometry, Games,
Music, Comics, Car crash, Sound Effects, Commercials,
RoboCop, Spiderman, record what you are doing. Make a
movie. Give characters different voices. Make a playground,
hide in holes, talk to it (using speech recognition), a soap
opera, space station. Soccer. Buildings. Make faces.

Conclusion
Our experience with Playground has encour-
aged us to explore several areas for making the
system more accessible to children, including
expanding or altering the user interface.

Interface
Comic books are well known for their popular
appeal and offer a number of fruitful user
interface ideas. For example, a sequence of
operations can be expressed as a succession of
panels. In addition, we could adopt a number
of stylistic conventions for incorporating
textual descriptions along with graphics. For
example, the user could open a text editing
balloon attached to a given object, and edit
the text associated with it. The comic panel
shown in figure 9 hints at what we are after.

Another significant problem we face is ena-
bling children to design pleasing animal forms
with engaging modes of movement. One
promising approach is guided evolution,
pioneered by Dawkins [Dawkins861, in which
a constructed genome controls the creation of
form, the genome is randomly mutated in
several ways, the user selecting among them.

Other User Communities
We hope to eventually create a general pur-
pose language for personal computer users.
We need to explore ways of applying the Play-

134 OOPSLA ‘89 Proceedings October 1-6, 1989

Scruffy the Fish escapes m($$w@@@!

If you see a shark!

Figure 9: DynaComicBook panel

ground programming style to desktop pro-
gramming problems.

Implementation
We are convinced that the pulling-style control
structure has significant advantages over
message sending. We have yet to implement a
version of pulling that is efficient enough to be
the basis of all computation. We are exploring
techniques used in artificial intelligence for
dependency management, hoping to gain
enough performance for our next round of
experiments.

Finally
We envision a system in which a group of
children sit around a large, central screen
showing the composite view of the Vivarium,
rendered in full color in three dimensions.
Each child has an individual screen on which
to view and mod+ the shared world.

Through three-dimensional input devices
with feedback, they design the form and
behavior of a group of animals and are able to

cooperate in building complicated individuals
with sophisticated group behavior.

Perhaps the Central Intelligence Agency could
use Playground to build a comprehensive
simulation of the Soviet railway system that
puts Lionel to shame. In any case, we look
forward to being astounded with what the
children of the world do with our system.

Acknowledgments
Alan Kay and Ann Marion deserve credit as
codesigners of Playground, along with Kent
Beck and Scott Wallace.Thanks are due to
Mike Travers for suggesting the gated agent
rule approach. George Bosworth contributed
insights and code, Ted Kaehler, Steve Dewitt,
and members of our illustrious advisory board
have made their contributions to Playground
design. Erfert Fenton helped edit this paper.
David Mintz and B.J. Allen taught P to our
kids, who themselves deserve honor for their
pioneering spirit.

October 1-6, 1989 OOPSLA ‘89 Proceedings 135

References

[Becker751 Joseph D. Becker, The Pbvasal
Lexicon, Bolt, Beranek, and Newman Report
No. 308 1, June 1975 (amusing and brilliant)

[PapertSO] Seymour Papert, Mindstorms:
children, computers, and powerfizl ideas. Basic
Books, New York, 1980.

[Borning861 Alan H. Borning, “Classes versus
Prototypes in Object Oriented Languages,”
Praceedings of the ACM/IEEE Fall Joint Com-
puter Conference, November, 1986.

[Smith861 Randall B. Smith, “The Alternate
Reality Kit: An Animated Environment of
Creating Interactive Simulations,” Proceedhys
of the 1986 IEEE Computer Society Workshop on
Visual Languages, DalIas, TX, June 1986, pg.
99-106

[DawkinsSCi] Richard Dawkins, The Blind
Watchmaker, W. W. Norton & Company,
1986.

[Tinbergen Niko Tinbergen, n3e Study of
Instinct, Oxford University Press, I95 1

[Digitalk881 Digitalk, SmalZtaZk/V Mac Tuto-
rial and Programming Handbook, Los Ange-
les, 1988.

[Travers88] Mike Travers ABar: An Animal
Construction Kit, Unpublished masters thesis,
M.I.T. media lab, 1988.

[Fauconnier85] Giles Fauconnier, Mental
Spaces, MIT Press, 1985.

[Gardin891 Francesco Gardin and Bernard
Meltzer, “Analogical Representations of Naive
Physics,” Artificial Intelligence 38(1989) 139-
159.

[Ungar87] David Ungar and Randall B .
Smith; “Self: The Power of Simplicity,”
OOPSLA ‘87 Conference Proceedings pg. 227-
242,1987.

[Grier84] James W. Grier, Biology of Animal
Behavior, Times Mirror/Mosby College
Publishing, St. Louis, 1984.

136

[Wilensky87] R. Wilensky, Some Problems and
Proposals for Knowledge Representation. Com-
puter Science Division. University of Califor-
nia - Berkeley, Report No. UCB/CSD 87/
351.

[Ingalls Dan Ingalls, Scott Wallace, Yu-
Ying Chow, Frank Ludolph, Ken Doyle,
“Fabrik - A Visual Programming Environ-
ment,” OOPSLA 88 Proceedings, San Die&o,
pg. 176-190, 1988.

OOPSLA ‘89 Proceedings

[Lakofl%7] George Lakoff, Women, Fire, and
Dargerous l%in~s, The University of Chicago
Press, Chicago, 1987.

[Minsky851 Marvin Minsky, The Society of
Mind, Simon and Schuster, New York, 198 5.

(contact us for a copy)

October 1-6, 1989

Appendix: Abridged Playground 3
vocabulary

if VALUE then STATEMENT - execute STATEMENT only
when VALUE is true.

if bozo c 12 then display ‘that’s a bozo no no!‘.

make sound from file STRING -trigger playing sound
with name given.
make sound from file ‘monkey’. The quote marks are
required.

set NAME to VALUE - set value to a slot.
set curiosity to 30.

angle; set angle to VALUE - controls the direction an
object will travel. Angles are in degrees following the
compass rose.

set angle to 90. “gets player going east”
move by XYAMOUNT - move the object by an amount on
both x and y axis.

move by -20 @ -2. (moves 20 to the left, 2 up)
bearing from VALUE {to VALUE} - the degrees to the
object or point given as an argument.

display bearing from 200 @ 100 to Sam.
move to LOCATION - move to the location given.

move to 100 @ 200

nearest object with property NAME - returns nearest
object which has the property requested.

go to (nearest object with property green) center.

bounds - gives the bounding rectangle.
The boundaries of an object can be referred to by phrases

like these:

notice CONDITION - introduces the condition part of an
agent rule.

my top right corner
my center
the bottom right corner of VALUE and so on.

number - retrieve the value of the costume as a number.
display number * 2. “double each tick of the world” Each of the above can also be used in the set command,

for example:
set my top right corner to the center of cactus. over OBJECT - returns true when one object overlaps

another.
over somebody with property NAME - sets true if one
object overlaps another object which has a certain property.

notice over somebody with property food.

clock -how many ticks of the Playground world have gone
by.

clone yourself - make an exact copy of this object and
give it an independent existence in this world. VALUE random - returns a random number between 0

and 1 less than VALUE.
change costume to VALUE - set the way an objects
looks.

set costume to black rectangle
remove yourself - removes this object from the world
forever.

set result to VALUE - set result cell to value given.
return VALUE - return value as result for this agent.

depth, set depth to VALUE -change depth coordinate to
new value given.

my result - return result for this agent.
result for NAME - return result for another agent in this
object.
result for NAME {in VALUE} - return result for another
object.

display VALUE - change my costume to display the
number or name given as an argument.

distance from OBJECT {to OBJECT} - calculate the
distance from one object to another.

NAME from VALUE - returns the value of a property from
another object.

speed,set speed to VALUE - sets the speed that an
object should move in pixels per second.

wait VALUE ticks - causes Tf-llS AGENT to wait the
requested time interval before continuing execution.

go forward VALUE steps - move current object forward
the number of units requested.

who i am over {with property NAME} - returns a pointer
to whatever object I am over that has the property re-
quested, if any.

go to POINT - move object towards a specific point at the
current speed.

gotolOO@ 150.

grow by VALUE - change size by factor given.

OOPSLA ‘89 Proceedings 137 October 1-6, 1989

