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1. INTRODUCTION 

T h i s  p a p e r  d e s c r i b e s  t h e  p r o g r a m m i n g  l a n g u a g e  a s p e c t s  of  a s i m u l a t i o n  l a b o r a t o r y  
n a m e d  T h i n g L a b .  T h e  p r i n c i p a l  r e s e a r c h  i ssue  a d d r e s s e d  is t h e  r e p r e s e n t a t i o n  
a n d  s a t i s f a c t i o n  of  constraints.  A c o n s t r a i n t  spec i f ies  a r e l a t i o n  t h a t  m u s t  be  
m a i n t a i n e d .  F o r  e x a m p l e ,  s u p p o s e  t h a t  a u s e r  des i r e s  t h a t  t h e  v a l u e  of  s o m e  
i n t e g e r  a l w a y s  be  d i s p l a y e d  as  a p i ece  o f  t ex t  a t  a c e r t a i n  l o c a t i o n  on  t h e  sc reen .  
I n  a c o n v e n t i o n a l  l anguage ,  one  m u s t  r e m e m b e r  to  u p d a t e  t h e  t ex t  w h e n e v e r  t h e  
va lue  of  t h e  i n t ege r  is changed ,  a n d  to  u p d a t e  t h e  i n t e ge r  if  t h e  t ex t  is ed i t ed .  In  
a c o n s t r a i n t - o r i e n t e d  s y s t e m  such  as  T h i n g L a b ,  t h e  u se r  can  spec i fy  t h e  r e l a t i o n  
b e t w e e n  t h e  t ex t  a n d  t h e  i n t ege r  a n d  l eave  i t  to  t h e  s y s t e m  to  m a i n t a i n  t h a t  
r e l a t i on .  I f  a d d i t i o n a l  c o n s t r a i n t s  a r e  p l a c e d  on  t h e  i n t e g e r  or  t h e  tex t ,  t h e  s y s t e m  
t a k e s  ca re  o f  k e e p i n g  t h e s e  sa t i s f i ed  as  well.  

T h e  n o t i o n  of  a n  object p r o v i d e s  a bas ic  o r g a n i z a t i o n a l  tool;  in p a r t i c u l a r ,  t h e  
m o d u l a r i t y  ga ined  b y  t h e  use  of  o b j e c t - o r i e n t e d  p r o g r a m m i n g  t e c h n i q u e s  is 
i m p o r t a n t  for  c o n s t r a i n t  s a t i s f ac t ion ,  w h e r e  i t  is e s sen t i a l  to  k n o w  w h a t  is a f f ec t ed  
b y  a g iven  change .  N o n p r i m i t i v e  o b j e c t s  a r e  c o n s t r u c t e d  h i e r a r c h i c a l l y  f r o m  
parts ,  w h i c h  a r e  t h e m s e l v e s  o t h e r  ob jec t s .  As  is s h o w n  below,  c o n s t r a i n t s  p r o v i d e  
a n a t u r a l  w a y  to  exp re s s  t h e  r e l a t i o n s  a m o n g  p a r t s  a n d  s u b p a r t s .  M e t h o d s  a r e  
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also described for integrating the use of constraints with inheritance hierarchies, 
allowing new kinds of objects to be described in terms of existing ones. Finally, an 
interactive, graphic user interface is described that is integrated with the con- 
straint, part-whole, and inheritance mechanisms, allowing a user to view and edit 
objects conveniently. 

The concept of constraints, combined with inheritance and part-whole hier- 
archies, is one that could add significant power to programming languages. While 
ThingLab is not a general-purpose language, many of the concepts and techniques 
described here would be useful in such a context. A promising direction for future 
research is to explore the design of a full constraint-oriented programming 
language. 

ThingLab is an extension to the Smalltalk-76 programming language [6, 7] and 
runs on a personal computer. This paper is based on the author's Stanford Ph.D. 
dissertation [2]. 

1.1 The ThingLab System 

The original question addressed by the research described in this paper is as 
follows: "How can we design a computer-based environment for constructing 
interactive, graphic simulations of experiments in physics and geometry?" Ex- 
amples of the sorts of things that a user should be able to simulate are simple 
electrical circuits and mechanical linkages. However, the underlying system 
should be general. Rather than a program with knowledge built into it about 
electrical circuit components and linkages, we envisioned a sort of kit-building 
kit, in which environments tailored for domains such as electrical circuit simula- 
tions or geometric figures could be constructed. There would thus be two kinds 
of users of the system. The first kind would employ ThingLab to construct a set 
of building blocks for a given domain; for example, for use in simulating electrical 
circuits, such a user would construct definitions of basic parts such as resistors, 
batteries, wires, and meters. The second kind of user could then employ these 
building blocks to construct and explore particular simulations. 

Another requirement on the system was that  it have an appropriate user 
interface, particularly for the second kind of user working in a particular domain. 
For example, to create a geometric object such as a triangle, the user should be 
able simply to draw it on the screen, rather than having to type in its coordinates 
or (worse) write some code. Similarly, making changes to an object should also 
be natural. To move a vertex of the triangle, the user should be able to point to 
it on the screen and drag it along with a pointing device, seeing it in continuous 
motion, rather than pointing to the destination and having the triangle jump 
suddenly, or (again, worse) typing in the coordinates of the destination. 

As specified in the above problem description, ThingLab provides an environ- 
ment for constructing dynamic models of experiments in geometry and physics, 
such as simulations of constrained geometric objects, simple electrical circuits, 
mechanical linkages, and bridges under load. However, the techniques developed 
in ThingLab have wider application and have also been used to model other sorts 
of objects, such as a graphic calculator, and documents with constraints on their 
layout and contents. Examples of the system in operation are presented in Sec- 
tion 2. 
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981. 
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1.2 Constraints 

The range of relations that can be specified in ThingLab using constraints is 
broad. Some examples of constraints that  have been defined by various users are 

(1) that  a line be horizontal; 
(2} that  the height of a bar in a bar chart correspond to an entry in a table; 
(3} that one triangle be twice as big as another; 
(4) that  a resistor obey Ohm's law; 
(5) that  a beam in a bridge obey Hooke's law; 
(6) that the gray-scale level of an area on the computer's display correspond to 

a number between zero and one; 
(7} that a rectangle on the display be precisely big enough to hold a given 

paragraph. 

The representation of constraints reflects their dual nature as both descriptions 
and commands. Constraints in ThingLab are represented as a rule and a set of 
methods that can be invoked to satisfy the constraint. The rule is used by the 
system to construct a procedural test for whether or not the constraint is satisfied 
and to construct an error expression that  indicates how well the constraint is 
satisfied. The methods describe alternate ways of satisfying the constraint; if any 
one of the methods is invoked, the constraint will be satisfied. 

It is up to the user to specify the constraints on an object, but it is up to the 
system to satisfy them. Satisfying constraints is not always trivial. A basic 
problem is that constraints are typically multidirectional. For example, the text- 
integer constraint mentioned above is allowed to change either the text or the 
integer. Thus, one of the tasks of the system is to choose among several possible 
ways of locally satisfying each constraint. One constraint may interfere with 
another; in general, the collection of all the constraints on an object may be 
incomplete, circular, or contradictory. Again, it is up to the system to sort 
this out. 

Further, the user interface as specified in the problem description demands 
that constraint satisfaction be rapid. Consider the case of the user continuously 
moving some part of a complex geometric figure. Every time the part moves, the 
object's constraints may need to be satisfied again. To meet this speed require- 
ment, constraint satisfaction techniques have been implemented that incremen- 
tally analyze constraint interactions and compile the results of this analysis into 
executable code. When possible, the system compiles code that satisfies the 
constraints in one pass. Constraint satisfaction thus takes place in two stages: 
there is an initial planning stage, in which a constraint satisfaction plan is 
formulated and compiled; then at run time this compiled code is invoked to 
update the object being altered. 

Constraint representation is described in Section 4; constraint satisfaction is 
discussed in Section 5. 

1.3 Object-Oriented Language Techniques 

Smalltalk, in which ThingLab is written, is a language based on the idea of 
objects that  communicate by sending and receiving messages. This object-cen- 
tered factorization of knowledge provides one o~'the basic organizational tools. 
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For example, in representing a geometric construction, the objects used in the 
representation are things such as points, lines, and triangles. This provides a 
natural way of bundling together the information and procedures relevant to each 
object. Each object holds its own state and is also able to send and receive 
messages to obtain results. 

Object descriptions and computational methods are organized into classes. 
Every object is an instance of some class. In broad terms, a class represents a 
generic concept, while an instance represents an individual. A class holds the 
similarities among a group of objects; instances hold the differences. More 
specifically, a class has a description of the internal storage required for each of 
its instances and a dictionary of messages that  its instances understand, along 
with methods (i.e., procedures) for computing the appropriate responses. An 
instance holds the particular values that distinguish it from other instances of its 
class. 

A new class is normally defined as a subclass of an existing class. The subclass 
inherits the instance storage requirements and message protocol of its superclass. 
It may add new information of its own and may override inherited responses to 
messages. 

One of the important features of SmaUtalk is the sharp distinction it makes 
between the inside and the outside of an object. The internal aspects of an object 
are (1) its class and (2) its instance fields and their contents; the external aspects 
are the messages that it understands and its responses. Since other parts of the 
system and the user interact with the object by sending and receiving messages, 
they need not know about its internal representation. This makes it easier to 
construct modular systems. For example, the class Rectangle defines the message 
center. It makes no difference to the user of this message whether a rectangle 
actually has a center stored as one of its instance fields or whether the center is 
computed on demand (in fact, it is computed on demand). 

ThingLab extends Smalltalk in a number of respects. The principal extension 
is the inclusion of constraints and constraint satisfaction mechanisms. The other 
significant extensions are provision for multiple superclasses rather than just a 
single superclass; a part-whole hierarchy with an explicit, symbolic representation 
of shared substructure; the use of paths for symbolic references to subparts and 
prototypes for the representation of default instances; and a facility for class 
definition by example. The latter extensions are discussed in Section 3. 

Object-oriented languages generally emphasize a very localized approach to 
interaction within a program: an object interacts with other parts of the system 
only by sending and receiving messages to other objects that  it knows about. On 
the other hand, it is very difficult to do constraint satisfaction in a purely local 
way: there are problems of circularity and the like that are better spotted by a 
more global analysis. There is consequently a tension between the object and 
constraint metaphors; the integration of these approaches in ThingLab is one of 
its points of interest. 

1.4 The User Interface 

Considerable effort has been spent on designing a good user interface to the 
system. Some quite general graphic editing tools are provided, and purely graphic 
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objects, such as a triangle, can be constructed using graphic techniques only. The 
user interface allows objects to be viewed in other ways as well, for example, as 
a structural description or as a table of values. 

The user interface allows smooth access to the constraint mechanism and to 
the inheritance and part-whole hierachies. Thus, when the user edits an object, 
say by selecting a point and moving it with the cursor, the constraint satisfaction 
mechanism is invoked automatically to keep all the constraints satisfied. New 
classes may be defined by example, that is, by constructing a typical instance. 
The structural descriptions provided by the interface present the part-whole 
hierarchy, the constraints, and so forth. 

1.5 Relation to Other Work 

One of the principal influences on the design of ThingLab has been Sketchpad 
[16], a general-purpose system for drawing and editing pictures on a computer. In 
Sketchpad the user interacts directly with the display, using a light pen for 
adding, moving, and deleting parts of the drawing. ThingLab has adopted much 
of Sketchpad's flavor of user interaction, and the Sketchpad notions of constraints 
and of recursive merging have been central to its design. ThingLab has extended 
Sketchpad's constraint mechanism in a number of respects, most notably by 
integrating it with an inheritance hierarchy, by allowing local procedures for 
satisfying a constraint to be included as part of its definition, and by incrementally 
compiling the results of constraint satisfaction planning into Smalltalk code. 

The other principal ancestor of ThingLab is Smalltalk. Not only is ThingLab 
written in Smalltalk, but  the important ideas in SmaUtalk--objects, classes and 
instances, and messages--are all used directly in ThingLab. As prevously de- 
scribed, ThingLab adds a number of new features to the language. Smalltalk has 
proved to be an excellent language to support research of this sort, in terms of 
both linguistic constructs and programming environment. 

ThingLab is also related to some very interesting work on constraint languages 
done at M.I.T. by Guy Steele and Gerald Sussman [13]. The ThingLab represen- 
tation of an object in terms of parts and subparts, with explicit representation of 
shared parts, is nearly isomorphic to the representation independently developed 
by Steele and Sussman. Their system has a built-in set of primitive constraints, 
such as adders and multipliers, from which compound constraints can be con- 
structed. This is similar to the method used in the ThingLab calculator example 
described in Section 2.2. To handle constraints that cannot be satisfied using a 
one-pass ordering, they employ multiple redundant views that can cooperate in 
solving the problem; in their previous work, symbolic algebraic manipulation 
techniques were employed. Their use of multiple views has been adopted in 
ThingLab. Among the differences between the two systems is that Steele and 
Sussman's language retains dependency information, that is, a record of the 
justifications for each conclusion, for producing explanations and for implement- 
ing efficient backtracing when search is needed (dependency-directed backtrack- 
ing}. On the other hand, their system has no graphics capabilities. Also, ThingLab 
has two significant advantages in regard to efficiency. First, it compiles plans into 
the base language, whereas in Steele and Sussman's system constraint satisfaction 
is done interpretively. Compilation is essential if constraint languages are to 
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become practical tools. Second, ThingLab has a class-instance mechanism, in- 
cluding multiple inheritance, that allows information common to several objects 
to be factored out, while their system uses a macro facility for abstraction, which 
has the disadvantage that a complete copy of the constraint network is required 
for each instance. 

Steele's recent Ph.D. dissertation [12], completed after the work described 
above and the author's own dissertation, gives a clear statement of design goals 
for a complete, general-purpose language organized around constraints and de- 
scribes further progress toward implementing such a language. The system deals 
explicitly with the problem of behaving properly in the presence of contradictions, 
which is important for the interactive construction of large systems, and further 
develops the notions of assumptions and defaults. While its usual mode of 
operation is interpretive, it also includes a constraint compiler like that  used in 
ThingLab. 

Other related work on languages includes SIMULA [3], which is one of the 
principal ancestors of Smalltalk. The distinction that Smalltalk makes between 
the inside and the outside of an object is also closely related to the data- 
abstraction mechanisms in languages such as MESA [10], CLU [9], and AL- 
PHARD [17]. These languages separate the interface specification of a type from 
its internal implementation, just as Smalltalk distinguishes the external message 
protocol of an object from its internal aspects. Thus, in programs in these data- 
abstraction languages, changes to the implementation of a type (but not its 
interface) do not affect the users of that type; so more modular systems result. 

ABSET [4] is a set-oriented language developed at the University of Aberdeen 
with a number of constraint-like features; for example, given the statement A + 
B = 3 AND A = 1, it can deduce B's value. Also, it emphasizes the avoidance of 
unnecessary ordering restrictions in the statement of a program. The ACTOR 
languages [5] use and extend the notion of objects that  communicate by passing 
messages. Representation languages for artificial intelligence work, such as KRL 
[1], develop the notion of multiple inheritance. ThingLab's facility for class 
definition by example is related to work on programming by example [8, 11]. 

There is a large body of work in artificial intelligence on reasoning and problem- 
solving systems of various kinds. Most of these systems are concerned with more 
complex problem-solving tasks than those tackled in ThingLab. By contrast, in 
ThingLab much of the emphasis has been on finding ways of generalizing plans 
and compiling them as procedures so that  they may be used efficiently in a 
graphic environment. However, the problem-solving techniques developed in 
these other systems may well prove useful if ThingLab's constraint satisfaction 
abilities are to be strengthened. 

This artificial intelligence work includes a number of systems that  use con- 
straints and constraint satisfaction as such. Steels [14] has constructed a reasoning 
system, modeled on a society of communicating experts, that  uses propagation of 
constraints in its reasoning process. Unlike either ThingLab or Steele and 
Sussman's system, Steels' system is description-oriented and does not require 
that constraint satisfaction yield a unique value. Stefik [15] uses the technique of 
constraint posting in MOLGEN, a system for planning experiments in molecular 
genetics. His system uses hierarchical planning and dynamically formulates and 
propagates constraints during its planning process. 
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2. SOME EXAMPLES 

Before plunging into a technical  discussion of the  system, it is useful to present  
some examples  of its operation.  A brief  descript ion of the  operat ion of the 
Th ingLab  user interface is needed first. T h e  user  interacts  with Th ingLab  via a 
window, a rec tangular  area  on the compute r ' s  display. T h e  window notion is 
central  to Smal l ta lk ' s  user interface philosophy. The  Th ingLab  window described 
here  is typically one of several  windows on the screen, with other  windows being 
available for debugging, editing sys tem code, f reehand sketching, and so on. 

The  Th ingLab  window is divided into five panes: the class pane, the format 
pane, the messages pane, the arguments pane, and the picture pane. T h e  class 
pane  is a menu of names  of classes tha t  m a y  be viewed and edited. Once a class 
has  been  selected, a menu  of formats  in which it can display itself appears  in the 
formatpane immedia te ly  to the right. The  class shows itself in the chosen fo rmat  
in the  large picture pane at  the b o t t o m  of the window. 

The  two remaining panes, messages  and arguments ,  contain menus  used for 
graphic editing of the class' prototype.  All editing operat ions are per formed by  
sending a message to the object  being edited; the Th ingLab  window allows us to 
compose  and send certain kinds of editing messages  graphically. T h e  messages  
pane  contains a list of message names,  such as insert and delete, while the 
a rguments  pane  contains a list of possible classes for the message argument .  T h e  
a rgumen t  itself will be an instance of tha t  class, e i ther  newly created or selected 
f rom among  the  par t s  in the picture.  

T h e  user  communica tes  with the  sys tem pr imar i ly  by  means  of a mouse and 
secondari ly by  use of a keyboard.  T h e  mouse  is a small  box-shaped object  tha t  
can be moved  abou t  on the user 's  desk top; as it moves,  its relative posit ion is 
t racked by a cursor on the  screen (the arrow in the illustrations). I f  some graphic 
object  on the screen is "a t t ached"  to the  cursor, t ha t  object  moves  as well. The  
mouse  also has  three  bu t tons  on it, which serve as control keys. 

In  the  m e n u  panes,  a black str ipe indicates a selected item. Thus,  in Figure 1, 
Triangle and prototype's picture have  been selected. Since a menu  m a y  be too 
long to fit in its pane, all the  menus  can be scrolled up or down so tha t  the  user 
can view and select any  of the  items. T o  make  a selection, the user posit ions the  
cursor over  the  i t em to be selected and pushes  a bu t ton  on the mouse.  

2.1 A Geometric Example 

As an in t roductory  example,  we use Th ingLab  to construct  a quadri la teral  and to 
view it in several  ways. We then  use the  sys tem to demons t ra t e  a t heo rem abou t  
quadrilaterals.  

2.1.1 Defining the Class of Quadrilaterals. First, we define the class of quad- 
rilaterals. New classes are always defined as a subclass of  some more  general  
class; if nothing be t t e r  is available, they  can be made  subclasses of class Object,  
the  mos t  general  class in the system. In  this case, we create  the new class 
Quadri la tera l  as a subclass of  Geometr icObject .  

One of the impor t an t  features  of the Th ingLab  env i ronment  is tha t  the user 
can define classes by example.  To  be more  precise, the s t ructural  aspects  of a 
class (its pa r t  descript ions and constraints)  m a y  be specified incrementa l ly  by  
editing its pro to typica l  instance. We define the  class Quadri la teral  in this way. 
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Fig. 1. P a n e s  of  t h e  T h i n g L a b  window.  

First, we ask to view the picture of the prototype Quadrilateral. So far, the 
prototype has no parts, and so its picture is blank. We now edit the prototype by 
adding and connecting four sides. Using the mouse, we select the word insert in 
the messages pane and the word Line in the arguments pane. When we move the 
cursor into the bottom pane, a blinking picture of a line appears, attached to the 
cursor by one of its endpoints. As the cursor is moved, the entire line follows. 
When the endpoint attached to the cursor is in the desired location, we press a 
button. This first endpoint stops moving, and the cursor jumps to the second 
endpoint. The second endpoint follows the cursor, but this time the first endpoint 
remains stationary. We press the button again to position the second endpoint 
(Figure 2). 

We insert another line in the same way. To connect the new line to the first, we 
position the endpoint attached to the cursor near one of the endpoints of the first 
line. When the two points are close together, the moving point locks onto the 
stationary point, and the line stops blinking. This indicates that  the two points 
will merge if the button is pressed. We press the button and the points merge. 
The two lines now share a common endpoint. Also, a record of the merge is kept 
by the class Quadrilateral. Similarly, we position the other endpoint and insert 
the remaining two lines (Figure 3). 

During this editing session, the system has been updating the structure common 
to all quadrilaterals that  is stored in the class Quadrilateral, as well as saving the 
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particular locations of the prototype's sides. To see the structure of the class 
Quadrilateral, we select structure in the menu of formats. The class responds by 
listing its name, superclasses, part descriptions, and constraints {Figure 4). We 
may also view the values stored in the prototype by selecting prototype's values 
(Figure 5). 

2.1.2 Demonstrating a Geometry Theorem. We may now use the new class in 
demonstrating a geometry theorem. The theorem states that, given an arbitrary 
quadrilateral, if one bisects each of the sides and draws lines between the adjacent 
midpoints, the new lines form a parallelogram. 

To perform the construction, we make a new class named QTheorem. As 
before, we create it as a subclass of GeometricObject and define it by example. 
We first add an instance of class Quadrilateral as a part. We select insert and 
Quadrilateral. As we move the cursor into the bottom pane, a blinking picture 
of a quadrilateral, whose shape has been copied from the prototype, appears. We 
position the quadrilateral and press a button. 

The next step is to add midpoints to the sides of the quadrilateral. To do this, 
we use four instances of the class MidPointLine. This class specifies that  each of 
its instances has two parts: a line and a point. In addition, it has a constraint that, 
for each instance, the point be halfway between the endpoints of the line. As we 
insert each instance of MidPointLine, we move it near the center of one of the 
sides of the quadrilateral and merge the line part of the MidPointLine with the 
side of the quadrilateral (Figure 6). The last step is to add four lines connecting 
the midpoints to form the parallelogram. 

Once the construction is complete, we may move any of the parts of the 
prototype QTheorem and observe the results. In general, it is not enough for the 
system simply to move the selected part; because of the constraints we have 
placed on the object, other parts, such as the midpoints, may need to be moved 
as well to keep all the constraints satisfied. Suppose we want to move a vertex. 
We select the message move and the argument Point. A blinking point appears 
in the picture that is attached to the cursor. We position it over the vertex to be 
moved and hold down a button. The vertex follows the cursor until the button is 
released (Figure 7). (The first time we try to move the vertex, there will be a long 
pause as the system plans how to satisfy the constraints.) We notice that  indeed 
the lines connecting the midpoints form a parallelogram no matter  how the 
quadrilateral is deformed. The theorem remains true even when the quadrilateral 
is turned inside out! 

2.1.3 Constraint Satisfaction. The user described how QTheorem should be- 
have in terms of the midpoint constraint and the various merges, but not by 
writing separate methods for moving each part of QTheorem. The midpoint 
constraint (as defined by an experienced user) describes methods that can be 
invoked to satisfy itself. Three such methods were specified: the first asks the 
midpoint to move to halfway between the line's endpoints; the second asks one 
of the line's endpoints to move; and the third asks the other endpoint to move. It 
was up to QTheorem to decide which of these methods to invoke, and when and 
in what order to use them. 

In general, the constraints on an object might specify its behavior incompletely 
or redundantly, or they might be unsatisfiable. QTheorem, for example, is 
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Fig. 6. Adding a midpoint .  

underconstrained. The behavior we observed was only one way of moving the 
vertex while satisfying the constraints. Two other possibilities would have been 
for the entire object to move, or for the midpoints to remain fixed while the other 
vertices moved. Neither of these responses would have been as pleasing to us as 
human observers. (If we had wanted the entire object to move, we would have 
specified m o v e  Q T h e o r e m  instead.) Therefore, besides the more mathematical 
techniques for finding s o m e  way of satisfying its constraints, or for deciding that  
they are unsatisfiable, an object can also take the user's preferences into account 
in deciding its behavior. In this case, the midpoint constraint specified that the 
midpoint was to be moved in preference to one of the endpoints of the line. 

We might override the preference specified in the midpoint constraint by 
anchoring the midpoints, as in Figure 8. (Anchor is a subclass of Point, with an 
added constraint that  its instances may not be moved during constraint satisfac- 
tion.) 

2.2 Constructing a Program for a Graphic Calculator 

In this second example, we construct some graphic programs for a simulated 
calculator. In the process, we use a number of classes from a "calculator kit." One 
simple but important class is NumberNode. An instance of NumberNode has two 
parts: a real number and a point. Its purpose is to provide a graphic representation 
of a register in the calculator. Another class is NumberLead, consisting of a 
number node and an attached line. As with leads on electrical components, it is 
used to connect parts of the calculator. Also, classes that  represent the various 
arithmetic operations have been defined. There is a general class Number- 
Operator, whose parts are a frame containing the operator's symbol and three 
number leads that  terminate on the edges of the frame. Four subclasses of 
NumberOperator are defined, namely, Plus, Minus, Times, and Divide. Plus, for 
example, has three number leads with number nodes at the ends, which are 
inherited from NumberOperator (Figure 9). It has an added constraint that  the 
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F i g .  9.  P i c t u r e  o f  t h e  p r o t o t y p e  f o r  P l u s .  

number  at  the node on the right always be the sum of the numbers  at  the leads 
on the left. The  classes for Minus, Times, and Divide proto types  have been 
defined analogously. 

To  view and edit a number  at  a node, the class NumberPr in t e r  has been 
constructed.  Its parts  are a number  lead and an editable piece of text. Also, it has 
a constraint  tha t  the number  at its node correspond to tha t  displayed in the text. 
If the node's number  changes, the text  is updated; if the text  is edited, the node's  
number  is changed correspondingly. A special kind of NumberPr in t e r  is a Con- 
stant. For  constants, the constraint  is unidirectional. Th e  text  may  be edited, 
thus changing the number;  but  the number  may  not  be changed to alter the text. 

2.2.1 Constructing a Celsius-to-Fahrenheit Converter. Using these parts, let  
us construct  a Celsius-to-Fahrenheit  converter.  After creating a new class, 
Tempera tureConver te r ,  we select insert and Times. As we move the cursor into 
the picture pane, a blinking picture of an instance of the class Times appears. We 
position the frame tha t  holds the multiplication symbol, and then  the three  nodes. 
Next, we insert  a Plus operator  in the same manner,  connecting its addend node 
to the product  node of the t imes operator.  (The connect ion is made  by merging 
the nodes, in the same way tha t  the endpoints  of the sides of the quadri lateral  
were connected.) Finally, we insert  two instances of Constant,  connecting them 
to the appropriate  nodes of the operators.  We then  invoke the edit text message 
and change the constants  to 1.8 and 32.0. The  result  is shown in Figure 10. 

Once the conver ter  has been defined, we may  use it as a par t  of o ther  objects 
(i.e., as a subroutine).  As an example, we define a new class Print ingConverter .  
We add an instance of Tempera tu reConver t e r  as a part ,  and also two instances 
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of NumberPr in t e r  to display the Celsius and Fahrenhei t  t empera tures  (Figure 
11). If  we edit the Celsius temperature ,  the Pr int ingConver ter  satisfies its con- 
straints by updating the numbers  at  its nodes and the Fahrenhe i t  t empera tu re  
displayed in the frame on the right. 

However,  because of the mult iway nature  of the constraints, the device works 
backward as well as forward! Thus,  we can edit the Fahrenhe i t  temperature ,  and 
the Celsius t empera ture  is updated  correspondingly (Figure 12). This  demon- 
strates the need for the special class Constant: without  it, the system could 
equally well have satisfied the constraints by changing one of these coefficients 
ra ther  than  the temperatures .  

We may also connect  the converter  to o ther  types of i npu t /ou tpu t  devices, for 
example, a simulated thermometer .  We can select m o v e  and P o i n t  and grab 
ei ther  of the columns of mercury  with the cursor. When we move one of the 
columns up or down, the other  column moves correspondingly {Figure 13). 

2.2.2 S o l v i n g  a Q u a d r a t i c  E q u a t i o n .  After experimenting with the converter,  
we might  t ry  building a more complex device, such as the network for solving 
quadratic equations shown in Figure 14. 

When we edit any of the constants, the value in the frame on the left changes 
to satisfy the equation. In the picture, the coefficients of the equat ion x 2 - 6x + 
9 = 0 have been entered, and a solution, x = 3, has been found. This  case is unlike 
the tempera ture  converter  examples: the system was unable to find a one-pass 
ordering for solving the constraints and has resorted to the relaxation method.  
Relaxation will converge to one of the two roots of the equation, depending on 
the initial value of x. 

Now let us t ry  changing the constant  te rm c from 9 to 10. This  time, the system 
puts up an error  message, protest ing tha t  the constraints cannot  be satisfied. 
Some simple algebra reveals tha t  the roots  of this new equat ion are complex; but  
the number  nodes hold real numbers,  and so the system was unable to satisfy the 
constraints. 

A be t te r  way of finding the roots of a quadrat ic  equat ion is to use the s tandard 
solution to the quadrat ic  equat ion a x  2 + b x  + c = 0, namely, x -- ( - b  + 
{ b 2 - 4ac) i) / 2a. The  system can be told about  this canned formula by defining 
a class Quadrat icSolver  whose parts  include four NumberNodes  a, b, c, and x and 
a constraint  tha t  x -- ( - b  + (b 2 - 4ac) ½) / 2a. {Since the class NumberNode  does 
not  allow multiple values, in the QuadraticSolver 's  constraint  one of the roots 
has been chosen arbitrari ly as the value for x. A more general solution would be 
to define a class Mult ipleRoots  and set up the constraint  so tha t  it de termined 
both  the number  of roots and their  values.) 

We can insert an instance of Quadrat icSolver  into the network,  merging its 
number  nodes with the appropriate  existing nodes in the network (Figure 15). 
Now, the system can find a simple one-pass ordering for satisfying the constraints  
and does not  need to use relaxation. 

In inserting an instance of Quadrat icSolver  into the network, we have added 
another  view of the constraints  on x. In the sense tha t  the permissible values of 
x are the same with or wi thout  it (ignoring the mult iple-root  problem),  the new 
constraint  adds no new information. However,  Quadrat icSolver 's  constraint  is 
computat ional ly  be t te r  suited to finding the value of x. This  technique of 
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introducing multiple redundant constraints on an object is an important way of 
dealing with circularity. 

3. OBJECTS 

3.1 The Part-Whole Relationship 

In ThingLab, an object is composed of named parts, each of which is in turn 
another object. The parts are thus composed of subparts, and so on. The recursion 
stops with primitive objects such as integers and strings. Consider a line: 

Line 
pointl: a Point 

x: 50 
y: 100 

point2: a Point 
x: 200 
y: 200. 

The line is composed of two parts that are its endpoints. Each endpoint is in turn 
composed of an x and a y value; these are primitive objects {integers}. An object 
is sometimes referred to as the owner  of its parts. For example, the above line 
owns its endpoints. 

3.1.1 Par t  Descriptions. A PartDescript ion is an object that  describes the 
common properties of the corresponding parts of all instances of a class. Every 
class has a list of part descriptions, one for each part owned by its instances. The 
following things are associated with each part description: 

n a m e  an identifier; 
constraints the set of constraints that apply to the corresponding part of each 

instance; 
merges the set of merges that apply to the corresponding part of each 

instance; 
class the class of the corresponding part of each instance. This is more 

restrictive than in Smalltalk, where the class of the contents of an 
instance field is not declared. Imposing this restriction makes the job 
of constraint satisfaction easier. 

When a part description is added to a class, messages are compiled automatically 
in the class' message dictionary to read and write the part. 

For example, the class Line has two part descriptions that describe the parts of 
each instance of Line. The first part description has the name poin t l .  It has no 
constraints or merges, and it specifies that  the po in t l  part of each line be an 
instance of class Point. The other part description is defined analogously. For a 
class that specifies some constraints, for example, the class HorizontalLine, the 
po in t l  part description would also indicate that  there was a constraint that 
applied to the po in t l  part of each of its instances. 

3.1.2 Insides  and  Outsides. As described in Section 1.3, one of the important 
features of Smalltalk is the sharp distinction it makes between the inside and the 
outside of an object. In ThingLab, the notion of having a part has implications 
for both the internal and external aspects of the object that  owns the part. 
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Internally, the object must have an instance field in which the part is stored, as 
well as a corresponding part description in its class; externally, the object should 
understand messages to read and write the part. However, these internal and 
external aspects are separate. A virtual part, as proposed in [2], is an example of 
the use of this separation. Such a part would have all the external manifestations 
of a part, that  is, messages to read and write it. Internally, however, there would 
be no corresponding field; rather, the part would be computed as needed. 
(Smalltalk already has virtual parts; the proposed mechanism would add the 
necessary declarative superstructure so that the constraint satisfaction mecha- 
nism could know about them.) 

3.1.3 Paths. A path is a ThingLab object that represents a symbolic reference 
to a subpart. Each path is a hierarchical name, consisting of a list of part names 
that  indicates a way to get from some object to one of its subparts. The path 
itself does not own a pointer to the object to which it is applied; this must be 
supplied by the user of the path. Thus the same path can be used to refer to the 
corresponding subpart of many different objects. For example, pointl x is a path 
to get to the x value of the first endpoint of any line. Typically, the path as such 
is used only during compilation; this path would compile code that  sent the 
message pointl to a line and then sent the message x to the result. 

While the definition of a path is simple, the idea behind it has proved quite 
powerful and has been essential in allowing the constraint- and object-oriented 
metaphors to be integrated. As mentioned above, Smalltalk draws a distinction 
between the inside and the outside of an object. The notion of a path helps 
strengthen this distinction by providing a protected way for an object to provide 
external references to its parts and subparts. For example, if a triangle wishes to 
allow another object to refer to one of its vertices, it does so by handing back a 
path such as side2 pointl, rather than by providing a direct pointer to the vertex. 
If this other object wants to change the location of the vertex, it must do so by 
routing the request through the triangle, rather than by simply making the 
change itself. This allows the triangle to decide whether or not to accept the 
change; if it does accept it, it knows what has been altered, so that it can update 
its other parts as necessary to satisfy all its constraints. 

In addition to these semantic considerations, a major pragmatic benefit of this 
discipline is that  no backpointers are needed. (If the triangle did hand out a direct 
pointer to its vertex, the vertex would need a pointer back to the triangle so that  
it could inform the triangle when it changed.} Access to parts is somewhat slower 
using this technique, since each access involves following a path. However, an 
access via a path can often be moved out of the inner loops by the constraint 
compiler. Another pragmatic consideration is that  constraints and merges can be 
represented symbolically using paths, so that  they apply to all instances of a class, 
rather than to a particular instance. This allows the system to compile constraint 
satisfaction plans in the form of standard Smalltalk methods. 

ThingLab's constraint satisfaction techniques all depend on noticing when one 
constraint applies to the same subpart as another. Paths are used to specify 
which parts or subparts of an object are affected by the constraint. Two paths 
overlap if one can be produced from the other by adding zero or more names to 
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the end of the other's list. The following paths overlap the path side1 point1: 

sidel pointl x 
sidel pointl 
sidel 
( the empty path) 

The following paths do not overlap sidel pointl: 

sidel point2 
side2 

To test if two constraints apply to the same subpart, the system checks to see if 
any of their paths overlap. 

3.2 Inheritance 

A new class may be defined as a subclass of one or more existing classes. The 
subclass inherits the part descriptions, constraints, merges, and message protocol 
of its superclasses. It may add new information of its own, and it may override 
inherited responses to messages. Every class (except class Object) must be a 
subclass of at least one other class. 

The superclasses of an object are represented by including an instance of each 
superclass as a part of the object. The field descriptions for such parts are 
instances of SuperclassDescription, a subclass of PartDescription. These parts 
may have constraints and merges applied to them in the usual way; among other 
things, this allows the user to indicate that parts inherited from several super- 
classes are in fact to be represented by only a single part in the subclass. The 
only difference between these instances of superclasses and ordinary parts is that  
messages are forwarded to them automatically. (The actual implementation is 
somewhat more arcane, to take advantage of the efficient single-superclass 
mechanism built into Smalltalk. However, the effect is as described, and the 
reader should think of it in this way.) 

3.2.1 Class Object. The most general class in both Smalltalk and ThingLab is 
class Object. As part of the ThingLab kernel, a large number of methods have 
been added to this class. These methods provide defaults for adding or deleting 
parts, merging parts, satisfying constraints, showing in a ThingLab window, and 
so on. In general, these methods treat an object as the sum of its parts. For 
example, to show itself, an object asks each of its parts to show; to move itself by 
some increment, the object asks each of its parts to move by that  increment. This 
strict hierarchy is, however, modified by the object's constraints and merges. 
Thus, when an object decides exactly how to move, it must watch for overlap 
between its parts due to merges, and it must also keep all its constraints satisfied. 

3.2.2 Message Behavior. When an object receives a message, the object's class 
first checks its own message dictionary. If a corresponding method is found, that  
method is used. If not, the class asks each of its superclasses if any of them has 
an appropriate method. In turn, each superclass, if it does not itself define the 
method, will ask its superclasses, and so forth, thus implementing inheritance 
through multiple levels of the hierarchy. If there is a single inherited method for 
that message, then that method is used. If there is no method, or if there are 
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several conflicting inherited methods, an error occurs. Note that the overriding 
of inherited methods is still allowed; it is an error only if a class with no method 
of its own inherits different methods via two or more of its immediate superclasses. 
If the user wants to choose among conflicting messages, or to combine them 
somehow, an appropriate method for doing this should be defined in the subclass. 
To avoid this search the next time the message is received, the class automatically 
compiles a m e s s a g e  f o r w a r d e r  that  will intercept that message in the future and 
relay it directly to the appropriate superclass part. 

As an example of the use of multiple superclasses, suppose that a user has 
available a class of horizontal lines and another class of lines of constant length. 
The class of horizontal lines of constant length may then be defined as a subclass 
of both of these. 

Multiple superclasses also provide a way of implementing multiple represen- 
tations of objects. For example, suppose the user desires to represent a point in 
both Cartesian and polar forms. This may be done as follows: 

Class CartesianPoint 
Superelasses 

GeometricObject  
Part Descriptions 

x: a R e a l  
y: a R e a l  

Class PolarPoint 
Superelasses 

GeometricObject  
Part Descriptions 

r: a R e a l  
theta: a R e a l  

Class MultiplyRepresentedPoint 
Superclasses 

C: Car tes ianPoin t  
P: Po larPo in t  

Constraints 
C = P asCartes ian  

C <-- P asCartes ian  
P <-- C asPo lar  

The constraint on MultiplyRepresentedPoint keeps the parts representing the 
two superclasses in coordination. It makes use of an auxiliary message to 
PolarPoint that  returns its Cartesian equivalent, and of an analogous message to 
CartesianPoint. 

3.2.3 P r o t o t y p e s .  For a given class, a prototype is a distinguished instance that  
owns default or typical parts. All classes understand the message p r o t o t y p e  and 
respond by returning their prototypical instance. If the user does not specify 
otherwise, the prototype has nil in each of its instance fields. However, if the user 
has defined the class by example, the prototype holds the particular values from 
the example. These values may also be set by writing an initialization message. 

Prototypes provide a convenient mechanism for specifying default instance 
values. Thus, in the introductory example, when a new line was being inserted 
into the quadrilateral, its initial length and orientation were copied from the 
prototype Line. Such defaults are essential in graphic editing, since every object 
needs s o m e  appearance. 
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More important, a prototype serves as a representative of its class. ThingLab 
distinguishes between messages that have no side effects for the receiver (read- 
only messages}, messages that  alter the values stored in the receiver, and messages 
that alter the receiver's structure. Any instance accepts read-only or value- 
altering messages, but only prototypes accept structure-altering messages. The 
reason is that this latter type of message affects the class. The prototype is in 
charge of its class and is willing to alter it, but, for instances other than the 
prototypical one, the class is read-only. Requests to move a side of a polygon, or 
even turn it inside out, are examples of value-altering messages. On the other 
hand, requests to add or delete a side, edit a constraint, or merge two points are 
structure-altering messages. 

3.2.4 Defining Classes by Example. When the user defines a class by example, 
the editing messages are always sent to the prototype, rather than sometimes to 
the class and sometimes to one of its instances. The prototype takes care of 
separating the generic information that applies to all instances of its class from 
the specific information that  applies only to the default values that it holds in its 
fields. With its class it associates the number and class of the parts, the con- 
straints, and the merges. With its own instance fields it associates the default 
values for its parts. 

It is not possible to define all classes by example; some, such as classes for new 
constraint types and abstract classes like GeometricObject, must be entered by 
writing an appropriate Smalltalk class definition. In general, there are many 
possible classes that could be abstracted from a given example; which one should 
be abstracted depends on the user's purposes. The ThingLab facility for definition 
by example provides a reasonable default, but it is not a general solution to this 
problem. If the user wants some other sort of class, he or she should write an 
appropriate definition. 

4. CONSTRAINT REPRESENTATION 

This section describes the representation of ThingLab constraints. To support 
constraints, some new kinds of objects were implemented. In Smalltalk, objects 
communicate by sending and receiving messages; an object's response to a 
message is implemented by a method (i.e., a procedure). ThingLab objects are 
described that stand for Smalltalk messages and methods. The purpose of this 
additional mechanism is to provide tools for reasoning about messages and 
methods, and in particular about the interactions among messages and con- 
straints. 

4.1 Message Plans 

A message plan is an abstraction of the Smalltalk notion of sending a message. A 
message plan does not stand for a particular act of sending a message; rather, it 
is a template for any number of messages that  might be sent. A message plan is 
itself an object: an instance of class MessagePlan. The parts of a message plan 
include a receiver, a path, an action, and zero or more arguments. The receiver 
is normally a particular object, although for some uses it may be nil or may be a 
prototype representing any instance of a class of objects that  might receive the 
message. The path tells how to get to one of the receiver's subparts, which will be 
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called the target of the message plan. The action is a selector for a Smalltalk 
method understood by the target. The arguments may be either actual or 
symbolic. Actual arguments are pointers to other objects; symbolic arguments 
are simply names (strings). The arguments correspond to the arguments passed 
at run time to the Smalltalk method invoked by the action. For example, here is 
a message plan asking a triangle to move one of its vertices right by ten screen 
dots: 

triangle side1 point2 moveby: 10@0. 

The receiver is triangle, the path is side1 point2, the action is moveby:, and the 
argument is the point 10@0. 

An important use of message plans is to describe the methods for satisfying a 
constraint. If a message plan is used in this way, the plan will have several 
Boolean flags and a pointer to the constraint that  generated it, in addition to the 
parts listed above. The flags are the following: 

uniqueState true if there is only one state of the target that  will satisfy the 
constraint (given that  all other parts of the receiver are fixed). 
See Section 4.3.2 below; 

referenceOnly true if the action described by the message plan only refer- 
ences its target, rather than altering it; 

compileTimeOnly true if the message plan is used only during constraint satis- 
faction planning and not in producing executable code. 

4.2 Methods 

In ThingLab, an explicit class Method has been defined. The parts of a method 
are a list of keywords, a matching list of symbolic arguments, a list of temporaries, 
and a procedural body. The selector for the method is constructed by concate- 
nating the keywords. These parts are the same as those of a Smalltalk method, 
the only difference being that  in Smalltalk the method is stored as text, and the 
parts must be found by parsing the text. One reason for defining an explicit class 
in ThingLab is to simplify access to the parts of a method. This is useful because 
methods are often generated by the system rather than being entered by the user, 
with different parts of the method coming from different parts of the system. 
Also, some methods have their own special properties. For example, all the 
methods that  an object has for showing itself are indexed in a table used by the 
ThingLab user interface. 

After a ThingLab method has been constructed, it is usually asked to add itself 
to some class' method dictionary. In the implementation, the method does this 
by constructing a piece of text and handing it to the regular Smalltalk compiler. 
The SmaUtalk compiler in turn produces a byte-coded string for use at run time 
and indexes it in the class' method dictionary. 

4.3 The Structure of a Constraint 

As described in Section 1, a constraint represents a relation among the parts of 
an object that  must always hold. Constraints are themselves objects. New kinds 
of constraints are defined by specifying both a rule and a set of methods for 
satisfying the constraint. Adding or modifying a constraint is a structural change; 
so only prototypes accept new constraints or allow existing ones to be edited. 
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Constraints are indexed in several tables in the prototype's class for easy retrieval 
during constraint satisfaction. 

The constraint's methods describe alternate ways of satisfying the constraint; 
if any one of the methods is invoked, the constraint will be satisfied. These 
methods are represented as a list of instances of class Method. The constraint 
also has a matching list of instances of MessagePlan. Each message plan specifies 
how to invoke the corresponding method and describes its effects. When the 
constraint satisfier decides that  one of the methods will need to be invoked at run 
time, the message plan that  represents that  method is asked to generate code 
that will send the appropriate Smalltalk message to activate the method. Exactly 
which methods are used depends on the other constraints and on the user's 
preferences as to what should be done if the object is underconstrained. 

The rule is used to construct a procedural test for checking whether or not the 
constraint is satisfied and to construct an error expression that  indicates how 
well the constraint is satisfied. Both the test and the error expression are instances 
of class Method. These methods are constructed in a fairly simple-minded way. 
If the constraint's rule equates numbers or points, the test checks that  the two 
sides of the equation are equal to within some tolerance; the error will be the 
difference of the two sides of the equation. If the constraint is nonnumerical, the 
rule is used directly to generate the test; the error will be zero if the constraint is 
satisfied and one if it is not. If the user wants to override these default methods, 
he or she can replace them with hand-coded Smalltalk methods. 

4.3.1 E x a m p l e  o f  a Cons t ra in t .  Consider the structure described by the class 
MidPointLine used in the quadrilateral example. 

Class MidPointLine 
Superclasses 

Geometric Object 
Part Descriptions 

line: a Line 
midpoint: a Point  

Constraints 
midpoint  = (line po in t l  + line point2) /2  

midpoint  (-- (line po in t l  + line poin t2) /2  
line po in t l  (-- midpoint  * 2 - line point2 
line point2 (---midpoint * 2 - line po in t l  

The class MidPointLine has a constraint that the midpoint lie halfway between 
the endpoints of the line. The constraint has three alternate ways of satisfying 
itself, as described by the methods listed under the rule. The first method alters 
the midpoint, the second one alters one endpoint of the line, and the third alters 
the other endpoint. 

The user may want one method to be used in preference to another if there is 
a choice. This is indicated by the order of the methods: if the system has a choice 
about which method to use to satisfy the constraint, the first one on the list is 
used. In the case of the midpoint, the user preferred that  the constraint be 
satisfied by moving the midpoint rather than by moving an end of the line. 

4.3.2 R e l a t i o n s  A m o n g  t h e  P a r t s  o f  a C o n s t r a i n t .  The relations among the 
parts of a constraint are fairly rigidly defined. Each of the methods, if invoked, 
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must cause the constraint to be satisfied. For every part that  is referenced by the 
rule, there must be either a method that  alters that part or a dummy method 
referencing it. Currently, it is up to the user to see that  these requirements are 
met; none of this is checked by the system. 

As has been previously discussed, Smalltalk makes a strong distinction between 
the inside and the outside of an object. A method for satisfying a constraint is 
internal to the constraint and its owner, while the message plan that  describes 
the method is the external handle of that method. It is the message plan that  is 
used by the constraint satisfier in planning how to satisfy an object's constraints. 

In particular, the path of a message plan describes the side effects of its method. 
The constraint satisfier uses this information to detect overlap in the parts 
affected by the various methods. Therefore, the more precisely one can specify 
which subparts are affected by the method, the more information the constraint 
satisfier has to work with. Also, the constraint satisfier can do more with a 
method if it is known that  there is only one state of the subpart affected by the 
method that  satisfies the constraint, given the states of all other parts. This is 
described by the Boolean variable uniqueState listed previously; in the example 
above, uniqueState is true. 

This way of describing constraints allows the representation of relations that 
are not very tractable analytically. Any sort of relation can be expressed as a 
constraint, if a procedural test exists and some algorithm can be specified for 
satisfying the relation. In the most extreme case of analytical intractability, the 
constraint has a single method that affects the entire object that owns the 
constraint, and this message is not uniqueState. However, in such a case, the 
constraint satisfier has little to work with, and only one such constraint can be 
handled. 

4.4 Merges 

An important special case of a constraint is a merge. When several parts are 
merged, they are constrained to be all equal. For efficiency, they are usually 
replaced by a single object, rather than being kept as several separate objects. 
The owner of the parts maintains a symbolic representation of the merge for use 
by constraint satisfiers, as well as for reconstruction of the original parts if the 
merge is deleted. There are two principal uses of merging, both of which were 
illustrated by the introductory example in Section 2.1. The first use is to represent 
connectivity, for example, to connect the sides of the quadrilateral. The other is 
for applying predefined constraints, as was done with the midpoint constraint. As 
with constraints, adding or modifying a merge is a structural change; so only 
prototypes allow their merges to be edited. The process of merging is the same 
for both these uses. The object that  owns the parts to be merged {e.g., QTheorem) 
is sent the message merge: paths, where paths is a list of paths to the parts to be 
merged. 

When it can be done, the replacement of several merged objects by a single 
object yields a more compact storage format and speeds up constraint satisfaction 
considerably, since information need not be copied back and forth between the 
parts that  have been declared equal. It does not result in any loss of information, 
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since the owner of the parts keeps a symbolic representation of the merge that 
contains enough information to reconstruct the original parts. On the other hand, 
it is slower to merge or unmerge parts, since more computation is required; so, for 
applications in which the structure of the object changes frequently, equality 
constraints would be more efficient. Another efficiency consideration is that  a 
single merge can apply to an indefinite number of objects, while constraints have 
built into them the number of objects to which they apply. Thus, it is simple to 
make five separate points be equal using merges. To do this with equality 
constraints would require either that four separate constraints be used or that a 
special equality constraint be defined for use with five objects. 

The most difficult parts of the ThingLab system to program and debug were 
those that deal with adding and deleting merges, due especially to interactions 
among merges at different levels of the part-whole hierarchy. For example, in the 
quadrilateral construction presented in Section 2.1, when merging the line part of 
the MidPointLine with the side of the quadrilateral, the system not only had to 
substitute a new line for the two line parts, but because of the merges connecting 
the sides of the quadrilateral it also had to substitute a new endpoint for the two 
connecting sides. In fact, at one point the author gave up in disgust and always 
represented merges by using equality constraints; but he eventually backtracked 
on this choice because it made things too slow for typical uses of ThingLab. 
Future implementers of systems using merges are hereby warned! 

5. CONSTRAINT SATISFACTION 

5.1 Overview 

Constraint satisfaction is divided into two stages: planning and run time. Planning 
commences when an object is presented with a message plan. This message plan 
is not an actual request to do something; rather, it is a declaration of intent: a 
description of a message that might be sent to the object. Given this description, 
the object generates a plan to be used at run time for receiving such messages, 
while satisfying any constraints that  might be affected. The results of this 
planning are compiled as a Smalltalk method. Directions for calling the compiled 
method are returned as a new message plan. 

Consider the quadrilateral example described in Section 2.1. When the user 
selects m o v e  P o i n t  and first positions the cursor over a vertex of the quadrilateral, 
the ThingLab window composes a message plan and presents it to the quadri- 
lateral. The quadrilateral decides how to move its vertex while still keeping all 
the midpoint constraints satisfied and embeds this plan in a compiled Smalltalk 
method. It then returns another message plan that  gives directions for invoking 
that method. As the user pulls on the vertex with the cursor, the window 
repeatedly sends the quadrilateral a message asking it to update its position. This 
message invokes the Smalltalk method that was just compiled. 

During planning, the object that is presented with the message plan creates an 
instance of ConstraintSatisfier to handle all the work. The constraint satisfier 
gathers up all the constraints that might be affected by the change and plans a 
method for satisfying them. The constraint satisfier first attempts to find a one- 
pass ordering for satisfying the constraints. There are two techniques available 
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for doing this: propagation of degrees of freedom and propagation of known 
states. If there are constraints that cannot be handled by either of these tech- 
niques, the constraint satisfier asks the object for a method for dealing with 
circularity. Currently, relaxation is the only such method available. If relaxation 
is used, the user is warned, so that perhaps some other redundant constraints can 
be supplied that  eliminate the need for relaxation. Relaxation is described in 
Section 5.2.3. 

5.2 Constraint Satisfaction Methods 

The constraint satisfaction methods used in ThingLab are now described in more 
detail. To illustrate the operation of the methods, an electrical circuit example is 
used (Figure 16). Briefly, the classes involved are as follows. Instances of class 
Node are connection points. The parts of a node are a voltage and a set of 
currents flowing into that  node; there is also a constraint that  the sum of the 
currents be zero. (This is Kirchhoffs current law.) A subclass of Node is Ground, 
which has an additional constraint that  its voltage be zero. Instances of Lead, like 
their physical counterparts, are used to connect devices. The parts of a lead are 
a node and a current; there is a constraint that  the current belong to the node's 
set of currents flowing into it. Leads are connected by merging their nodes. There 
is a general class TwoLeadedObject, whose parts are two instances of Lead, and 
which has a constraint that the currents in the lead be equal and opposite. A 
number of subclasses of TwoLeadedObject are defined, including Resistor, Bat- 
tery, Wire, and Meter; Meter in turn has subclasses Ammeter and Voltmeter. All 
these objects have appropriate constraints on their behavior: a resistor must obey 
the Ohm's law constraint relating its resistance, the current flowing through it, 
and the voltage across it; an ammeter must display the current flowing through 
it; and so forth. A complete listing of the ThingLab classes for building electrical 
circuit simulations is given in [2]. 

5.2.1 Propagation of Degrees of Freedom. In propagating degrees of freedom, 
the constraint satisfier looks for a part with enough degrees of freedom so that it 
can be altered to satisfy all its constraints. If such a part is found, that  part and 
all the constraints that apply to it can be removed from further consideration. 
Once this is done, another part may acquire enough degrees of freedom to satisfy 
all its constraints. The process continues in this manner until either all constraints 
have been taken care of or no more degrees of freedom can be propagated. 

Because of the difficulty of giving a precise definition of degrees of freedom for 
nonnumeric objects, the constraint satisfier uses a simpleminded criterion for 
deciding if a part has enough degrees of freedom to satisfy its constraints: it has 
enough degrees of freedom if there is only one constraint that  affects it. It does 
not matter whether or not the constraint determines the part's state uniquely 
(removes all its degrees of freedom). 

In deciding when a constraint affects a part, the part,whole hierarchy must be 
taken into account. The set of constraints that  affect a given part is found by 
checking whether the path to the part overlaps the paths of any of the message 
plans generated by the constraints. Thus, a constraint on the first endpoint of a 
line affects the line as a whole, the first endpoint, and the x coordinate of the first 
endpoint; but it does not affect the line's second endpoint. 
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Fig.  16. A v o l t a g e  d iv ider .  

In the voltage divider example, the text  tha t  displays the vol tmeter ' s  reading 
has only a single constraint  on it: tha t  it correspond to the voltage drop between 
m2 leadl node and m2 lead2 node. Similarly, the text  in the am m ete r  is 
constrained only by its relat ion to m l  leadl current. Therefore ,  these pieces of 
text  can be updated  after  the voltage drop and current  are determined,  and their  
constraints can be removed from fur ther  consideration. In this case, there  are no 
propagations tha t  follow. 

5.2.2 Propagation of Known States. This  me thod  is very  similar to the previ- 
ous one. In propagating known states, the constraint  satisfier looks for parts  
whose state  will be completely known at  run  time, tha t  is, parts  tha t  have no 
degrees of freedom. If such a par t  is found, the constraint  satisfier looks for one- 
step deductions tha t  will allow the states of o ther  parts  to be known at  run  time, 
and so on recursively. For  the state of par t  A to be known (in one step) f rom the 
state of par t  B, there  must  be a constraint  tha t  connects  A and B and tha t  
determines A's state uniquely. This  is indicated by the uniqueState flag on the 
message plan whose target  is A. When propagating known states, the constraint  
satisfier can use information from different levels in the par t -whole  hierarchy: i f  
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the state of an object is known, the states of all its parts are known; if the states 
of all the parts of an object are known, the state of the object is known. 

If the state of a part is uniquely determined by several different constraints, 
one of the constraints is used to find its state, and run-time checks are compiled 
to see if the other constraints are satisfied. 

In the example, this method would be used as follows. By the constraint on the 
ground, at run time bl lead2 node voltage is known. (Actually, it was already 
known during planning, but the constraint satisfier does not use this information.) 
Also, by the battery's constraint, bl leadl node voltage is known, and it is the 
same as rnl leadl node voltage. The ammeter has a constraint that there be no 
voltage drop across it, and so ml lead2 node voltage is known. Similarly, the 
voltmeter has a constraint that it draw no current, and so the current in its 
leads and connecting wires is known. Finally, by the constraint on the wires, wl 
lead2 node voltage, w2 lead2 node voltage, and w3 leadl node voltage are all 
known. 

The voltage at the node between the resistors, and all the other currents, are 
still unknown. 

5.2.3 Relaxation. If there are constraints that  cannot be handled by either of 
these techniques, the constraint satisfier asks the object for a method for dealing 
with circularity. Currently, relaxation is the only such method available {unless 
the user supplies more information; see below). Relaxation can be used only with 
objects that have all numeric values; also, the constraints must be such that they 
can be adequately approximated by a linear equation. 

When relaxation is to be used, a call on an instance of Relaxer is compiled. At 
run time, the relaxer changes each of the object's numerical values in turn so as 
to minimize the error expressions of its constraints. These changes are determined 
by approximating the constraints on a given value as a set of linear equations and 
finding a least-mean-squares fit to this set of equations. The coefficients of each 
linear equation are calculated by noting the initial error and by numerically 
finding the derivative of the error expressions with respect to the value. Relaxa- 
tion continues until all the constraints are satisfied (all the errors are less than 
some cutoff), or until the system decides that  it cannot satisfy the constraints 
(the errors fail to decrease after an iteration). 

Often, many more parts would be relaxed than need to be. To help ease this 
situation, a trick is used during planning. The trick is to try assuming that  the 
state of one of the parts to be relaxed, say P, is known. This part P is chosen by 
looking for the part with the largest number of constraints connecting it to other 
still unknown parts. P is placed in a set S. Then  the method of propagation of 
known states is invoked to see if the states of any other parts would become 
known as a result. All the parts which would become known, along with P itself, 
are eliminated from the set of parts to be relaxed. The process is repeated until 
the set of parts to be relaxed is empty. At run time, only the parts in S are relaxed. 
As each part P in S is relaxed, the system also computes the new states of the 
parts which had become known as a result of assuming that  P was known. In 
computing the error in satisfying the constraints on P, the system considers the 
errors in satisfying the constraints on both P itself and also these other parts. 
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Fig. 17. The voltage divider with an added instance of SeriesResistors. 

In the voltage divider, r2 l eadl  current has three constraints connecting it to 
other unknowns: the Ohm's law constraint on r2, r2's constraint inherited from 
TwoLeadedObjec t ,  and the  K i r chho f f s  law const ra in t  on r2 leadl node. No other  
unknown has  more  constraints,  and so the  sys tem tries assuming tha t  it is known. 
Given its value, r2 leadl node voltage and all the o ther  currents  would be known. 
Therefore ,  a t  run  t ime, only r2 leadl current is relaxed. 

5.2.4 Using Multiple Views to Avoid Relaxation. Using the me thod  employed  
by Steele and Sussman  [13], ano ther  view of the  voltage divider m a y  be added 
tha t  obviates  the  need for relaxation. First, a new class SeriesResis tors  is defined 
tha t  embodies  the  fact  t ha t  two resistors in series are equivalent  to a single 
resistor. An instance of SeriesResis tors  has  three  parts:  resistors rA and rB, which 
are connected in series, and an equivalent  single resistor  rSeries. T h e r e  is a 
constra int  tha t  the resis tance of rSeries be equal  to the  sum of rA's res is tance 
and rB's resistance. 

To  add this new descript ion to the voltage divider, an  instance of Series- 
Resis tors  is inserted in the circuit {call it series), and the resistors rA and rB of 
series are merged  with the  existing resistors r l  and r2 in the  circuit (Figure 17). 
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Using this additional description, all the constraints can be satisfied in one 
pass. As previously described, ml  lead2 node voltage and wl lead2 node voltage 
are both  known. These are the same as series rSeries leadl node voltage and 
series rSeries lead2 node voltage, respectively. Thus, by the Ohm's  law constraint  
on series rSeries, series rSeries leadl current is known. But  this is the same 
current  as series rA leadl current and also the same as r l  leadl current. Again 
by Ohm's  law, the voltage at the midpoint, r l  lead2 node voltage, is known. All 
the other  currents are also known. 

I t  is appropriate to apply this redundant  view to a pair of resistors in series 
only if there is no significant current  flowing from the center node of the resistors. 
I f  this is not  the case, then some of the constraints are not  satisfiable, and the 
user is notified. However, in the present implementat ion there is no explicit 
representat ion of the fact tha t  a redundant  description has been provided; the 
system could do a bet ter  job of describing the reason tha t  the constraints could 
not  be satisfied if it knew about  the use of such descriptions. 

6. CONCLUSION 

This paper has described ThingLab,  a simulation laboratory.  The  system uses a 
number  of concepts and techniques (in particular, constraints) tha t  could add 
significant power to programming languages. A promising direction for future 
research is to explore the design of a full constraint-oriented programming 
language; work on this topic is underway, both by the author  and by other  
researchers. Constraints will be taking an increasingly prominent  position in our 
paradigms for programming in the years to come. 
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