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Abstract 
Programming languages for children have 
been limited by primitive control and data 
structures, indirect user interfaces, and artificial 
syntax. Playground is a child-oriented pro- 
gramming language that uses objects to struc- 
ture data and has a modular control structure, 
a direct-manipulation user interface, and an 
English-like syntax. Integrating Playground 
into the curriculum of a classroom of 9- to lo- 
year-olds has given us valuable insights from 
the programs intended users, and confirmed 
many of our design decisions. 

Introduction 
The Apple Computer Vivarium Project was 
started in 1986 by Ann Marion and Alan Kay 
and represents a broad research initiative to 
investigate the phenomena of learning. To 
provide a living laboratory for study and ex- 
perimentation, Apple established a relationship 
with the Open School, a public school in the 
Los Angeles Unified School District. As part 
of this research program, we have created the 
Playground programming system. 
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Playground is an object oriented programming 
environment that allows children to construct 
simulations by endowing graphical objects 
with laws to obey. Playground is inspired by 
our intuition that biology provides a good 
metaphor for understanding complex dynamic 
systems. Children will write programs by 
constructing artificial animals and turning 
them loose in an environment. Each object is a 
separate creature, with sensors, effecters, and 
processing elements, that can act of its own 
accord. 

Our exposition begins with a demonstration of 
Playground as it would be experienced by a 
new user. The language is then presented in 
terms of examples. Next, we consider the 
influences that led us to adopt agent rules as 
our unit of computation. The following sec- 
tion deals with implementation details: how 
we make agent rules work and how they make 
animation and communication easy. We then 
recount our experiences teaching this language 
to children and conclude with our ideas for 
future directions. 

Overview 
The basic elements of the Playground environ- 
ment are illustrated by the program’s screen 
display as shown in figure 1. 
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’ & File Edit Smalltalk Playground Plaqer UJindow 

ange costume to gray box; 
make sound named 'explosion sound'.1 

Figure 1: Playfield Overview 

When first started, Playground behaves like an 
object oriented drawing program, permitting 
the user to construct pictures using geometric 
primitives. Circles, squares, bitmaps, text, and 
composite objects can be placed anywhere on 
the screen. Any object or collection of objects 
can be selected and manipulated through 
menus. Objects can be opened up and their 
constituents browsed. 

In Playground, objects occupy a planar surface 
called the Hayfield. This Hayfield can be 
viewed as a world inhabited by organisms. 
Each organism in the environment is a Play- 
&round Object. The Hayfield mediates the 
interactions between the objects within it. Any 
object can be opened up and investigated, 

becoming itself a Playfield with constituents. 
To introduce an object, select a prototype 
from the gallery of predefmed objects. Then 
click on the Playfield to introduce a copy. This 
object can then be selected, moved, or resized. 
When an object is selected, the editing area 
above the Playfield becomes active, permitting 
the user to edit the agent rules. 

Agent rules describe cause-and-effect relation- 
ships that apply to the simulation. When an 
appropriate set of circumstances comes up, the 
agent rule is triggered and the designated 
sequence of operations is followed. Agent rules 
run in parallel. 
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As the rules execute, they can move an object 
or change its appearance. The animation code 
reacts to these changes by repainting the 
screen as needed to achieve a real time presen- 
tation. 

Agent rules are entered using the caption pane, 
which is displayed above the Playfield. The 
appropriate agent name is selected in the agent 
nanze list pane on the left. The caption pane 
applies to whatever object is selected on the 
Playfield. 

In figure 1, the user has selected Agent1 for 
the square object. This is indicated by the 
system highlighting the agent name in the 
pane on the left, and drawing small rectangles 
called “birdies” at the corners of the selected 
object. By moving the birdies the user can 
resize or reshape the object. 

Each organism controls how it is presented to 
the outside world. This is done by donning a 
costunze, a generic shape such as a circle or 
square, or a bitmap graphic. A costume defines 
both the physical appearance of an object and 
how it interacts with the user. For example, 
graphical objects can be resized, while text 
objects can have their font changed. An object 
can also move, change size or color, font, etc. 
under control of agent rules. 

An object can sense the presence of other 
objects on the Playfield in various ways. Play- 
ground provides functions that return sets of 
objects that are nearby, are of a certain type, 
that overlap, and so on. 

All Playground objects may avail themselves of 
a background of predefined behaviors which 
implement a useful naive physics [Gardin89] 
of location and motion over time. Each object 
has a heading and velocity which control 
motion across the Playfield according to the 
rules of turtle geometry as defined in the Logo 
programming language [ Papert801. 

Language 
In our experience with children, we have 
found that a surface syntax that closely re- 
sembles that of a natural language makes 
teaching a programming language easier. 

Grammar 
Playground is defined by a phrasal grammar 
that uses a syntax closely resembling that of a 
natural language. 

Each Playground clause corresponds to a 
“message send” in a conventional object 
oriented language. The user program is parsed 
according to these phrasal grammar rules, 
which then generate Smalltalk SO code for 
compilation. References to undeclared names 
are allowed, and are resolved at run time using 
a dynamic binding function. 

Here are some sample Playground sentences: 

Change costume to black box. 
Move arrow to 30 @ 50;Make sound ‘loud growl’. 

In the first example sentence the current ob- 
ject, or self; is commanded to change its cos- 
tume into a black box. In the second sentence, 
the object named “arrow” is commanded to 
move to the given coordinate, and then the 
‘loud growl’ sound is triggered. 

The semicolon serves as the non-yielding 
statement separator. The period designates a 
yield point. During each simulation cycle, 
every active agent runs up to the next period. 
Thus process multiplexing occurs at predict- 
able places. 

Examples 
We have implemented several diverse models 
in Playground to test its range. Figure 2 illus- 
trates a simple “shooting gallery” video game. 

Note that if an agent rule does not specify a 
condition, it runs continuously. 
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’ & File Edit Smalltalk Plag.lqround Plauer Window 

shot 

tube 

button 

Set speed to 10. 

fish 
move: Go td 30 @I 40. 

Go to 250 @ 40. 

- 
hit: When over shot. 

Set costume to explosion. 
Wait 2 ticks;Set costume to fish. 

move: Move by 0 @ -30 

r-l 
Set costume to black box; 

mouse 
FIRE click: 

Move shot to tube center. 
Set costume to white box. 

Figure 2: Shooting Gallery Example 

Figure 3 shows a predator/prey simulation, 
with a fixed number of predators. 

Figure 4 illustrates a conventional music nota- 
tion editor with real-time playback. In this 
example, musical note symbols placed on the 
staff are triggered by the playback head object 
in sequence, playing a melody in real time. 
The sequence can be edited while it is playing. 

While the previous examples give some idea of 
the expressive power of the Playground sys- 
tem, to delve deeper we must consider the 
background influences that led us to this 
formulation. 

Influences 
We have studied many fields in searching for 
the ideas in Playground. A review of these 
sources of inspiration will help explain the 
decisions presented in the rest of this paper. 

Animal Behavior Models 
Since Playground uses the metaphor of biol- 
ogy, it is instructive to study some of the 
theories of animal behavior that the field of 
biology offers. Biology is, of course, a vast and 
fascinating field, riddled with controversy. For 
a general introduction, see [ Grier19841. We 
take particular interest in the cognitive mecha- 
nisms humans have applied in analyzing animal 
behavior. This means even ideas that are 
wrong are interesting, if they give insight into 
how humans grapple with understanding 
behavior. 
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Predator/Prey example: 

Preditor 

I Wander 
I 

Set angle to 360 random; 
Set speed to 40. Wait 2 seconds. I 

1 Hunger 1 Set hunger to hunger + 1 
When hunger > 10 excite ‘go to food’. I 

1 F:Z 1 Set angle to my bearing to food 

Find I I Food Set food to nearest prey object 

I Eat I When I am over food then remove food; 
Set hunger to 0. I 

Prey 

1 Wander 1 Set angle to 360 random. Go forward 4 steps 

1 Flee 1 Inhibit Wander. Set angle to (my bearing to 
predator)-1 80. Go forward 6 steps. 

I Avoid 
I Set predator to nearest predator object 

Repro- I I When 30 random = 1 then 
duce Clone yourself. 

Figure 3: Predator/Prey 

Music Notation example: 

IE 
. . . . . . . . . . . l :... 

Mouse 
Click Ask PlayBackHead to retrigger 

: . . . . . . . . . . . . . . . . . 
Staff 

I I 

b 
Note 

II. 
PlayBack 

Head 

I I Play When i am over PlayBackHead.lnhibit myself for notetime. 
Make sound named ‘guitar’ at a pitch of XtoFreq(bounds y). 

I I 

Scan I I Over Move by notewidth,O;Wait notetime ticks. 

Done I I Check When I am not over staff then inhibit Scanover. 

Re- 
I I trigger Move to staff leftstaff center y 

October 1-6, 1989 

Figure 4: Music Sequencer 
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Classical ethology is concerned with observing 
and describing the behavior of animals. In the 
classic theory, the organism detects sz&n stim- 
uli, a particular configuration of sensory input, 
occurring in the environment. These stimuli 
then influence the organism’s innate releasing 
mechanisms, or drive centers. Each drive center 
has an energy level. These drive centers are 
organized in a hierarchy, so that drive conflicts 
can be resolved. The path through the hierar- 
chical tree is determined by the drive centers 
with the highest energy level. 

When a drive center is stimulated and permit- 
ted control of the organism; a fixed action 
pattern is undertaken that “releases” the drive 
energy. There is a close correspondence be- 
tween the classical ethological theory and the 
rule-based expert system approach to artificial 
intelligence. 

Sign Innate Fixed Action 
Stimulus I$ Releasing 4 

Mechanism 
Pattern 

Figure 5: Classical Theory 
taken from: [GrierW] 

For example, in the three-spined stickleback 
fish, if a male detects another fish with a red 
belly assuming the vertical threat posture, the 
fighting drive center is stimulated. If no 
higher-priority drive, such as hunger, overrides 
the fighting drive, the fixed-action pattern for 
fighting is undertaken. [Tinbergen l] 

Playground seeks to combine ethological and 
Society of Mind theories by adopting the 
agent rule [TraverGB] as the fundamental unit 
of computation. An agent rule is an independ- 
ently executing entity sensitive to particular 
sign stimuli. This rule can be excited or inhib- 
ited by other agents to achieve purposeful 
control of the organism. When a rule fires, it 
then triggers a sequence of operations. 

Society of Mind 
The massively parallel organization implied by Agent rules differ from conventional expert 
neurobiology has inspired the “Society of system rules in several ways. Agent rules can be 
Mind” theory [Minsky85 ]. Each mind consists gated by excitation and inhibition mecha- 
of a swarm of communicating agents, each ‘nisms. They are seen as being strongly situated 
running in parallel, attending to aspects of the and are encouraged to use specific references 
problem at hand. These agents are organized rather than variables. An agent rule may con- 
hierarchically, and are composed of networks tain a state that persists over time; thus sepa- 
of subagents, the primitive components of rate instantiations of an agent rule must exist 
which are neurons. Specialized agents attend for discrete organisms. 

Higher Drive \ m 
\ 

Vertical 

d 

\ 
Posture 1 

~~,yD~~~ q- iEz:ms 

( @@@@ 

\ / 
Sign Stimulus Fixed Action Patterns 

Figure 6: Stickleback Behavior 

to memory storage and retrieval, command 
and control, symbolic processing, and so on. 

While the Society of Mind theory has yet to be 
established by neurobiological evidence, it 
holds out hope for the unification of symbolic 
and connectionist theories of Artificial Intelli- 
gence. As we propose plausible explanations 
for how such internal societies must function, 
we again reveal how the mind attempts to 
comprehend highly parallel systems. 

Agent Rules 
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Other Influences 
Another influence on Playground’s develop- 
ment has been the theory of Idealized Con- 
ceptual Models [ Fauconnier85] [ LakofI?37], or 
ICMs. In ICES, abstract theories are repre- 
sented metaphorically using objects and rela- 
tions grounded in direct experience. We hope, 
therefore, to be able to model a wide range of 
phenomena by prefabricating a world with the 
same properties, operators, and relations as 
human direct experience, and providing facili- 
ties for the construction of metaphors. 

There are, of course, a vast array of other 
influences. The list includes: The philosophy 
of scientific reasoning and modeling; gaming 
techniques; ontological engineering; intelli- 
gence gathering and analysis; graphical repre- 
sentations of models; audio, film, and video 
production; air traffic control systems; comic 
books; magic; and linguistic theory. 

Technical Design 
Playground has been implemented in C and 
Smalltalk/V. 

Playground objects are universal particles of 
identity to which any combination of relations 
or agents can be attached. Instead of having 
rigid classes, the capabilities of objects are 
patched together on the fly. This requires a 
very flexible object system. Every Playground 
object can contain an arbitrary collection of 
properties. These can include the source code 
and compiled code for all locally defined agent 
rules, the list of active processes for a particular 
object, animation control tables, and any other 
attached objects or relations. 

Any number of agents can be attached to an 
object. The code for the agent is either stored 
locally or reached through other objects that 
have been designated as examples. 

The user can branch from one Playfield to 
another by programming agent rules. It is also 

possible to write agent rules that connect one 
Playfield to another, serving as editors or to 
characterize functional transformations. 
Every Playground object can also be a Playfield 
if desired. By using appropriate linking instruc- 
tions in agent rules, Playground can f-unction 
as a multimedia hypertext system. 

The Playfield serves as a bounded universe for 
causality. Objects on the Playfield affect each 
other through orderly mechanisms. New forms 
of causality can be added by creating new 
types of events and adding agent rules that 
react to these event messages. 

The rules attached to an object can reach 
across environment boundaries in a limited 
way. Thus objects can be created which cause 
general properties to be introduced into the 
environment they occupy. For example, it is 
possible to introduce objects into a Playfield 
which add physical laws that all objects within 
the Playfield are to obey, in the manner of the 
Alternate Reality Kit[ Smith861. 

Serialization, Pushing, and Pulling 
A network of parallel agent rules can be simu- 
lated sequentially. This is of course required 
on conventional serial computers, and is useful 
for parallel systems as well. For example, most 
fixed action patterns enumerate a sequence of 
actions that take place over time. While this 
can be modeled in parallel hardware, it is 
much more compact and convenient to con- 
struct a sequencing automation that triggers 
each operation in turn. Algorithms can be 
created to compile parallel dataflow diagrams 
into sequential instruction streams; see Fabrik 
[ IngallsSS]. 

There are two fundamental ways to drive a 
simulation based on agent rules: pushing and 
pulling. In puLhg, or event polling, an agent 
rule tests for conditions explicitly, hoping to 
detect appropriate configurations in other 
objects that would enable it to run. In pushing, 
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or dependency tracing, when another object ance, motion, symbolic meaning, etc. when it 
generates an event, it notifies the objects that is convenient to do so, only incurring over- 
are interested in the change. head for such properties when required. 

Each method has its advantages and disadvan- 
tages. Pulling can waste time checking for 
conditions that have not changed, while 
pushing requires overhead to track the de- 
pendency relationships amongobjects. 

Playground supports a mixed mode strategy. 
Each agent rule can test for the events and 
situations under which it is to run. When a 
rule is posted, the condition part is inspected, 
and-if appropriate-the rule is registered 
with the system so that it runs only when the 
appropriate events have taken place. These 
events can be user interface events, events 
generated explicitly by other objects, or 
changes of values for a given object. A pro- 
gram may also trigger an agent explicitly, an 
operation similar to sending a message in a 
conventional object oriented language. 

The Playground system comes with a set of 
predefined facets implementing a wide range 
of mundane properties of universal utility. 
These predefined facets can be specialized or 
overridden as desired. Whenever any value for 
a slot in a facet is changed, the timestamp field 
is updated and any other agents that are 
watching the value of this facet are notified. 

Rule Compilation 
The Playground language is implemented 
using a phrasal parser. This design was sug- 
gested by the phrasal lexicon theory described 
by [ Becker751. 

Facets 
A Playground object is composed of one or 
more facets. A facet is a conventional object 
with a fixed slot structure that represents a 
class of properties attached to an identity. The 
facet idea is an adaptation of the multi-valued 
relation scheme of KODIAK[Wilensky87]. 
Some examples of facets used in Playground 
are: Physical Appearance, Motion, Symbolic 
Meaning, and Process Header. All identities, 
including those used by Smalltalk, can have 
other facets attached to them. Facets help 
avoid the guilt of having too many NIL in- 
stance variables! 

The language is specified by a large set of 
shallow production rules which enumerate the 
phrases the language will accept. There are 
two kinds of rules: phrasal rules and non- 
phrasal rules. A phrasal rule must contain one 
or more terminal symbols. A nonphrasal r&e 
mentions only abstract grammatical categories. 

Playground rules are entered as text strings in 
the edit pane. Playground converts these 
textual strings into an array of tokens such as 
word, number, special character, etc. The 
terminal symbols in the phrasal rules are 
matched against the, tokens, giving a list of 
nonterminal symbols to seek.. 

All Playground facets share a common super- 
class of PlayObject. Each facet has a timestamp 
field, a list of subfacets, and a backpointer to 
the primary identity this object is a facet for. 
Each facet kind can add its own fixed and 
optional slots to this base structure. For ex- 
ample, any object can be given visual appear- 

This list is run down, and successful phrase 
matches are retained on the parse chart for 
further analysis. Analysis then proceeds from 
the top down, seeking a coherent overall 
structure. The result is a parse tree. 
Each phrasal rule contains information on how 
to convert its meaning into a Smalltalk/V 
expression. The compiler then transverses the 
tree, activating the “generate expressions,” 
converting our phrasal syntax into conven- 
tional Smalltalk. At appropriate places in the 
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code, special yield messages are inserted. The 
result is submitted to the Smalltalk/V com- 
piler,‘giving a Smalltalk method which, when 
executed, generates an instance of a Play- 
ground lightweight process. 

For example, the Playground agent script: 

When I am over nest; 
Change costume to black box. 
Make sound from file ‘meow sound’. 

when compiled against the phrasal grammar: 

COMMAND ::= when VALUE 
generate: ‘self when: &2’. 

FUNCTION ::= i am over VALUE 
generate: ‘(self over: &4)‘. 

COMMAND ::= change costume to VALUE 
generate: ‘(self costume: &4)‘. 

COMMAND ::= make sound from file VALUE 
generate: ‘(self sound: &5 )‘. 

NAME ::= black box 
generate: ‘BlackBox’. 

will generate the following sequence of Small- 
talk/V code: 

temporaryMethod 
( codeSeq procobject 1 
codeSeq:= [(procobject semaphore) wait. 

self when: (self over: (self bindingAt: #nest )). 
self costume: BlackBox. Processor yield. 
self sound: ‘meow sound’. 
procobject noteDone]. 

procobject := (PlayAgentProcess new: nil running: 
codeseq). 
procobject SetAutoRepeat. 
^procObject. 

Whenever a given agent becomes active, this 
process generator method is executed, which 
adds a Playground lightweight task to the run 
list for the host object. These tasks exploit the 
multitasking capability of Smalltalk/V. 

Animation and Communication 
Every viewable graphical object has a bound- 
ing rectangle, a depth coordinate, and a cos- 
tume. The bounding rectangle and depth 
coordinate give the location in the Playfield 
that the object occupies. The costume points 
to a costume object, which can be a string, 

form, primitive shape, or composite. An object 
can change its costume at will, to animate or 
to present different editing capabilities to the 
user. Whenever the costume is changed, the 
bounds are adjusted to accurately describe the 
extent of the costume. 

One type of useful Playground object is called 
an observable collection. An agent can allocate 
an observable collection and add other Play- 
ground objects to it, and automatically receive 
notification of any changes occurring to its 
members. This is how animation and telecom- 
munications are accomplished. 

The animation code uses an observable collec- 
tion to track all objects on the Playfield. When 
any object changes, it is added to a list of 
changed objects. During each animation cycle, 
this list is retrieved and examined. For each 
object that has changed, the old and new 
object boundaries are accumulated into a dirty 
region list of non-overlapping rectangles. For 
each dirty cluster, the screen is redrawn in 
back-to-front order in an offscreen buffer, 
which is then copied onto the user’s display 
screen (see figure 7). 

A similar method is used to accomplish tele- 
communications. Each object to be shared 
with remote stations is added to an observable 
collection, which again accumulates a list of 
those objects that have changed recently. The 
telecommunications code goes down this list, 
comparing the present slot values for the 
object with previous values, broadcasting the 
changes discovered. The recieving code like- 
wise keeps a list of changes recieved, which it 
then applies locally. 

Both the animation and telecommunications 
methods require that two copies be kept of 
each object, one giving the current state, the 
other representing the previous state. 
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Figure 8 shows how the telecommunications 
mechanism informs observers at remote 
stations about the motion of the fish and 
bubble objects. 

History 
Work on Playground began during the sum- 
mer of 1986. During the past three years, 
three distinct versions of the program have 
been created and tested. 

Playground 1 is coded in Lightspeed C for the 
Macintosh. The Playground 1 programming 
language used a functional notation similar to 
LISP but with fewer parentheses. Program 
statements were tokenized, then interpreted 
using recursive descent. Playground 1 achieved 
high animation and telecommunications 
performance. 

Playground 2 is implemented in Digitalk 
Smalltalk/V [Digitalk88] running on the 
Macintosh II series of computers. The high 
interpretation overhead of Smalltalk forced us 
to emphasize language experiments at the 
expense of animation and communication. 
The first language tried was a modified SELF 
syntax [Ungar]. A SELF style delegation 
scheme was also tried and dropped in favor of 
a direct copying scheme. 

Playground 3 is also implemented in Small- 
talk/V and uses the operating environment 
created for Playground 2. The language was 
changed to the more natural syntax previously 
described in this paper. 

The following table shows the same statement 
written in the three versions of Playground: 

Version 1: mousedown: moveto (shot,mousex,l50). 
Version 2: notice: MouseDown.shot moveTo: (MouseX @ 150). 
Version 3: On mouse click move shot to MouseX @ 150. 

We have found children to be most demand- 
ing and stimulating test subjects. In early 
testing with a more artificial concrete syntax, 
some children were still able to construct 
simulations of surprising complexity. 

School Testing 
Playground has undergone testing using 
groups of children at the Open School. Gener- 
ally we do exploratory testing using small 
groups of 5 to 8 children first, gearing up for 
larger scale tests involving a class of 30 to 60 
children taught by their regular teacher. 

The Playground 2 version of the language was 
tested using a group of 60 fourth and fifth 
graders during the spring of 1989. The chil- 
dren were taught in two groups of 30. Each 
group met twice a week for 4 weeks. Each 
session lasted 1 hour. Each session opened 
with 20 or 30 minutes of demonstration and 
discussion, followed by a “lab” period where 
pairs of children completed the assigned 
programming exercises. 

The material was presented in the following 
sequence: 

l How to run and quit the Playground program. Use of 
user interface to create and modify graphical objects. How 
to name objects and give them rules. The coordinate 
system and how to make an object move by writing a simple 
agent. How to run and freeze the Playfield. 

l Create random motion of objects by changing their 
speed and heading. Construct agents that display the 
internal states of other objects. Change an object’s cos- 
tume. Assign properties to objects. Simple counting. 

l Construct agents enabling a “Fish” object to detect 
food and move toward it when hunger has grown high 
enough. Detect when fish is over food and eat it, resetting a 
“hunger” counter. Use of “clone” command to create 
multiple instances. 

l Construct “Plankton” and “Plant” objects and have 
grow, reproduce, and die. Enhance fish to follow a life cycle 
as well. Count birth and death statistics. 
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Unfortunately, the spring experiment was 
curtailed due to a system-wide teachers strike. 
If the experiment had not been halted, we 
would also have covered the following: 

l Add a “Shark” predator to eat the fish. Add agents to 
the fish to notice sharks and evade them. Have fish weigh 
hunger against fear. Study the predator/prey balance and 
population ecology. 

l Construct other simulations such as video games and 
animated stories using Playground’s features. 

Fortunately, the strike was settled in time to 
be able to debrief the children and teachers 
approximately 3 weeks after the experiment 
was halted. 

The students remembered quite a lot about 
Playground, even after having been away from 
it for 3 weeks during the strike and its afier- 
math. The children generally enjoyed using 
Playground, and most succeeded in accom- 
plishing their assigned tasks. They were natu- 
rally annoyed at the bugs, unnatural syntax 
conventions, the relatively low speed of the 
interpreted environment, and deficiencies in 
error handling and reporting. 

One child astounded us by creating an elabo- 
rate aquarium that included two species of 
plankton, a whale, jellyfish, seaweed, rays, fish, 
and crabs, using some features that were not 
explained in the workbook or by the teacher. 

The Open School students had a long list of 
suggestions on how to improve Playground. 
The following list is an excerpt from our notes: 

Q: What improvements should we make to Play- 
ground? 

A: Build in video games. Add flip book animation. 
Speech synthesis. Speed it up. Put in a sound menu with 
many sounds and the ability to add more. Proximity detec- 
tor. FullPaint and HyperTalk painting tools. Mouths that 
move as objects talk. VCR-type control panel. Realistic 
movement. Grouping of objects. More commands. Directed 
animation (frog sticking out tongue). Path animation, More 
shapes, spelling checker, study box to remember mistakes. 

Speech recognition, clairvoyant typing, color mixing, get rid 
of typing coordinates. Better command keys for run and 
stop (Enter and Space were suggested). Rotation of 
objects. Make screen bigger. Linked Playfiefds like 
HyperCard’s 

Q: What sorts of things would you like to be able to do 
with Playground? 

A: Social Studies, Sports, Race Track, Gymnasium, 
Cartoons, Science Fiction, Olympics, Westerns, Murder 
stories, Chemistry, Treasure Hunt, Trigonometry, Games, 
Music, Comics, Car crash, Sound Effects, Commercials, 
RoboCop, Spiderman, record what you are doing. Make a 
movie. Give characters different voices. Make a playground, 
hide in holes, talk to it (using speech recognition), a soap 
opera, space station. Soccer. Buildings. Make faces. 

Conclusion 
Our experience with Playground has encour- 
aged us to explore several areas for making the 
system more accessible to children, including 
expanding or altering the user interface. 

Interface 
Comic books are well known for their popular 
appeal and offer a number of fruitful user 
interface ideas. For example, a sequence of 
operations can be expressed as a succession of 
panels. In addition, we could adopt a number 
of stylistic conventions for incorporating 
textual descriptions along with graphics. For 
example, the user could open a text editing 
balloon attached to a given object, and edit 
the text associated with it. The comic panel 
shown in figure 9 hints at what we are after. 

Another significant problem we face is ena- 
bling children to design pleasing animal forms 
with engaging modes of movement. One 
promising approach is guided evolution, 
pioneered by Dawkins [ Dawkins861, in which 
a constructed genome controls the creation of 
form, the genome is randomly mutated in 
several ways, the user selecting among them. 

Other User Communities 
We hope to eventually create a general pur- 
pose language for personal computer users. 
We need to explore ways of applying the Play- 

134 OOPSLA ‘89 Proceedings October 1-6, 1989 



Scruffy the Fish escapes m($$w@@@! 

If you see a shark! 

Figure 9: DynaComicBook panel 

ground programming style to desktop pro- 
gramming problems. 

Implementation 
We are convinced that the pulling-style control 
structure has significant advantages over 
message sending. We have yet to implement a 
version of pulling that is efficient enough to be 
the basis of all computation. We are exploring 
techniques used in artificial intelligence for 
dependency management, hoping to gain 
enough performance for our next round of 
experiments. 

Finally 
We envision a system in which a group of 
children sit around a large, central screen 
showing the composite view of the Vivarium, 
rendered in full color in three dimensions. 
Each child has an individual screen on which 
to view and mod+ the shared world. 

Through three-dimensional input devices 
with feedback, they design the form and 
behavior of a group of animals and are able to 

cooperate in building complicated individuals 
with sophisticated group behavior. 

Perhaps the Central Intelligence Agency could 
use Playground to build a comprehensive 
simulation of the Soviet railway system that 
puts Lionel to shame. In any case, we look 
forward to being astounded with what the 
children of the world do with our system. 

Acknowledgments 
Alan Kay and Ann Marion deserve credit as 
codesigners of Playground, along with Kent 
Beck and Scott Wallace.Thanks are due to 
Mike Travers for suggesting the gated agent 
rule approach. George Bosworth contributed 
insights and code, Ted Kaehler, Steve Dewitt, 
and members of our illustrious advisory board 
have made their contributions to Playground 
design. Erfert Fenton helped edit this paper. 
David Mintz and B.J. Allen taught P to our 
kids, who themselves deserve honor for their 
pioneering spirit. 

October 1-6, 1989 OOPSLA ‘89 Proceedings 135 



References 

[Becker751 Joseph D. Becker, The Pbvasal 
Lexicon, Bolt, Beranek, and Newman Report 
No. 308 1, June 1975 (amusing and brilliant) 

[PapertSO] Seymour Papert, Mindstorms: 
children, computers, and powerfizl ideas. Basic 
Books, New York, 1980. 

[ Borning861 Alan H. Borning, “Classes versus 
Prototypes in Object Oriented Languages,” 
Praceedings of the ACM/IEEE Fall Joint Com- 
puter Conference, November, 1986. 

[Smith861 Randall B. Smith, “The Alternate 
Reality Kit: An Animated Environment of 
Creating Interactive Simulations,” Proceedhys 
of the 1986 IEEE Computer Society Workshop on 
Visual Languages, DalIas, TX, June 1986, pg. 
99-106 

[DawkinsSCi] Richard Dawkins, The Blind 
Watchmaker, W. W. Norton & Company, 
1986. 

[Tinbergen Niko Tinbergen, n3e Study of 
Instinct, Oxford University Press, I95 1 

[ Digitalk881 Digitalk, SmalZtaZk/V Mac Tuto- 
rial and Programming Handbook, Los Ange- 
les, 1988. 

[Travers88] Mike Travers ABar: An Animal 
Construction Kit, Unpublished masters thesis, 
M.I.T. media lab, 1988. 

[Fauconnier85] Giles Fauconnier, Mental 
Spaces, MIT Press, 1985. 

[ Gardin891 Francesco Gardin and Bernard 
Meltzer, “Analogical Representations of Naive 
Physics,” Artificial Intelligence 38( 1989) 139- 
159. 

[ Ungar87] David Ungar and Randall B . 
Smith; “Self: The Power of Simplicity,” 
OOPSLA ‘87 Conference Proceedings pg. 227- 
242,1987. 

[Grier84] James W. Grier, Biology of Animal 
Behavior, Times Mirror/Mosby College 
Publishing, St. Louis, 1984. 

136 

[Wilensky87] R. Wilensky, Some Problems and 
Proposals for Knowledge Representation. Com- 
puter Science Division. University of Califor- 
nia - Berkeley, Report No. UCB/CSD 87/ 
351. 

[Ingalls Dan Ingalls, Scott Wallace, Yu- 
Ying Chow, Frank Ludolph, Ken Doyle, 
“Fabrik - A Visual Programming Environ- 
ment,” OOPSLA 88 Proceedings, San Die&o, 
pg. 176-190, 1988. 

OOPSLA ‘89 Proceedings 

[Lakofl%7] George Lakoff, Women, Fire, and 
Dargerous l%in~s, The University of Chicago 
Press, Chicago, 1987. 

[Minsky851 Marvin Minsky, The Society of 
Mind, Simon and Schuster, New York, 198 5. 

(contact us for a copy) 

October 1-6, 1989 



Appendix: Abridged Playground 3 
vocabulary 

if VALUE then STATEMENT - execute STATEMENT only 
when VALUE is true. 

if bozo c 12 then display ‘that’s a bozo no no!‘. 

make sound from file STRING -trigger playing sound 
with name given. 
make sound from file ‘monkey’. The quote marks are 
required. 

set NAME to VALUE - set value to a slot. 
set curiosity to 30. 

angle; set angle to VALUE - controls the direction an 
object will travel. Angles are in degrees following the 
compass rose. 

set angle to 90. “gets player going east” 
move by XYAMOUNT - move the object by an amount on 
both x and y axis. 

move by -20 @ -2. (moves 20 to the left, 2 up) 
bearing from VALUE {to VALUE} - the degrees to the 
object or point given as an argument. 

display bearing from 200 @ 100 to Sam. 
move to LOCATION - move to the location given. 

move to 100 @ 200 

nearest object with property NAME - returns nearest 
object which has the property requested. 

go to (nearest object with property green) center. 

bounds - gives the bounding rectangle. 
The boundaries of an object can be referred to by phrases 

like these: 

notice CONDITION - introduces the condition part of an 
agent rule. 

my top right corner 
my center 
the bottom right corner of VALUE and so on. 

number - retrieve the value of the costume as a number. 
display number * 2. “double each tick of the world” Each of the above can also be used in the set command, 

for example: 
set my top right corner to the center of cactus. over OBJECT - returns true when one object overlaps 

another. 
over somebody with property NAME - sets true if one 
object overlaps another object which has a certain property. 

notice over somebody with property food. 

clock -how many ticks of the Playground world have gone 
by. 

clone yourself - make an exact copy of this object and 
give it an independent existence in this world. VALUE random - returns a random number between 0 

and 1 less than VALUE. 
change costume to VALUE - set the way an objects 
looks. 

set costume to black rectangle 
remove yourself - removes this object from the world 
forever. 

set result to VALUE - set result cell to value given. 
return VALUE - return value as result for this agent. 

depth, set depth to VALUE -change depth coordinate to 
new value given. 

my result - return result for this agent. 
result for NAME - return result for another agent in this 
object. 
result for NAME {in VALUE} - return result for another 
object. 

display VALUE - change my costume to display the 
number or name given as an argument. 

distance from OBJECT {to OBJECT} - calculate the 
distance from one object to another. 

NAME from VALUE - returns the value of a property from 
another object. 

speed,set speed to VALUE - sets the speed that an 
object should move in pixels per second. 

wait VALUE ticks - causes Tf-llS AGENT to wait the 
requested time interval before continuing execution. 

go forward VALUE steps - move current object forward 
the number of units requested. 

who i am over {with property NAME} - returns a pointer 
to whatever object I am over that has the property re- 
quested, if any. 

go to POINT - move object towards a specific point at the 
current speed. 

gotolOO@ 150. 

grow by VALUE - change size by factor given. 
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