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1 Introduction

“If my teachers had begun by telling me that mathematics was pure
play with presuppositions, and wholly in the air, I might have become
a good mathematician. But they were overworked drudges, and I was
largely inattentive, and inclined lazily to attribute to incapacity in
myself or to a literary temperament that dullness which perhaps was
due simply to lack of initiation.” (George Santayanal)

Most research mathematicians neither think deeply about nor are terribly
concerned about either pedagogy or the philosophy of mathematics. Nonethe-
less, as I hope to indicate, aesthetic notions have always permeated (pure and
applied) mathematics. And the top researchers have always been driven by an
aesthetic imperative:

“We all believe that mathematics is an art. The author of a book,
the lecturer in a classroom tries to convey the structural beauty of
mathematics to his readers, to his listeners. In this attempt, he
must always fail. Mathematics is logical to be sure, each conclusion
is drawn from previously derived statements. Yet the whole of it,
the real piece of art, is not linear; worse than that, its perception
should be instantaneous. We have all experienced on some rare oc-
casions the feeling of elation in realizing that we have enabled our
listeners to see at a moment’s glance the whole architecture and all
its ramifications.” (Emil Artin, 1898-19622):

I shall similarly argue for aesthetics before utility. Through a suite of exam-
ples?, I aim to illustrate how and what that means at the research mine face. I
also will argue that the opportunities to tie research and teaching to aesthetics
are almost boundless — at all levels of the curriculum. 4 This is in part due to
the increasing power and sophistication of visualization, geometry, algebra and
other mathematical software.

1.1 Aesthetics(s) according to Webster

Let us finish this introduction by recording what one dictionary says:

aesthetic, adj 1. pertaining to a sense of the beautiful or to the science of
aesthetics.

L «persons and Places,” 1945, 238-9.

2Quoted by Ram Murty in Mathematical Conversations, Selections from The Mathematical
Intelligencer, compiled by Robin Wilson and Jeremy Gray, Springer-Verlag, New York, 2000.

3The transparencies, and other resources, expanding the presentation that this paper is
based on are available at
www.cecm.sfu.ca/personal/jborwein/talks.html,
www.cecm.sfu.ca/personal/jborwein/mathcamp00.html and
www.cecm.sfu.ca/ersonal/loki/Papers/Numbers/.

4An excellent middle school illustration is described in Nathalie Sinclair’s “The aesthetics
is relevant,” for the learning of mathematics, 21 (2001), 25-32.



2. having a sense of the beautiful; characterized by a love of beauty.

3. pertaining to, involving, or concerned with pure emotion and sensation
as opposed to pure intellectuality.

4. a philosophical theory or idea of what is aesthetically valid at a given time
and place: the clean lines, bare surfaces, and sense of space that bespeak the
machine-age aesthetic.

5. aesthetics.

6. Archaic. the study of the nature of sensation.

Also, esthetic. Syn 2. discriminating, cultivated, refined.

aesthetics, noun 1. the branch of philosophy dealing with such notions as
the beautiful, the ugly, the sublime, the comic, etc., as applicable to the fine
arts, with a view to establishing the meaning and validity of critical judgments
concerning works of art, and the principles underlying or justifying such judg-
ments.

2. the study of the mind and emotions in relation to the sense of beauty.

Personally, I would require (unexpected) simplicity or organization in appar-
ent complexity or chaos, consistent with views of Dewey, Santayana and others.
We need to integrate this aesthetic into mathematics education so as to capture
minds not only for utilitarian reasons. I do believe detachment is an important
component of the aesthetic experience, thus it is important to provide some cur-
tains, stages, scaffolds and picture frames and their mathematical equivalents.
Fear of mathematics does not hasten an aesthetic response.

2 Gauss, Hadamard and Hardy

Three of my personal mathematical heroes, very different men from different
times, all testify interestingly on the aesthetic and the nature of mathematics.

2.1 Gauss
Carl Friedrich Gauss (1777-1855) once confessed®,
“I have the result, but I do not yet know how to get it.”

One of Gauss’s greatest discoveries, in 1799, was the relationship between
the lemniscate sine function and the arithmetic-geometric mean iteration. This
was based on a purely computational observation. The young Gauss wrote in
his diary that the result “will surely open up a whole new field of analysis.”

He was right, as it pried open the whole vista of nineteenth century elliptic
and modular function theory. Gauss’s specific discovery, based on tables of
integrals provided by Stirling (1692-1770), was that the reciprocal of the integral

2 /1 dt
T Jo VvV1—tt
5See “Isaac Asimov’s Book of Science and Nature Quotations,” Isaac Asimov and J. A.
Shulman (eds.), Weidenfield and Nicolson”, New York (1988), 115.




agreed numerically with the limit of the rapidly convergent iteration given by
ao := 1, by := v/2 and computing

an + b
2 )
The sequences an, b, have a common limit 1.1981402347355922074 .. ..

An+41 bn+1 = anbn

Which object, the integral or the iteration, is more familiar, which is more
elegant — then and now? Aesthetic criteria change: ‘closed forms’ have yielded
centre stage to ‘recursion’ much as biological and computational metaphors
(even ‘biology envy‘) have replaced Newtonian mental images with Richard
Dawkin’s ‘the blind watchmaker.

2.2 Hadamard

A constructivist, experimental and aesthetic driven rationale for mathematics
could hardly do better than to start with:

The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there was never any other object for it.
(J. Hadamard®)

Jacques Hadamard (1865-1963) was perhaps the greatest mathematician to
think deeply and seriously about cognition in mathematics”. He is quoted as
saying “.. in arithmetic, until the seventh grade, I was last or nearly last” which
should give encouragement to many young students.

Hadamard was both the author of “The psychology of invention in the math-
ematical field” (1945), a book that still rewards close inspection, and co-prover
of the Prime Number Theorem (1896):

“The number of primes less than n tends to oo as does %.”

This was one of the culminating results of 19th century mathematics and one
that relied on much preliminary computation and experimentation.

2.3 Hardy’s Apology

Correspondingly G. H. Hardy (1877-1947), the leading British analyst of the first
half of the twentieth century was also a stylish author who wrote compellingly
in defense of pure mathematics. He noted that

“All physicists and a good many quite respectable mathematicians
are contemptuous about proof.”

6In E. Borel, “Lecons sur la theorie des fonctions,” 1928, quoted by George Polya in Math-
ematical discovery: On understanding, learning, and teaching problem solving (Combined
Edition), New York, John Wiley (1981), pp. 2-126.

7Other than Poincaré?



in his apologia, “A Mathematician’s Apology”. The Apology is a spirited de-
fense of beauty over utility:

“Beauty is the first test. There is no permanent place in the world
for ugly mathematics.”

That said, his comment that
“Real mathematics ... is almost wholly ‘useless’.”

has been over-played and is now to my mind very dated, given the importance
of cryptography and other pieces of algebra and number theory devolving from
very pure study. But he does acknowledge that

“If the theory of numbers could be employed for any practical and
obviously honourable purpose, ...”

even Gauss would be persuaded.

The Apology is one of Amazon’s best sellers. And the existence of Amazon,
or Google, means that I can be less than thorough with my bibliographic details
without derailing a reader who wishes to find the source.

Hardy, in his tribute to Ramanujan entitled “Ramanujan, Twelve Lectures
...,” page 15, gives the so-called ‘Skewes number’ as a “striking example of a
false congjecture”. The integral

. / T odt
liz = —
o logt

is a very good approximation to m(x), the number of primes not exceeding z.
Thus, 1i 10% = 5,761, 455 while 7(10%) = 5,762, 209.
It was conjectured that
liz > n(x)

holds for all z and indeed it so for many z. Skewes in 1933 showed the first

explicit crossing at 10" This has by now been now reduced to a relatively
tiny number, a mere 10157, still vastly beyond direct computational reach.

Such examples show forcibly the limits on numeric experimentation, at least
of a naive variety. Many will be familiar with the ‘Law of large numbers’ in
statistics. Here we see what some number theorists call the ‘Law of small num-
bers’: all small numbers are special, many are primes and direct experience is a
poor guide. And sadly or happily depending on one’s attitude even 10''%¢ may
be a small number.

We shall meet Ramanujan again in the sequel.

3 Research motivations and goals

As a computational and experimental pure mathematician my main goal is:
insight. Insight demands speed and increasingly parallelism as described in an



article I recently coauthored on challenges for mathematical computing.® Speed
and enough space is a prerequisite:

e For rapid verification.
e For validation and falsification; proofs and refutations.

What is ‘easy’ is changing and we see an exciting merging of disciplines,
levels and collaborators. We are more and more able to:

e Marry theory & practice, history & philosophy, proofs & experiments.
e Match elegance and balance to utility and economy.

e Inform all mathematical modalities computationally: analytic, algebraic,
geometric & topological.

This is leading us towards an Fzperimental Mathodology as a philosophy and
in practice.? It is based on:

e Meshing computation and mathematics — intuition is acquired. Blake’s
innocent may become the shepherd.

e Visualization — three is a lot of dimensions. Nowadays we can exploit
pictures, sounds and other haptic stimuli.

e ‘Caging’ and ‘Monster-barring’ (in Imre Lakatos’ words). Two particularly
useful components are:

— graphic checks: comparing 2,/y — y and /yIn(y), 0 < y < 1 pic-
torially is a much more rapid way to divine which is larger that
traditional analytic methods.

— randomized checks: of equations, linear algebra, or primality can
provide enormously secure knowledge or counter-examples when de-
terministic methods are doomed.

My own methodology depends heavily on:

1. (High Precision) computation of object(s) for subsequent examination.

2. Pattern Recognition of Real Numbers (e.g., using CECM’s Inverse Calcu-
lator and "RevEng’)1%, or Sequences (e’g., using Salvy & Zimmermann’s
‘gfun’ or Sloane and Plouffe’s Online Encyclopedia).

8J.M. Borwein and P.B. Borwein, “Challenges for Mathematical Computing,” Computing
in Science & Engineering, May/June 3 (2001), 48-53. [CECM Preprint 00:1605]

9Jonathan M. Borwein and Robert Corless, “Emerging tools for experimental mathemat-
ics,” American Mathematical Monthly, 106 (1999), 889-909. [CECM Preprint 98:110].

10ISC space limits have changed from 10Mb being a constraint in 1985 to 10Gb being ‘easily
available’ today.



3. Extensive use of Integer Relation Methods: PSLQ & LLL and FFT.!!
Exclusion bounds are especially useful and such methods provide a great
test bed for ‘Experimental Mathematics’.

4. Some automated theorem proving (using methods of Wilf-Zeilberger etc).

All these tools are accessible through the listed CECM websites.

3.1 Pictures and symbols

“If I can give an abstract proof of something, I'm reasonably happy.
But if I can get a concrete, computational proof and actually produce
numbers I’'m much happier. I’'m rather an addict of doing things on
the computer, because that gives you an explicit criterion of what’s
going on. I have a visual way of thinking, and I'm happy if I can
see a picture of what I'm working with.” (John Milnor'?)

Let us consider the following images of zeroes of 0/1 polynomials that are
manipulatable at www.cecm.sfu.ca/interfaces/. These images are also shown
and described in my recent survey paper.'® In this case graphic output allows
insight no amount of numbers could.

We have been building educational software with these precepts embed-
ded, such as LetsDoMath.!'* The intent is to challenge students honestly (e.g.,
through allowing subtle exploration within the ‘Game of Life’) while making
things tangible (e.g., Platonic solids offer virtual manipulables that are more
robust and expressive that the standard classroom solids!).

But symbols are often more reliable than pictures. The following picture
purports to be evidence that a solid can fail to be polyhedral at only one point.
It is the steps up to pixel level of inscribing a regular 2"+!-gon at height 2!,
But ultimately such a construction fails and produces a right circular cone. The
false evidence in this picture held back a research project for several days!

M Described as one of the top ten “Algorithm’s for the Ages,” Random Samples, Science,
Feb. 4, 2000.

12Quoted in Who got Einstein’s Office? by Ed Regis — a delightful 1986 history of the
Institute for Advanced Study.

13D.H. Bailey and J.M. Borwein, “Experimental Mathematics: Recent Developments and
Future Outlook,” in Mathematics Unlimited — 2001 and Beyond, B. Engquist and W. Schmid
(Eds.), Springer-Verlag, 2000, ISBN 3-540-66913-2. [CECM Preprint 99:143]

14See www.mathresources.com.



3.2 Four kinds of experiment
Medawar usefully distinguishes four forms of scientific experiment.

1. The Kantian example: generating “the classical non-Euclidean geome-
tries (hyperbolic, elliptic) by replacing Euclid’s axiom of parallels (or something
equivalent to it) with alternative forms.”

2. The Baconian experiment is a contrived as opposed to a natural happening,
it “is the consequence of ‘trying things out’ or even of merely messing about.”
3. Aristotelian demonstrations: “apply electrodes to a frog’s sciatic nerve,
and lo, the leg kicks; always precede the presentation of the dog’s dinner with
the ringing of a bell, and lo, the bell alone will soon make the dog dribble.”

4. The most important is Galilean: “a critical experiment — one that discrim-
inates between possibilities and, in doing so, either gives us confidence in the
view we are taking or makes us think it in need of correction.”

The first three forms are common in mathematics, the fourth is not. It is
also the only one of the four forms which has the promise to make Experimental
Mathematics into a serious replicable scientific enterprise.!>'6

4 Two things about v2...

Remarkably one can still find new insights in the oldest areas:

I5From Peter Medawar’s wonderful Advice to a Young Scientist, Harper (1979).
16See also: D.H. Bailey and J.M. Borwein, “Experimental Mathematics: Recent Develop-
ments and Future Outlook.”



4.1 Irrationality

We present graphically, Tom Apostol’s lovely new geometric proof'” of the ir-
rationality of v/2.

PROOF. Consider the smallest right-angled isoceles integral with integer sides.
Circumscribe a circle of length the vertical side and construct the tangent on
the hypotenuse.

The square root of 2 is irrational

The smaller isoceles triangle is again integral - - -

4.2 Rationality
/2 also makes things rational:

<\/§f>f VIR, LY

Hence by the principle of the excluded middle:

Either \/5\/5 € Qor \/5\/§ ¢ Q.

In either case we can deduce that there are irrational numbers a and
with of rational. But how do we know which ones? One may build a whole
mathematical philosophy project around this. Compare the assertion that

o :=+/2 and B := 21ny(3) yield o’ =3

1T MAA Monthly, November 2000, 241-242.




as Maple confirms. This illustrates nicely that verification is often easier than
discovery (similarly the fact multiplication is easier than factorization is at the
base of secure encryption schemes for e-commerce). There are eight possible
(ir)rational triples:

af =7,

and finding examples of all cases is now a fine student project.

4.3 ... and two integrals

Even Maple knows 7 # % since

1 4.4

(1—2x)x 22

7d = — —
0</0 T2 T - ,

though it would be prudent to ask ‘why’ it can perform the evaluation and
‘whether’ to trust it? In contrast, Maple struggles with the following sopho-
more’s dream:

and students asked to confirm this typically mistake numerical validation for
symbolic proof.

Again we see that computing adds reality, making concrete the abstract, and
makes some hard things simple. This is strikingly the case in Pascal’s Triangle:
www.cecm.sfu.ca/interfaces/ affords an emphatic example where deep frac-
tal structure is exhibited in the elementary binomial coefficients. Berlinski writes

“The computer has in turn changed the very nature of mathemat-
ical experience, suggesting for the first time that mathematics, like
physics, may yet become an empirical discipline, a place where things
are discovered because they are seen.”

and continues

“ The body of mathematics to which the calculus gives rise embodies
a certain swashbuckling style of thinking, at once bold and dramatic,
given over to large intellectual gestures and indifferent, in large mea-
sure, to any very detailed description of the world. It is a style that
has shaped the physical but not the biological sciences, and its success
in Newtonian mechanics, general relativity and quantum mechanics
is among the miracles of mankind.

But the era in thought that the calculus made possible is coming
to an end. Everyone feels this is so and everyone is right.” (David
Berlinski!®)

18 Two quotes I agree with from Berlinski’s “A Tour of the Calculus,” Pantheon Books, 1995

10



5 m and friends

My research with my brother on 7 also offers aesthetic and empirical opportu-
nities. The next algorithm grew out of work of Ramanujan.

5.1 A quartic algorithm (Borwein & Borwein 1984)
Set ag = 6 — 4v/2 and Yo = V2 — 1. Tterate

1- (1 -y
1 ] = ——— k7
W I S T AT

4b _ 22k+3

(2) ar+1 = ap(l + yrt1) Y1 (1 + Yet1 + Yigr)

Then ay, converges quartically to 1/x.

We have exhibited 19 pairs of simple algebraic equations (1, 2) that written
out in full still fit on one page and differ from 7 (the most celebrated transcen-
dental number) only after 700 billion digits. After 17 years, this still gives me
an aesthetic buzz!

This iteration has been used since 1986, with the Salamin-Brent scheme, by
Bailey (Lawrence Berkeley Labs) and by Kanada (Tokyo). In 1997, Kanada
computed over 51 billion digits on a Hitachi supercomputer (18 iterations, 25
hrs on 210 cpu’s). His present world record is 23¢ digits in April 1999. A billion
(239) digit computation has been performed on a single Pentium II PC in under
9 days.

The 50 billionth decimal digit of 7 or of % is 042! And after 18 billion digits,
0123456789 has finally appeared and Brouwer’s famous intuitionist example now
converges!!?

5.1.1 A further taste of Ramanujan

G. N. Watson, discussing his response to such formulae of the wonderful Indian
mathematical genius Ramanujan (1887-1920), describes:

“a thrill which is indistinguishable from the thrill I feel when I enter
the Sagrestia Nuovo of the Capella Medici and see before me the aus-
tere beauty of the four statues representing ‘Day,” ‘Night,” ‘Evening,’
and ‘Dawn’ which Michelangelo has set over the tomb of Guiliano
de’Medici and Lorenzo de’Medici.” (G. N. Watson, 1886-1965)

One of these is Ramanujan’s remarkable formula, based upon the elliptic
and modular function theory initiated by Gauss,

T 9801
k=0

1 2V2 S (4k)! (1103 + 26390k)
2 (k1) 3964k

9Details about 7 are at www.cecm.sfu.ca/personal/jborwein/pi_cover.html.

11



Each term of this series produces an additional eight correct digits in the result
— and only the ultimate v/2 is not a rational operation. Bill Gosper used this
formula to compute 17 million terms of the continued fraction for 7 in 1985.
This is of interest because we still can not prove that the continued fraction for
m is unbounded. Again everyone knows this is true.

That said, Ramanujan prefers related explicit forms such as

log(640320%)
V163

correct until the underlined places.

The number e™ is the easiest transcendental to fast compute (by elliptic
methods). One ‘differentiates’ e *™ to obtain algorithms such as above for 7,
via the (AGM).

= 3.1415926535897930164 ~ T,

5.2 Integer relation detection

We make a brief digression to describe what integer relation detection methods
do.?° We then apply them to 7.2

5.2.1 The uses of LLL and PSLQ

DEFINITION: A vector (1, %2, ,T,) of reals possesses an integer relation
if there are integers a; not all zero with

‘Ozalwl +aszy + - -+ anTyp-

PROBLEM: Find a; if such exist. If not, obtain lower ‘exclusion’ bounds on
the size of possible a;.

SOLUTION: For n = 2, Euclid’s algorithm gives a solution. For n > 3, Euler,
Jacobi, Poincaré, Minkowski, Perron, and many others sought methods. The
first general algorithm was found in 1977 by Ferguson & Forcade. Since 77
one has many variants: LLL (also in Maple and Mathematica), HJLS, PSOS,
PSLQ (91, parallelized ’99).

Integer Relation Detection was recently ranked among “the 10 algorithms
with the greatest influence on the development and practice of science and en-
gineering in the 20th century,” by J. Dongarra and F. Sullivan in Computing in
Science €& Engineering, 2 (2000), 22-23. Also listed were: Monte Carlo, Sim-
plex, Krylov Subspace, QR Decomposition, Quicksort, ..., FFT, Fast Multipole
Method.

20These may be tried at www.cecm.sfu.ca/projects/IntegerRelations/.

21Gee also J.M. Borwein and P. Lisonék, “Applications of Integer Relation Algorithms,”
Discrete Mathematics, 217 (2000), 65-82. [CECM Research Report 97:104]

12



5.2.2 Algebraic numbers

Asking about algebraicity is handled by computing « to sufficiently high preci-
sion (O(n = N?)) and apply LLL or PSLQ to the vector

(l,CK,CKQ, T 7aN_1)‘

e Solution integers, a;, are coefficients of a polynomial likely satisfied by a.
If one has computed « to n + m digits and run LLL using n of them, one
has m digits to heuristically confirm the result. I have never seen this
return an honest ‘false positive’ for m > 20 say.

e If no relation is found, exclusion bounds are obtained, saying for example
that any polynomial of degree less than N must have the Euclidean norm
of its coefficients in excess of L (often astronomical).

5.2.3 Finalizing formulae

If we know or suspect an identity exists integer relations methods are very
powerful.

e (Machin’s Formula). We try Maple’s 1in_dep function on
[arctan(1), arctan(1/5), arctan(1/239)]

and ‘recover’ [1, -4, 1]. That is,

1
T = 4arctan(g) — arctan(

1 739"

Machin’s formula was used on all serious computations of 7 from 1706
(100 digits) to 1973 (1 million digits). After 1980, the methods described
above started to be used instead.

e (Dase’s Formula). We try lin_dep on
[w/4,arctan(1/2), arctan(1/5), arctan(1/8)]

and recover [-1, 1, 1, 1]. That is,

1 1 1
T = arctan(§) + arctan(g) + arctan(g).

This was used by Dase to compute 200 digits of 7 in his head in perhaps
the greatest feat of mental arithmetic ever — ¢ 1/8’ is apparently better
than ‘1/239’ for this purpose.

13



5.3 Johann Martin Zacharias Dase

Another burgeoning component of modern research and teaching life is access to
excellent (and dubious) databases such as the MacTutor History Archive main-
tained at: www-history.mcs.st-andrews.ac.uk. One may find details there
on almost all the mathematicians appearing in this article. We illustrate its
value by showing verbatim what it says about Dase.

“Zacharias Dase (1824-1861) had incredible calculating skills but lit-
tle mathematical ability. He gave exhibitions of his calculating pow-
ers in Germany, Austria and England. While in Vienna in 1840 he
was urged to use his powers for scientific purposes and he discussed
projects with Gauss and others.

Dase used his calculating ability to calculate to 200 places in 1844.
This was published in Crelle’s Journal for 1844. Dase also con-
structed 7 figure log tables and produced a table of factors of all
numbers between 7 000 000 and 10 000 000.

Gauss requested that the Hamburg Academy of Sciences allow Dase
to devote himself full-time to his mathematical work but, although
they agreed to this, Dase died before he was able to do much more
work. ¢

5.4 ‘Pentium farmang’ for binary digits.

Bailey, P. Borwein and Plouffe (1996) discovered a series for 7 (and correspond-
ing ones for some other polylogarithmic constants) which somewhat disconcert-
ingly allows one to compute hexadecimal digits of m without computing prior
digits. The algorithm needs very little memory and no multiple precision. The
running time grows only slightly faster than linearly in the order of the digit
being computed.

The key, found by ‘PSLQ’, as described above, is:

i": 1 ’“( 4 2 1 1 )
T = — — — _
£«\16) ‘8k+1 8k+4 B8k+5 8k+6

Knowing an algorithm would follow they spent several months hunting by com-
puter for such a formula. Once found, it is easy to prove in Mathematica, in
Maple or by hand — and provides a very nice calculus exercise.

This was a most successful case of

REVERSE MATHEMATICAL ENGINEERING

This is entirely practicable, God reaches her hand deep into 7: in September
1997 Fabrice Bellard (INRIA) used a variant of this formula to compute 152
binary digits of 7, starting at the trillionth position (10'%). This took 12 days
on 20 work-stations working in parallel over the Internet.

14



5.4.1 Percival on the web

In August 1998 Colin Percival (SFU, age 17) finished a similar naturally or “em-
barrassingly parallel” computation of the five trillionth bit (using 25 machines
at about 10 times the speed of Bellard). In hezadecimal notation he obtained:

07E45733CCT790B5B5979.
The corresponding binary digits of 7 starting at the 40 trillionth place are
00000111110011111.

By September 2000, the quadrillionth bit had been found to be ‘0’ (using 250
cpu years on 1734 machines from 56 countries). Starting at the 999,999,999, 999, 997th
bit of 7 one has:

111000110001000010110101100000110.

6 Solid and discrete geometry

6.1 De Morgan

Augustus De Morgan, one of the most influential educators of his period, wrote:

“Considerable obstacles generally present themselves to the beginner,
in studying the elements of Solid Geometry, from the practice which
has hitherto uniformly prevailed in this country, of never submitting
to the eye of the student, the figures on whose properties he is rea-
soning, but of drawing perspective representations of them upon a

plane. ... I hope that I shall never be obliged to have recourse to
a perspective drawing of any figure whose parts are not in the same
plane.”

(Augustus De Morgan, 1806-71, First London Mathematical Society
President.??)

I imagine that De Morgan would have been happier using JavaViewLib:
www.cecm.sfu.ca/interfaces/. This is Konrad Polthier’s modern version of
Felix Klein’s (1840-1928) famous geometric models. Correspondingly, a modern
interactive version of Euclid is provided by Cinderella.de, which is illustrated at
personal/jborwein/circle.html, and is largely comparable to Geometer’s
Sketchpad which is discussed in detail in other papers in this volume. Klein, like
DeMorgan, was equally influential as an educator and as a researcher.

22From Adrian Rice, “What Makes a Great Mathematics Teacher?” MAA Monthly, June
1999, p. 540.

15



6.2 Sylvester’s theorem

“The early study of Euclid made me a hater of geometry.”
(James Joseph Sylvester, 1814-97, Second London Mathematical So-
ciety President.??)

But discrete geometry (now much in fashion as ‘computational geometry’
and another example of very useful pure mathematics) was different:

THEOREM. Given N non-collinear points in the plane there is a proper line
through only two points.?*

Sylvester’s conjecture was it seems forgotten for 50 years. It was first estab-
lished —“badly” in the sense that the proof is much more complicated — by
Gallai (1943) and also by Paul Erdos who named ‘the Book’ in which God keeps
aesthetically perfect proofs. Erdos was an atheist. Kelly’s proof was actually
published by Donald Coxeter in the MAA Monthly in 1948! A fine example of
how the archival record may get obscured.

6.3 Kelly’s “Proof from ‘The Book’ ”

Sylvester

PROOF. Consider the point closest to a line it is not on and suppose that line
has three points on it (the horizontal line).
The middle of those three points is clearly closer to the other line!

23Tn D. MacHale, “Comic Sections” (1993).
24posed in The Educational Times, 59 (1893).

16



e As with our proof of the irrationality of v/2 we see the power of the right
minimal configuration.

Two more examples that belong in ‘the Book’ are afforded by:

e Niven’s marvellous half page 1947 proof that 7 is irrational
(See www.cecm.sfu.ca/personal/jborwein/pi.pdf); and

e Snell’s law — does one use the Calculus to establish the Physics, or use
physical intuition to teach students how to avoid tedious calculations?

7 Partitions and patterns

Another subject that can be made highly accessible is additive number theory,
especially partition theory. The number of additive partitions of n, p(n), is
generated by

P(g):=JJa-q¢m)"

n>1

Thus p(5) = 7 since
09=4+1=34+2=3+14+1=2+2+1
=2+1+1+1=14+1+4+1+1+1.
QUESTION: How hard is p(n) to compute — in 1900 (for MacMahon) and
in 2000 (for Maple)?

ANSWER: Seconds for Maple, months for MacMahon. It is interesting to
ask if development of the beautiful asymptotic analysis of partitions, by Hardy,
Ramanujan and others, would have been helped or impeded by such facile com-
putation?

Ex post facto algorithmic analysis can be used to facilitate independent
student discovery of Euler’s pentagonal number theorem:

o0

H(l _ qn) — Z (_l)nq(3n+1)n/2-

n>1 n=-—oo

Ramanujan used MacMahon’s table of p(n) to intuit remarkable and deep
congruences such as
p(bn+4)=0 mod 5

p(Tn+5)=0 mod 7

and
p(1ln+6) =0 mod 11,
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from data like

Pl@)=1 + q+2¢@+3 +5¢ " +7¢° +11¢° +15¢" +22¢° +30¢°
+ 42¢"° +56¢" +77¢"2 +101¢" +135¢" + 176 ¢*° + 231 ¢'¢
+ 297¢'7 +385¢'® + 490 ¢ + 627 ¢*°b + 792 ¢*'b 4+ 1002 ¢*2 + 1255 ¢>° + - - -

If introspection fails, we can recognize the pentagonal numbers occurring
above in Sloane and Plouffe’s on-line ‘Encyclopedia of Integer Sequences’:
www.research.att.com/personal/njas/sequences/eisonline.html. Here we
see a very fine example of Mathematics: the science of patterns as is the title
of Keith Devlin’s 1997 book. And much more may similarly be done.

8 Some concluding discussion

8.1 George Lakoff & Rafael E. Nunez

“Recent Discoveries about the Nature of Mind.

In recent years, there have been revolutionary advances in cognitive
science — advances that have a profound bearing on our under-
standing of mathematics.?> Perhaps the most profound of these
new insights are the following:

1. The embodiment of mind. The detailed nature of our bodies, our
brains and our everyday functioning in the world structures human
concepts and human reason. This includes mathematical concepts
and mathematical reason.

2. The cognitive unconscious. Most thought is unconscious — not
repressed in the Freudian sense but simply inaccessible to direct
conscious introspection. We cannot look directly at our conceptual
systems and at our low-level thought processes. This includes most
mathematical thought.

3. Metaphorical thought. For the most part, human beings concep-
tualize abstract concepts in concrete terms, using ideas and modes
of reasoning grounded in sensory-motor systems. The mechanism by
which the abstract is comprehended in terms of the concept is called
conceptual metaphor. Mathematical thought also makes use of con-
ceptual metaphor, as when we conceptualize numbers as points on
a line.” 26

They later observe:

25More serious curricular insights should come from neuro-biology (Dehaene et al., “Sources
of Mathematical Thinking: Behavioral and Brain-Imaging Evidence,” Science, May 7, 1999).
26From “Where Mathematics Comes From,” Basic Books, 2000, p. 5.
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“What is particularly ironic about this is that it follows from the
empirical study of numbers as a product of mind that it is natural
for people to believe that numbers are not a product of mind!”>"

I find their general mathematical schema persuasive but their specific ac-
counting of mathematics forced and unconvincing. Compare a more traditional

view which I also espouse:

“The price of metaphor is eternal vigilance.”
(Arturo Rosenblueth and Norbert Wiener?®)

8.2 Form follows function

“The waves of the sea, the little ripples on the shore, the sweeping
curve of the sandy bay between the headlands, the outline of the
hills, the shape of the clouds, all these are so many riddles of form,
so many problems of morphology, and all of them the physicist can
more or less easily read and adequately solve.” (D’Arcy Thompson,

“On Growth and Form” 1917)%?)
A century after biology started to think physically, how will mathematical
thought patterns change?

“The idea that we could make biology mathematical, I think, per-
haps is not working, but what is happening, strangely enough, is that
maybe mathematics will become biological!” (Greg Chaitin, Inter-
view, 2000)

Consider the metaphorical or actual origin of the present ‘hot topics‘: sim-

ulated annealing (‘protein folding’); genetic algorithms (‘scheduling problems’);
neural networks (‘training computers’); DNA computation (‘traveling salesman

problems’); and quantum computing (‘sorting algorithms’).

8.3 Kuhn and Planck

Much of what I have described in detail or in passing involves changing set
modes of thinking. Many profound thinkers view such changes as difficult:
“The issue of paradigm choice can never be unequivocally settled by
logic and experiment alone.

in these matters neither proof nor error is at issue. The transfer
of allegiance from paradigm to paradigm is a conversion erperience
that cannot be forced.” (Thomas Kuhn?®)

27Lakoff and Nunez, p. 81.
28Quoted by R. C. Leowontin in Science, p.

Issue.)
29In  Philip Ball’s “The Self-Made Tapestry: Pattern Formation

http://scoop.crosswinds.net/books/tapestry.html.
30In Who got Einstein’s Office?

1264, Feb 16, 2001. (The Human Genome

in Nature,”
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and

“ .. a new scientific truth does not triumph by convincing its oppo-

nents and making them see the light, but rather because its opponents
die and a new generation grows up that’s familiar with it.”
(Albert Einstein quoting Max Planck3!)

8.4 Hersh’s humanist philosophy

However hard such paradigm shifts and whatever the outcome of these dis-
courses, mathematics is and will remain a uniquely human undertaking. Indeed
Reuben Hersh’s arguments for a humanist philosophy of mathematics, as para-
phrased below, become more convincing in our setting:

1. Mathematics is human. It is part of and fits into human culture.
It does not match Frege’s concept of an abstract, timeless, tenseless,
objective reality.

2. Mathematical knowledge is fallible. As in science, mathemat-
ics can advance by making mistakes and then correcting or even
re-correcting them. The “fallibilism” of mathematics is brilliantly
argued in Lakatos’ Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of rigor
can vary depending on time, place, and other things. The use of
computers in formal proofs, exemplified by the computer-assisted
proof of the four color theorem in 1977, is just one example of an
emerging nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic
proof all can help us decide what to believe in mathematics. Aris-
totelian logic isn’t necessarily always the best way of deciding.

5. Mathematical objects are a special variety of a social-cultural-
historical object. Contrary to the assertions of certain post-modern
detractors, mathematics cannot be dismissed as merely a new form
of literature or religion. Nevertheless, many mathematical objects
can be seen as shared ideas, like Moby Dick in literature, or the
Immaculate Conception in religion. 32

The recognition that “quasi-intuitive” methods may be used to gain math-
ematical insight can dramatically assist in the learning and discovery of math-
ematics. Aesthetic and intuitive impulses are shot through our subject, and
honest mathematicians will acknowledge their role.

31From “The Quantum Beat,” by F.G. Major, Springer, 1998.
32From “Fresh Breezes in the Philosophy of Mathematics,” American Mathematical
Monthly, August-September 1995, 589-594.
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8.5

Santayana

“When we have before us a fine map, in which the line of the coast,
now rocky, now sandy, is clearly indicated, together with the winding
of the rivers, the elevations of the land, and the distribution of the
population, we have the simultaneous suggestion of so many facts,
the sense of mastery over so much reality, that we gaze at it with de-
light, and need no practical motive to keep us studying it, perhaps for
hours altogether. A map is not naturally thought of as an aesthetic
object ...

This was my earliest, and still favourite, encounter with aesthetic philosophy.
It may be old fashioned and undeconstructed but to me it rings true:

To avoid accusations of mawkishness, I finish by quoting Jerry Fodor

8.6

And yet, let the tints of it be a little subtle, let the lines be a little
delicate, and the masses of the land and sea somewhat balanced, and
we really have a beautiful thing; a thing the charm of which consists
almost entirely in its meaning, but which nevertheless pleases us in
the same way as a picture or a graphic symbol might please. Give the
symbol a little intrinsic worth of form, line and color, and it attracts
like a magnet all the values of things it is known to symbolize. It
becomes beautiful in its expressiveness.” (George Santayana3?)

34,

113

. it is no doubt important to attend to the eternally beautiful and
true. But it is more important not to be eaten.”

A few final observations
Draw your own — perhaps literally - - -!

While proofs are often out of reach to students or indeed lie beyond present
mathematics, understanding, even certainty, is not.

Good software packages can make difficult concepts accessible (e.g., Math-
ematica and Sketchpad).

Progress is made ‘one funeral at a time’ (this harsher version of Planck’s
comment is sometimes attribute to Niels Bohr).

‘We are Pleistocene People’ (Kieran Egan).

“You can’t go home again’ (Thomas Wolfe).

33From “The Sense of Beauty,” 1896.
341n Kieran Egan’s book Getting it Wrong from the Beginning, in press.
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Frontpiece of William Blake’s Songs of Innocence and Experience
(Combined (1825) edition)
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