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There is no single development, in either technology or management 
technique, which by itself promises even one order-of-magnitude 
improvement within a decade in productivity, in reliability, in simplicity. 
 

Abstract1 
All software construction involves essential tasks, the fashioning of the complex 

conceptual structures that compose the abstract software entity, and accidental tasks, the 
representation of these abstract entities in programming languages and the mapping of 
these onto machine languages within space and speed constraints.  Most of the big past 
gains in software productivity have come from removing artificial barriers that have 
made the accidental tasks inordinately hard, such as severe hardware constraints, 
awkward programming languages, lack of machine time.  How much of what software 
engineers now do is still devoted to the accidental, as opposed to the essential?  Unless it 
is more than 9/10 of all effort, shrinking all the accidental activities to zero time will not 
give an order of magnitude improvement. 

Therefore it appears that the time has come to address the essential parts of the 
software task, those concerned with fashioning abstract conceptual structures of great 
complexity. I suggest: 
• 

• 

• 

• 

                                                

Exploiting the mass market to avoid constructing what can be bought. 
Using rapid prototyping as part of a planned iteration in establishing software 
requirements. 
Growing software organically, adding more and more function to systems as they are 
run, used, and tested. 
Identifying and developing the great conceptual designers of the rising generation. 

Introduction 
Of all the monsters who fill the nightmares of our folklore, none terrify more than 

werewolves, because they transform unexpectedly from the familiar into horrors.  For 
these, we seek bullets of silver than can magically lay them to rest. 

 
1 Reproduced from: Frederick P. Brooks, The Mythical Man-Month, Anniversary edition with 4 new 

chapters, Addison-Wesley (1995), itself reprinted from the Proceedings of the IFIP Tenth World 
Computing Conference, H.-J. Kugler, ed., Elsevier Science B.V., Amsterdam, NL (1986)  pp. 1069-76.  
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The familiar software project has something of this character (at least as seen by the 
non-technical manager), usually innocent and straightforward, but capable of becoming a 
monster of missed schedules, blown budgets, and flawed products.  So we hear desperate 
cries for a silver bullet, something to make software costs drop as rapidly as computer 
hardware costs do. 

But, as we look to the horizon of a decade hence, we see no silver bullet.  There is no 
single development, in either technology or management technique, which by itself 
promises even one order of magnitude improvement in productivity, in reliability, in 
simplicity.  In this chapter we shall try to see why, but examining both the nature of the 
software problem and the properties of the bullets proposed. 

Skepticism is not pessimism, however.  Although we see no startling breakthroughs, 
and indeed, believe such to be inconsistent with the nature of software, many 
encouraging innovations are under way.  A disciplined, consistent effort to develop, 
propagate, and exploit them should indeed yield an order-of-magnitude improvement.  
There is no royal road, but there is a road. 

The first step toward the management of disease was replacement of demon theories 
and humours theories by the germ theory.  That very step, the beginning of hope, in itself 
dashed all hopes of magical solutions.  It told workers the progress would be made 
stepwise, at great effort, and that a persistent, unremitting care would have to be paid to a 
discipline of cleanliness.  So it is with software engineering today. 

Does It Have To Be Hard? – Essential Difficulties 
Not only are there no silver bullets now in view, the very nature of software makes it 
unlikely that there will be any−no inventions that will do for software productivity, 
reliability, and simplicity what electronics, transistors, and large-scale integration did for 
computer hardware.  We cannot expect ever to see twofold gains every two years. 

First, we must observe that the anomaly is not that software progress is so slow but 
that computer hardware progress is so fast.  No other technology since civilization began 
has seen six orders of magnitude price-performance gain in 30 years.  In no other 
technology can one choose to take the gain in either improved performance or in reduced 
costs.  These gains flow from the transformation of computer manufacture from an 
assembly industry into a process industry. 

Second, to see what rate of progress we can expect in software technology, let us 
examine its difficulties.  Following Aristotle, I divide them into essence−the difficulties 
inherent in the nature of the software−and accidents−those difficulties that today attend 
its production but that are not inherent. 

The accidents I discuss in the next section.  First let us consider the essence. 
The essence of a software entity is a construct of interlocking concepts: data sets, 

relationships among data items, algorithms, and invocations of functions.  This essence is 
abstract, in that the conceptual construct is the same under many different 
representations.  It is nonetheless highly precise and richly detailed. 

I believe the hard part of building software to be the specification, design, and testing 
of this conceptual construct, not the labor of representing it and testing the fidelity of the 
representation.  We still make syntax errors, to be sure; but they are fuzz compared to the 
conceptual errors in most systems. 
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If this is true, building software will always be hard.  There is inherently no silver 
bullet. 

Let us consider the inherent properties of this irreducible essence of modern software 
systems: complexity, conformity, changeability, and invisibility. 

 
Complexity.  Software entities are more complex for their size than perhaps any other 
human construct, because no two parts are alike (at least above the statement level).  If 
they are, we make the two similar parts into one, a subroutine, open or closed.  In this 
respect software systems differ profoundly from computers, buildings, or automobiles, 
where repeated elements abound. 

Digital computers are themselves more complex than most things people build; they 
have very large numbers of states.  This makes conceiving, describing, and testing them 
hard.  Software systems have orders of magnitude more states than computers do. 

Likewise, a scaling-up of a software entity is not merely a repetition of the same 
elements in larger size; it is necessarily an increase in the number of different elements.  
In most cases, the elements interact with each other in some nonlinear fashion, and the 
complexity of the whole increases much more than linearly. 

The complexity of software is in essential property, not an accidental one.  Hence 
descriptions of a software entity that abstract away its complexity often abstract away its 
essence.  Mathematics and the physical sciences made great strides for three centuries by 
constructing simplified models of complex phenomena, deriving properties from the 
models, and verifying those properties experimentally.  This worked because the 
complexities ignored in the models were not the essential properties of the phenomena.  It 
does not work when the complexities are the essence. 

Many of the classical problems of developing software products derived from this 
essential complexity and its nonlinear increased with size. From the complexity comes 
the difficulty of communication among team members, which leads to product flaws, cost 
overruns, schedule delays. From the complexity comes the difficulty of enumerating, 
much less understanding, all the possible states of the program, and from that comes the 
unreliability. From the complexity of the functions comes the difficulty of invoking those 
functions, which makes programs hard to use. From complexity of structure comes the 
difficulty of extending programs to new functions without creating side effects. From the 
complexity of structure comes the unvisualized state that that constitute security 
trapdoors. 

Not only technical problems but management problems as well come from the 
complexity.  This complexity makes overview hard, thus impeding conceptual integrity.  
It makes it hard to find and control all the loose ends.  It creates the tremendous learning 
and understanding burden that makes personnel turnover a disaster. 

 
Conformity.  Software people are not alone in facing complexity.  Physics deals with 
terribly complex objects even at the “fundamental” particle level.  The physicist labors 
on, however, in a firm faith that there are unifying principles to be found, whether in 
quarks or in unified field theories.  Einstein repeatedly argued that there must be 
simplified explanations of nature, because God is not capricious or arbitrary. 

No such faith comforts the software engineer.  Much of the complexity he must 
master is arbitrary complexity, forced without rhyme or reason by the many human 
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institutions and systems to which his interfaces must confirm.  These differ from interface 
to interface, and from time to time, not because of necessity but only because they were 
designed by different people, rather than by God. 

In many cases the software must confirm because it has most recently come to the 
scene.  In others it must conform because it is perceived as the most conformable.  But in 
all cases, much complexity comes from conformation to other interfaces; this cannot be 
simplified out by any redesign of the software alone. 

 
Changeability.  The software entity is constantly subject to pressures for change.  Of 
course, so are buildings, cars, and computers.  But manufactured things are infrequently 
changed after manufacture; they are superseded by later models, or essential changes are 
incorporated in later serial-number copies of the same basic design.  Callbacks of 
automobiles are really quite infrequent; field changes of computers somewhat less so.  
Both are much less frequent than modifications to fielded software. 

Partly this is because the software in a system embodies its function, and the function 
is the part that most feels the pressures of change.  Partly it is because software can be 
changed more easily−it is pure thought-stuff, infinitely malleable.  Buildings do in fact 
get changed, but the high costs of change, understood by all, serve to dampen the whim 
of the changers. 

All successful software gets changed.  Two processes are at work.  As a software 
product is found to be useful, people try it in new cases at the edge of, or beyond, the 
original domain.  The pressures for extended function come chiefly from users who like 
the basic function and invent new uses for it. 

Second, successful software also survives beyond the normal life of the machine 
vehicle for which it is first written.  If not new computers, then at least new disks, new 
displays, new printers come along; and the software must be conformed to its new 
vehicles of opportunity. 

In short, the software product is embedded in a cultural matrix of applications, users, 
laws, and machine vehicles.  These all change continually, and their changes inexorably 
force change upon the software product. 

 
Invisibility.  Software is invisible and unvisualizable. Geometric abstractions are 
powerful tools. The floor plan of a building helps both architect and client evaluate 
spaces, traffic flows, and views.  Contradictions become obvious, omissions can be 
caught.  Scale drawings of mechanical parts and stick-figure models of molecules, 
although abstractions, serve the same purpose.  A geometric reality is captured in a 
geometric abstraction. 

The reality of software is not inherently embedded in space.  Hence it has no ready 
geometric representation in the way that land has maps, silicon chips have diagrams, 
computers have connectivity schematics.  As soon as we attempt to diagram software 
structure, we find it to constitute not one, but several, general directed graphs, 
superimposed one upon another.  The several graphs may represent the flow of control, 
the flow of data, patterns of dependency, time sequence, name-space relationships.  These 
are usually not even planar, much less hierarchical.  Indeed, one of the ways of 
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establishing conceptual control over such structure is to enforce link cutting until one or 
more of the graphs becomes hierarchical.2 

In spite of progress in restricting and simplifying the structures of software, they 
remain inherently unvisualizable, thus depriving the mind of some of its most powerful 
conceptual tools.  This lack not only impedes the process of design within one mind, it 
severely hinders communication among minds. 

Past Breakthroughs Solved Accidental Difficulties 
If we examine the three steps in software technology that have been most fruitful in the 
past, we discover that each attacked a different major difficulty in building software, but 
they have been the accidental, not the essential, difficulties.  We can also see the natural 
limits to the extrapolation of each such attack. 

 
High-level languages.  Surely the most powerful stroke for software productivity, 
reliability, and simplicity has been the progressive use of high-level languages for 
programming.  Most observers credit that development with at least a factor of five in 
productivity, and with concomitant gains in reliability, simplicity, and comprehensibility. 

What does a high-level language accomplish?  It frees a program from much of its 
accidental complexity.  An abstract program consists of conceptual constructs: 
operations, data types, sequences, and communication.  The concrete machine program is 
concerned with bits, registers, conditions, branches, channels, disks, and such.  To the 
extent that the high-level language embodies the constructs wanted in the abstract 
program and avoids all lower ones, it eliminates a whole level of complexity that was 
never inherent in the program at all. 

The most a high-level language can do is to furnish all the constructs the programmer 
imagines in the abstract program.  To be sure, the level of our sophistication in thinking 
about data structures, data types, and operations is steadily rising, but at an ever-
decreasing rate.  And language development approaches closer and closer to the 
sophistication of users. 

Moreover, at some point the elaboration of a high-level language becomes a burden 
that increases, not reduces, the intellectual task of the user who rarely uses the esoteric 
constructs. 

 
Time-sharing.  Most observers credit time-sharing with a major improvement in the 
productivity of programmers and in the quality of their product, although not so large as 
that brought by high-level languages. 

Time-sharing attacks a distinctly different difficulty.  Time-sharing preserves 
immediacy, and hence enables us to maintain an overview of complexity.  The slow 
turnaround of batch programming means that we inevitably forget the minutiae, if not the 
very thrust, of what we were thinking when we stopped programming and called for 
compilation and execution.  This interruption of consciousness is costly in time, for we 
must refresh.  The most serious effect may well be the decay of grasp of all that is going 
on in a complex system. 

                                                 
2 Parnas, D.L., “Designing software for ease of extension and contraction,” IEEE Trans. on SE, 5, 2 

(March, 1979), pp. 12-138. 
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Slow turn-around, like machine-language complexities, is an accidental rather than an 
essential difficulty of the software process.  The limits of the contribution of time-sharing 
derive directly.  The principle effect is to shorten system response time.  As it goes to 
zero, at some point it passes the human threshold of noticeability, about 100 milliseconds. 
Beyond that no benefits are to be expected. 

 
Unified programming environments.   Unix and Interlisp, the first integrated 
programming environments to come into widespread use, are perceived to have improved 
productivity by integral factors. Why? 

They attack the accidental difficulties of using programs together, by providing 
integrated libraries, unified file formats, and piles and filters.  As a result, conceptual 
structures that in principle could always call, feed, and use one another can indeed easily 
do so in practice. 

This breakthrough in turn stimulated the development of whole toolbenches, since 
each new tool could be applied to any programs by using the standard formats. 

Because of these successes, environments are the subject of much of today’s software 
engineering research.  We will look at their promise and limitations in the next section. 

Hopes for the Silver 
Now lets us consider the technical developments that are most often advanced as 
potential silver bullets.  What problems do they address?  Are they the problems of 
essence, or are they remainders of our accidental difficulties?  Do they offer 
revolutionary advances, or incremental ones? 
 
Ada and other high-level language advances.  One of the most touted recent 
developments is the programming language Ada, a general-purpose, high-level language 
of the 1980s.  Ada indeed not only reflects evolutionary improvements in language 
concepts but embodies features to encourage modern design and modularization 
concepts.  Perhaps the Ada philosophy is more of an advance than the Ada language, for 
it is the philosophy of modularization, of abstract data types, of hierarchical structuring.  
Ada is perhaps over-rich, the natural product of the process by which requirements were 
laid on its design.  That is not fatal, for subset working vocabularies can solve the 
learning problem, and hardware advances will give us the cheap MIPS to pay for the 
compiling costs.  Advancing the structuring of software systems is indeed a very good 
use for the increased MIPS our dollars will buy.  Operating systems, loudly decried in the 
1960s for their memory and cycle costs, have proved to be an excellent form in which to 
use some of the MIPS and cheap memory bytes of the past hardware surge. 

Nevertheless, Ada will not prove to be the silver bullet that slays the software 
productivity monster.  It is, after all, just another high-level language, and the biggest 
payoff from such languages came from the first transition, up from the accidental 
complexities of the machine into the more abstract statement of step-by-step solutions.  
Once those accidents have been removed, the remaining ones are smaller, and the payoff 
from their removal will surely be less. 

I predict that a decade from now, when the effectiveness of Ada is assessed, it will be 
seen to have made a substantial difference, but not because of any particular language 
feature, nor indeed because of all of them combined.  Neither will the new Ada 
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environment prove to be the cause of the improvements.  Ada’s greatest contribution will 
be that switching to it occasioned training programmers in modern software design 
techniques. 
 
Object-oriented programming.  Many students of the art hold out more hope for object-
oriented programming than for any of the other technical fads of the day.3  I am among 
them.  Mark Sherman of Dartmouth notes that we must be careful to distinguish two 
separate ideas that go under that name: abstract data types and hierarchical types, also 
called classes.  The concept of the abstract data type is that an object’s type should be 
defined by a name, a set of proper values, and a set of proper operations, rather than its 
storage structure, which should be hidden.  Examples are Ada packages (with private 
types) or Modula’s modules. 

Hierarchical types, such as Simula-67’s classes, allow the definition of general 
interfaces that can be further refined by providing subordinate types.  The two concepts 
are orthogonal−there may be hierarchies without hiding and hiding without hierarchies.  
Both concepts represent real advances in the art of building software. 

Each removes one more accidental difficulty from the process, allowing the designer 
to express the essence of his design without having to express large amounts of syntactic 
material that add no new information content.  For both abstract types and hierarchical 
types, the result is to remove a higher-order sort of accidental difficulty and allow a 
higher-order expression of design. 

Nevertheless, such advances can do no more than to remove all the accidental 
difficulties from the expression of the design.  The complexity of the design itself is 
essential; and such attacks make no change whatever in that.  An order-of-magnitude gain 
can be made by object-oriented programming only if the unnecessary underbrush of type 
specification remaining today in our programming language is itself responsible for nine-
tenths of the work involved in designing a program product. I doubt it. 

 
Artificial intelligence.  Many people expect advances in artificial intelligence to provide 
the revolutionary breakthrough that will give order-of-magnitude gains in software 
productivity and quality.4  I do not. To see why, we must dissect what is meant by 
“artificial intelligence” and then see how it applies. 

 
Parnas has clarified the terminological chaos: 
 
Two quite different definitions of AI are in common use today. AI-1: The use of 
computers to solve problems that previously could only be solved by applying human 
intelligence.  AI-2:  The use of a specific set of programming techniques knows as 
heuristic or rule-based programming.  In this approach human experts are studies to 
determine what heuristics or rules of thumb they use in solving problems. . . . The 
program is designed to solve a problem the way that humans seem to solve it. 
 

                                                 
3 Booch,  G., “Object-oriented design,” in Software Engineering with Ada. Menlo Park, Calif.: Benjamin 

Cummings, 1983. 
4 Mostow, J., ed., Special Issue on Artifical Intelligence and Software Engineering, IEEE Trans. on SE, 11, 

11 (nov. 1985). 
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The first definition has a sliding meaning. . . . Something can fit the definition of AI-1 
today but, once we see how the program works and understand the problem, we will 
not think of it as AI anymore. . . . Unfortunately I cannot identify a body of technology 
that is unique to this field. . . . Most of the work is problem-specific, and some 
abstraction or creativity is require to see how to transfer it.5 
 
I agree completely with this critique.  The techniques used for speech recognition 

seem to have little in common with those used for image recognition, and both are 
different from those used in expert systems.  I have a hard time seeing how image 
recognition, for example, will make any appreciable difference in programming practice.  
The same is try of speech recognition.  The hard thing about building software is deciding 
what to say, not saying it.  No facilitation of expression can give more than marginal 
gains. 

Expert systems technology, AI-2, deserves a section of its own. 
 
Expert systems.  The most advanced part of the artificial intelligence art, and the most 
widely applies, is the technology for building expert systems.  Many software scientists 
are hard at work applying this technology to the software-building environment.6  What is 
the concept, and what are the prospects? 

An expert system is a program containing a generalized inference engine and a rule 
base, designed to take input data and assumptions and explore the logical consequences 
through the inferences derivable from the rule base, yielding conclusions and advice, and 
offering to explain its results by retracing its reasoning for the user.  The inference 
engines typically can deal with fuzzy or probabilistic data and rules in addition to purely 
deterministic logic. 

Such systems offer some clear advantages over programmed algorithms for arriving 
at the same solutions to the same problems: 
• 

• 

                                                

Inference engine technology is developed in an application-independent way, and then 
applied to many uses.  One can justify much more effort on the inference engines.  
Indeed, that technology is well advanced. 
The changeable parts of the application-peculiar materials are encoded in the rule base 
in a uniform fashion, and tools are provided for developing, changing, testing, and 
documenting the rule base.  This regularizes much of the complexity of the application 
itself. 

 
Edward Feigenbaum says that the power of such systems does not come from ever-

fancier inference mechanisms, but rather from ever-richer knowledge bases that reflect 
the real world more accurately.  I believe the most important advance offered by the 
technology is the separation of the application complexity from the program itself. 

How can this be applied to the software task?  In many ways: suggesting interface 
rules, advising on testing strategies, remembering but-type frequencies, offering 
optimization hints, etc. 

 
5 Parnas, D.L., “Software aspects of strategic defense systems,” Communications of the ACM, 28, 12 (Dec., 

1985), pp. 1326-1335. Also in American Scientist, 73, 5 (Sept.-Oct., 1985), pp. 432-440. 
6 Balzer, R., “A 15-year perspective on automatic programming,” in Mostow, op. cit. 
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Consider an imaginary testing advisor, for example.  In its most rudimentary form, 
the diagnostic expert system is very like a pilot’s checklist, fundamentally offering 
suggestions as to possible causes of difficulty.  As the rule base is developed, the 
suggestions become more specific, taking more sophisticated account of the trouble 
symptoms reported.  One can visualize a debugging assistant that offers very generalized 
suggestions at first, but as more and more system structure is embodied in the rule base, 
comes more and more particular in the hypotheses is generates and the tests it 
recommends.  Such an expert system may depart most radically from the conventional 
ones in that its rule base should probably be hierarchically modularized in the same way 
the corresponding software product is, so that as the product is modularly modified, the 
diagnostic rule base can be modularly modified as well. 

The work required to generate the diagnostic rules is work that will have to be done 
anyway in generating the set of test cases for the modules and for the system.  If it is done 
in a suitably general manner, with a uniform structure for rules and a good inference 
engine available, it may actually reduce the total labor of generating bring-up test cases, 
as well as helping in lifelong maintenance and modification testing.  In the same way, we 
can postulate other advisors probably many of them and probably simple ones for the 
other parts of the software construction task. 

Many difficulties stand in the way of early realization of useful expert advisors to the 
program developer.  A crucial part of our imaginary scenario is the development of easy 
ways to get from program structure specification to the automatic or semi-automatic 
generation of diagnostic rules.  Even more difficult and important is the twofold task of 
knowledge acquisition: finding articulate, self-analytical experts who know why they do 
things; and developing efficient techniques for extracting what they know and distilling it 
into rule bases.  The essential prerequisite for building an expert system is to have an 
expert. 

The most powerful contribution of expert systems will surely be to put at the service 
of the inexperienced programmer the experience and accumulated wisdom of the best 
programmers.  This is no small contribution.  The gap between the best software 
engineering practice and the average practice is very wide−perhaps wider than in any 
other engineering discipline.  A tool that disseminates good practice would be important. 
 
“Automatic” programming.  For almost 40 years, people have been anticipating and 
writing about “automatic programming”, the generation of a program for solving a 
problem from a statement of the problem specifications.  Some people today write as if 
they expected this technology to provide the next breakthrough.7 

 
Parnas implies that the term is used for glamour and not semantic content, asserting, 
 
In short, automatic programming always has been a euphemism for programming 
with a higher-level language than was presently available to the programmer.8 
 
He argues, in essence, that in most cases it is the solution method, not the problem, 

whose specification has to be given. 
                                                 
7 Mostow, op. cit. 
8 Parnas, 1985, op. cit. 
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Exceptions can be found.  The technique of building generators is very powerful, and 
it is routinely used to good advantage in programs for sorting.  Some systems for 
integrating differential equations have also permitted direct specification of the problem.  
The system assessed the parameters, chose from a library of methods of solution, and 
generated the programs. 
• 

• 

• 
• 

                                                

These applications have very favorable properties: 
The problems are readily characterized by relatively few parameters. 
There are many known methods of solution to provide a library of alternatives. 
Extensive analysis has led to explicit rules for selecting solution techniques, given 
problem parameters. 

 
It is hard to see how such techniques generalize to the wider world of the ordinary 

software system, where cases with such neat properties are the exception.  It is hard even 
to imagine how this breakthrough in generalization could conceivably occur. 

 
Graphical programming.  A favorite subject for PH.D. dissertations in software 
engineering is graphical, or visual, programming, the application of computer graphics to 
software design.9  Sometimes the promise of such an approach is postulated from the 
analogy with VLSI chip design, where computer graphics plays so fruitful a role.  
Sometimes the approach is justified by considering flowcharts as the ideal program 
design medium, and providing powerful facilities for constructing them. 

Nothing even convincing, much less exciting, has yet emerged from such efforts.  I 
am persuaded that nothing will. 

In the first place, as I have argued elsewhere, the flow chart is a very poor abstraction 
of software structure.10  Indeed, it is best viewed as Burks, von Neumann, and 
Goldstine’s attempt to provide a desperately needed high-level control language for their 
proposed computer.  In the pitiful, multipage, connection-boxed form to which the flow 
chart has today been elaborated, it has proved to be essentially useless as a design-tool 
programmers draw flow charts after, not before, writing the programs they describe. 

Second, the screens of today are too small, in pixels, to show both the scope and the 
resolution of any serious detailed software diagram.  The so-called “desktop metaphor” 
of today’s workstation is instead an “airplane-seat” metaphor. Anyone who has shuffled a 
lapful of papers while seated in a coach between two portly passengers will recognize the 
difference−one can see only a very few things at once.  The true desktop provides 
overview of and random access to a score of pages.  Moreover, when fits of creativity run 
strong, more than one programmer or writer has been known to abandon the desktop for 
the more spacious floor.  The hardware technology will have to advance quite 
substantially before the scope of our scopes is sufficient to the software design task. 

More fundamentally, as I have argued above, software is very difficult to visualize.  
Whether we diagram control flow, variable scope nesting, variable cross-references, data 
blow, hierarchical data structures, or whatever, we feel only one dimension of the 
intricately interlocked software elephant.  If we superimpose all the diagrams generated 
by the many relevant views, it is difficult to extract any global overview.  The VLSI 

 
9 Raeder, G., “A survey of current graphical programming techniques,” in R. B. Grafton and T. Ichikawa, 

eds., Special Issue on Visual Programming, Computer, 18, 8 (Aug., 1985), pp. 11-25 
10 Brooks 1995, op. cit., chapter 15. 
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analogy is fundamentally misleading−a chip design is a layered two-dimensional object 
whose geometry reflects its essence.  A software system is not. 

 
Program verification.  Much of the effort in modern programming goes into the testing 
and repair of bugs.  Is there perhaps a silver bullet to be found by eliminating the errors at 
the source, in the system design phase?  Can both productivity and product reliability be 
radically enhance by following the profoundly different strategy of proving designs 
correct before the immense effort is poured into implementing and testing them? 

I do not believe we will find the magic here.  Program verification is a very powerful 
concept, and it will be very important for such things as secure operating system kernels.  
The technology does not promise, however, to save labor.  Verifications are so much 
work that only a few substantial programs have ever been verified. 

Program verification does not mean error-proof programs.  There is no magic here, 
either.  Mathematical proofs also can be faulty.  So whereas verification might reduce the 
program-testing load, it cannot eliminate it. 

More seriously, even perfect program verification can only establish that a program 
meets its specification.  The hardest part of the software task is arriving at a complete and 
consistent specification, and much of the essence of building a program is in fact the 
debugging of the specification. 

 
Environments and tools.  How much more gain can be expected from the exploding 
researches into better programming environments?  One’s instinctive reaction is that the 
big-payoff problems were the first attacked, and have been solved: hierarchical file 
systems, uniform file formats so as to have uniform program interfaces, and generalized 
tools.  Language-specific smart editors are developments not yet widely used in practice, 
but the most they promise is freedom from syntactic errors and simple semantic errors. 

Perhaps the biggest gain yet to be realized in the programming environment is the use 
of integrated database systems to keep track of the myriads of details that must be 
recalled accurately by the individual programmer and kept current in a group of 
collaborators on a single system. 

Surely this work is worthwhile, and surely it will bear some fruit in both productivity 
and reliability.  But by its very nature, the return from now on must be marginal. 

 
Workstations.  What gains are to be expected for the software art from the certain and 
rapid increase in the power and memory capacity of the individual workstation?  Well, 
how many MIPS can one use fruitfully?  The composition and editing of programs and 
documents is fully supported by today’s speeds.  Compiling could stand a boost, but a 
factor of 10 in machine speed would surely leave think-time the dominant activity in the 
programmer’s day.  Indeed, it appears to be so now. 

More powerful workstations we surely welcome.  Magical enhancements from them 
we cannot expect. 
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Promising Attacks on the Conceptual Essence 
Even though no technological breakthrough promises to give the soft of magical 

results with which we are so familiar in the hardware area, there is both an abundance of 
good working going on now, and the promise of steady, if unspectacular progress. 

All of the technological attacks on the accidents of the software process are 
fundamentally limited by the productivity equation: 

 
Time of task = ∑ (Frequency) i x (Time) i 
 
If, as I believe, the conceptual components of the task are now taking most of the 

time, then no amount of activity on the task components that are merely the expression of 
the concepts can give large productivity gains. 

Hence we must consider those attacks that address the essence of the software 
problem, the formulation of these complex conceptual structures.  Fortunately, some of 
these are very promising. 

 
Buy versus build.  The most radical possible solution for constructing software is not to 
construct it at all. 

Every day this becomes easier, as more and more vendors offer more and better 
software products for a dizzying variety of applications.  While we software engineers 
have labored on production methodology, the personal computer revolution has created 
not one, but m any, mass markets for software.  Every newsstand carried monthly 
magazines which, sorted by machine type, advertise and review dozens of products at 
prices from a few dollars to a few hundred dollars.  More specialized sources offer very 
powerful products for the workstation and other Unix markets.  Even software tolls and 
environments can be bought off-the-shelf.  I have elsewhere proposed a market place for 
individual modules. 

Any such product is cheaper to buy than to build afresh.  Even at a cost of $100,000, 
a purchased piece of software is costing only about as much as one programmer-year.  
And delivery is immediate!  Immediate at least for products that really exist, products 
whose developer can refer the prospect to a happy user.  Moreover, such products tend to 
be much better documented and somewhat better maintained than homegrown software. 

The development of the mass market is, I believe, the most profound long-run trend 
in software engineering.  The cost of software has always been development cost, not 
replication cost.  Sharing that cost among even a few users radically cuts the per-user 
cost.  Another way of looking at it is that the use of n copies of a software system 
effectively multiplies the productivity of its developers by n.  That is an enhancement of 
the productivity of the discipline and of the nation. 

The key issue, of course, is applicability.  Can I use an available off-the-shelf package 
to do my task?  A surprising thing has happened here.  During the 1950s and 1960s, study 
after study showed that users would not use off-the-shelf packages for payroll, inventory 
control, accounts receivable, etc.  The requirements were too specialized, the case-to-case 
variation too high.  During the 1980s, we find such packages in high demand and 
widespread use.  What has changed? 

Not really the packages.  They may be somewhat more generalized and somewhat 
more customizable than formerly, but not much.  Not really the applications, either.  If 
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anything, the business and scientific needs of today are more diverse, more complicated 
than those of 20 years ago. 

The big change has been in the hardware/software cost ratio.  The buyer of a $2-
million machine in 1960 felt that he could afford $250,000 more for a customized payroll 
program, one that slipped easily and nondisruptively into the computer-hostile social 
environment.  Buyers of $50,000 office machines today cannot conceivably afford 
customized payroll programs; so they adapt their payroll procedures to the packages 
available. Computers are now so commonplace, if not yet so beloved, that the adaptations 
are accepted as a matter of course.  

There are dramatic exceptions to my argument that the generalization of the software 
packages has changed little over the years:  electronic spreadsheets and simple database 
systems.  These powerful tools, so obvious in retrospect and yet so late appearing, lend 
themselves to myriad uses, some quite unorthodox.  Articles and even books now abound 
on how to tackle unexpected tasks with the spreadsheet.  Large numbers of applications 
that would formerly have been written as custom programs in Cobol or Report Program 
Generator are now routinely done with these tools. 

Many users now operate their own computers day in and day out on varied 
applications without ever writing a program.  Indeed, many of these users cannot write 
new programs for their machines, but they are nevertheless adept at solving new 
problems with them. 

I believe the single most powerful software productivity strategy for man 
organizations to day is to equip the computer-naïve intellectual workers on the firing line 
with personal computers and good generalized writing, drawing, file and spreadsheet 
programs, and turn them loose.  The same strategy, with simple programming 
capabilities, will also work for hundreds of laboratory scientists. 

 
Requirements refinement and rapid prototyping.  The hardest single part of building a 
software system is deciding precisely what to build.  No other part of the conceptual work 
is to difficult as establishing the detailed technical requirements, including all the 
interfaces to people, to machines, and to other software systems.  No other part of the 
work so cripples the resulting system if done wrong.  No other part is more difficult go 
rectify later. 

Therefore the most important function that software builders do for their clients is the 
iterative extraction and refinement of the product requirements.  For the truth is, the 
clients do not know what they want.  They usually do not know what questions must be 
answered, and they almost never have thought of the problem in the detail that must be 
specified.  Even the simple answer−”Make the new software system work like our old 
manual information-processing system” −is in fact too simple.  Clients never want 
exactly that.  Complex software systems are, moreover, things that act, that move, that 
work.  The dynamics of that action are hard to imagine.  So in planning any software 
activity, it is necessary to allow for an extensive iteration between the client and the 
designer as part of the system definition. 

I would go a step further and assert that it is really impossible for clients, even those 
working with software engineers, to specify completely, precisely, and correctly the exact 
requirements of a modern software product before having built and tried some versions of 
the product they are specifying. 
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Therefore one of the most promising of the current technological efforts, and one 
which attacks the essence, not the accidents, of the software problem, is the development 
of approaches and tools for rapid prototyping of systems as part of the iterative 
specification of requirements. 

A prototype software system is one that simulates the important interfaces and 
performs the main functions of the intended system, while not being necessarily bound by 
the same hardware speed, size, or cost constraints.  Prototypes typically perform the 
mainline tasks of the application, but make no attempt to handle the exceptions, respond 
correctly to invalid inputs, abort cleanly, etc.  The purpose of the prototype is to make 
real the conceptual structure specified, so that the client can test it for consistency and 
usability 

Much of present-day software acquisition procedures rests upon the assumption that 
one can specify a satisfactory system in advance, get bids for its construction, have it 
built, and install it. I think this assumption is fundamentally wrong, and that many 
software acquisition problems spring from that fallacy.  Hence they cannot be fixed 
without fundamental revision, one that provides for iterative development and 
specification of prototypes and products. 

 
Incremental development−grow, not build, software.  I still remember the jolt I felt in 
1958 when I first heard a friend talk about building a program, as opposed to writing one.  
In a flash be broadened my whole view of the software process.  The metaphor shift was 
powerful, and accurate.  Today we understand how like other building processes the 
construction of software is, and we freely use other elements of the metaphor, such as 
specifications, assembly of components, and scaffolding. 

The building metaphor has outlived its usefulness.  It is time to change again.  If, as I 
believe, the conceptual structures we construct today are too complicated to be accurately 
specified in advance, and too complex to be built faultlessly, then we must take a 
radically different approach. 

Let us turn to nature and study complexity in living things, instead of just the dead 
works of man.  Here we find constructs whose complexities thrill us with awe.  The brain 
alone is intricate beyond mapping, powerful beyond imitation, rich in diversity, self-
protecting, and self-renewing.  The secret is that it is grown, not built. 

So it must be with our software systems.  Some years ago Harlan Mills proposed that 
any software system should be grown by incremental development.11  That is, the system 
should first be made to run, even though it does nothing useful except call the proper set 
of dummy subprograms.  Then, bit-by-bit it is fleshed out, with the subprograms in turn 
being developed into actions or calls to empty stubs in the level below. 

I have seen the most dramatic results since I began urging this technique on the 
project builders in my software engineering laboratory class. Nothing in the past decade 
has so radically changed my own practice, or its effectiveness.  The approach necessitates 
top-down design, for it is a top-down growing of the software.  It allows easy 
backtracking.  It lends itself to early prototypes.  Each added function and new provision 
for more complex data or circumstances grown organically out of what is already there. 

                                                 
11 Mills, H. D., “Top-down programming in large systems,” Debugging Techniques in Large Systems, R. 

Rustin, ed., Englewood Cliffs, N.J., Prentice-Hall, 1971. 
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The morale effects are startling.  Enthusiasm jumps when there is a running system, 
even a simple one.  Efforts redouble when the first picture from a new graphics software 
system appears on the screen, even if it is only a rectangle.  One always has, at every 
stage in the process, a working system.  I find that teams can grow much more complex 
entities in four months than they can build. 

The same benefits can be realized on large projects as on my small ones.12 
 

Great designers.  The central question of how to improve the software art centers, as it 
always, on people. 

We can get good designs by following good practices instead of poor ones.  Good 
design practices can be taught.  Programmers are among the most intelligent part of the 
population, so they can learn good practice.  Thus a major thrust in the United States is to 
promulgate good modern practice.  New curricula, new literature, new organizations such 
as the Software Engineering Institute, all have come into being in order to raise the level 
of our practice from poor to good.  This is entirely proper. 

Nevertheless, I do not believe we can make the next step upward in the same way.  
Whereas the difference between poor conceptual designs and good ones may lie in the 
soundness of design method, the difference between good designs and great ones surely 
does not.  Great designs come from great designers. Software construction is a creative 
process.  Sound methodology can empower and liberate the creative mind; it cannot 
enflame or inspire the drudge. 

The differences are not minor−it is rather like Salieri and Mozart.  Study after study 
shows that the very best designers produce structures that are faster, smaller, simpler, 
cleaner, and produced with less effort.  The differences between the great and the average 
approach an order of magnitude. 

A little retrospection shows that although many fine, useful software systems have 
been designed by committees and built by multipart projects, those software systems that 
have excited passionate fans are those that are the products of one or a few designing 
minds, great designers.  Consider Unix, APL, Pascal, Modula, the Smalltalk interface, 
even Fortran; and contrast with Cobol, PL/I, Algol, MVS/370, and MS-DOS (fig. 1) 

 
Yes   No 
Unix   Cobol 
APL   PL/1 
Pascal   Algol 
Modula   MVS/370 
Smalltalk  MS-DOS 
Fortran 

 
Fig. 1 Exciting products 

 
Hence, although I strongly support the technology transfer and curriculum 

development efforts now underway, I think the most important single effort we can 
mount is to develop ways to grow great designers. 

                                                 
12 Boehm, B. W., “A spiral model of software development and enhancement,” Computer, 20, 5 (May, 

1985), pp. 43-57. 
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No software organization can ignore this challenge.  Good managers, scarce though 
they be, are no scarcer than good designers.  Great designers and great managers are both 
very rare.  Most organizations spend considerable effort in finding and cultivating the 
management prospects; I know of none that spends equal effort in finding and developing 
the great designers upon whom the technical excellence of the products will ultimately 
depend. 

My first proposal is that each software organization must determine and proclaim that 
great designers are as important to its success as great managers are, and that they can be 
expected to be similarly nurtured and rewarded.  Not only salary, but the perquisites of 
recognition−office size, furnishings, personal technical equipment, travel funds, staff 
support−must be fully equivalent. 

How to grow great designers?  Space does not permit a lengthy discussion, but some 
steps are obvious: 
• 

• 

• 

• 

Systematically identify top designers as early as possible.  The best are often not the 
most experienced. 
Assign a career mentor to be responsible for the development of the prospect, and keep 
a careful career file. 
Devise and maintain a career development plan for each prospect, including carefully 
selected apprenticeships with top designers, episodes of advanced formal education, 
and short courses, all interspersed with solo design and technical leadership 
assignments. 
Provide opportunities for growing designers to interact with and stimulate each other. 
■  
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