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The programming language aspects of a graphic simulation laboratory named ThingLab are presented.
The design and implementation of ThingLab are extensions to Smalltalk. In ThingLab, constraints
are used to specify the relations that must hold among the parts of the simulation. The system is
object-oriented and employs inheritance and part-whole hierarchies to describe the structure of a
simulation. An interactive, graphic user interface is provided that allows the user to view and edit a
simulation.
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1. INTRODUCTION

This paper describes the programming language aspects of a simulation laboratory
named ThingLab. The principal research issue addressed is the representation
and satisfaction of constraints. A constraint specifies a relation that must be
maintained. For example, suppose that a user desires that the value of some
integer always be displayed as a piece of text at a certain location on the screen.
In a conventional language, one must remember to update the text whenever the
value of the integer is changed, and to update the integer if the text is edited. In
a constraint-oriented system such as ThingLab, the user can specify the relation
between the text and the integer and leave it to the system to maintain that
relation. If additional constraints are placed on the integer or the text, the system
takes care of keeping these satisfied as well.

The notion of an object provides a basic organizational tool; in particular, the
modularity gained by the use of object-oriented programming techniques is
important for constraint satisfaction, where it is essential to know what is affected
by a given change. Nonprimitive objects are constructed hierarchically from
parts, which are themselves other objects. As is shown below, constraints provide
a natural way to express the relations among parts and subparts. Methods are
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also described for integrating the use of constraints with inheritance hierarchies,
allowing new kinds of objects to be described in terms of existing ones. Finally, an
interactive, graphic user interface is described that is integrated with the con-
straint, part-whole, and inheritance mechanisms, allowing a user to view and edit
objects conveniently.

The concept of constraints, combined with inheritance and part-whole hier-
archies, is one that could add significant power to programming languages. While
ThingLab is not a general-purpose language, many of the concepts and techniques
described here would be useful in such a context. A promising direction for future
research is to explore the design of a full constraint-oriented programming
language. .

ThingLab is an extension to the Smalltalk-76 programming language [6, 7] and
runs on a personal computer. This paper is based on the author’s Stanford Ph.D.
dissertation [2].

1.1 The ThingLab System

The original question addressed by the research described in this paper is as
follows: “How can we design a computer-based environment for constructing
interactive, graphic simulations of experiments in physics and geometry?” Ex-
amples of the sorts of things that a user should be able to simulate are simple
electrical circuits and mechanical linkages. However, the underlying system
should be general. Rather than a program with knowledge built into it about
electrical circuit components and linkages, we envisioned a sort of kit-building
kit, in which environments tailored for domains such as electrical circuit simula-
tions or geometric figures could be constructed. There would thus be two kinds
of users of the system. The first kind would employ ThingLab to construct a set
of building blocks for a given domain; for example, for use in simulating electrical
circuits, such a user would construct definitions of basic parts such as resistors,
batteries, wires, and meters. The second kind of user could then employ these
building blocks to construct and explore particular simulations.

Another requirement on the system was that it have an appropriate user
interface, particularly for the second kind of user working in a particular domain.
For example, to create a geometric object such as a triangle, the user should be
able simply to draw it on the screen, rather than having to type in its coordinates
or (worse) write some code. Similarly, making changes to an object should also
be natural. To move a vertex of the triangle, the user should be able to point to
it on the screen and drag it along with a pointing device, seeing it in continuous
motion, rather than pointing to the destination and having the triangle jump
suddenly, or (again, worse) typing in the coordinates of the destination.

As specified in the above problem description, ThingLab provides an environ-
ment for constructing dynamic models of experiments in geometry and physics,
such as simulations of constrained geometric objects, simple electrical circuits,
mechanical linkages, and bridges under load. However, the techniques developed
in ThingLab have wider application and have also been used to model other sorts
of objects, such as a graphic calculator, and documents with constraints on their
layout and contents. Examples of the system in operation are presented in Sec-
tion 2.
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1.2 Constraints

The range of relations that can be specified in Thinglab using constraints is
broad. Some examples of constraints that have been defined by various users are

(1) that a line be horizontal;

(2) that the height of a bar in a bar chart correspond to an entry in a table;

(3) that one triangle be twice as big as another;

(4) that a resistor obey Ohm’s law;

(5) that a beam in a bridge obey Hooke’s law;

(6) that the gray-scale level of an area on the computer’s display correspond to
a number between zero and one;

(7) that a rectangle on the display be precisely big enough to hold a given

paragraph.

The representation of constraints reflects their dual nature as both descriptions
and commands. Constraints in ThingLab are represented as a rule and a set of
methods that can be invoked to satisfy the constraint. The rule is used by the
system to construct a procedural test for whether or not the constraint is satisfied
and to construct an error expression that indicates how well the constraint is
satisfied. The methods describe alternate ways of satisfying the constraint; if any
one of the methods is invoked, the constraint will be satisfied.

It is up to the user to specify the constraints on an object, but it is up to the
system to satisfy them. Satisfying constraints is not always trivial. A basic
problem is that constraints are typically multidirectional. For example, the text-
integer constraint mentioned above is allowed to change either the text or the
integer. Thus, one of the tasks of the system is to choose among several possible
ways of locally satisfying each constraint. One constraint may interfere with
another; in general, the collection of all the constraints on an object may be
incomplete, circular, or contradictory. Again, it is up to the system to sort
this out.

Further, the user interface as specified in the problem description demands
that constraint satisfaction be rapid. Consider the case of the user continuously
moving some part of a complex geometric figure. Every time the part moves, the
object’s constraints may need to be satisfied again. To meet this speed require-
ment, constraint satisfaction techniques have been implemented that incremen-
tally analyze constraint interactions and compile the results of this analysis into
executable code. When possible, the system compiles code that satisfies the
constraints in one pass. Constraint satisfaction thus takes place in two stages:
there is an initial planning stage, in which a constraint satisfaction plan is
formulated and compiled; then at run time this compiled code is invoked to
update the object being altered.

Constraint representation is described in Section 4; constraint satisfaction is
discussed in Section 5.

1.3 Object-Oriented Language Techniques

Smalltalk, in which ThingLab is written, is a language based on the idea of
objects that communicate by sending and receiving messages. This object-cen-
tered factorization of knowledge provides one of the basic organizational tools.
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For example, in representing a geometric construction, the objects used in the
representation are things such as points, lines, and triangles. This provides a
natural way of bundling together the information and procedures relevant to each
object. Each object holds its own state and is also able to send and receive
messages to obtain results.

Object descriptions and computational methods are organized into classes.
Every object is an instance of some class. In broad terms, a class represents a
generic concept, while an instance represents an individual. A class holds the
similarities among a group of objects; instances hold the differences. More
specifically, a class has a description of the internal storage required for each of
its instances and a dictionary of messages that its instances understand, along
with methods (i.e., procedures) for computing the appropriate responses. An
instance holds the particular values that distinguish it from other instances of its
class.

A new class is normally defined as a subclass of an existing class. The subclass
inherits the instance storage requirements and message protocol of its superclass.
It may add new information of its own and may override inherited responses to
messages.

One of the important features of Smalltalk is the sharp distinction it makes
between the inside and the outside of an object. The internal aspects of an object
are (1) its class and (2) its instance fields and their contents; the external aspects
are the messages that it understands and its responses. Since other parts of the
system and the user interact with the object by sending and receiving messages,
they need not know about its internal representation. This makes it easier to
construct modular systems. For example, the class Rectangle defines the message
center. It makes no difference to the user of this message whether a rectangle
actually has a center stored as one of its instance fields or whether the center is
computed on demand (in fact, it is computed on demand).

ThingLab extends Smalltalk in a number of respects. The principal extension
is the inclusion of constraints and constraint satisfaction mechanisms. The other
significant extensions are provision for multiple superclasses rather than just a
single superclass; a part-whole hierarchy with an explicit, symbolic representation
of shared substructure; the use of paths for symbolic references to subparts and
prototypes for the representation of default instances; and a facility for class
definition by example. The latter extensions are discussed in Section 3.

Object-oriented languages generally emphasize a very localized approach to
interaction within a program: an object interacts with other parts of the system
only by sending and receiving messages to other objects that it knows about. On
the other hand, it is very difficult to do constraint satisfaction in a purely local
way: there are problems of circularity and the like that are better spotted by a
more global analysis. There is consequently a tension between the object and
constraint metaphors; the integration of these approaches in ThingLab is one of
its points of interest.

1.4 The User Interface

Considerable effort has been spent on designing a good user interface to the
system. Some quite general graphic editing tools are provided, and purely graphic
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.
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objects, such as a triangle, can be constructed using graphic techniques only. The
user interface allows objects to be viewed in other ways as well, for example, as
a structural description or as a table of values.

The user interface allows smooth access to the constraint mechanism and to
the inheritance and part-whole hierachies. Thus, when the user edits an object,
say by selecting a point and moving it with the cursor, the constraint satisfaction
mechanism is invoked automatically to keep all the constraints satisfied. New
classes may be defined by example, that is, by constructing a typical instance.
The structural descriptions provided by the interface present the part-whole
hierarchy, the constraints, and so forth.

1.5 Relation to Other Work

One of the principal influences on the design of ThingLab has been Sketchpad
[16], a general-purpose system for drawing and editing pictures on a computer. In
Sketchpad the user interacts directly with the display, using a light pen for
adding, moving, and deleting parts of the drawing. ThingLab has adopted much
of Sketchpad’s flavor of user interaction, and the Sketchpad notions of constraints
and of recursive merging have been central to its design. ThingLab has extended
Sketchpad’s constraint mechanism in a number of respects, most notably by
integrating it with an inheritance hierarchy, by allowing local procedures for
satisfying a constraint to be included as part of its definition, and by incrementally
compiling the results of constraint satisfaction planning into Smalltalk code.

The other principal ancestor of ThingLab is Smalltalk. Not only is ThingLab
written in Smalltalk, but the important ideas in Smalltalk—objects, classes and
instances, and messages—are all used directly in ThingLab. As prevously de-
scribed, ThingLab adds a number of new features to the language. Smalltalk has
proved to be an excellent language to support research of this sort, in terms of
both linguistic constructs and programming environment.

ThingLab is also related to some very interesting work on constraint languages
done at M.L.T. by Guy Steele and Gerald Sussman [13]. The ThingLab represen-
tation of an object in terms of parts and subparts, with explicit representation of
shared parts, is nearly isomorphic to the representation independently developed
by Steele and Sussman. Their system has a built-in set of primitive constraints,
such as adders and multipliers, from which compound constraints can be con-
structed. This is similar to the method used in the ThingLab calculator example
described in Section 2.2. To handle constraints that cannot be satisfied using a
one-pass ordering, they employ multiple redundant views that can cooperate in
solving the problem; in their previous work, symbolic algebraic manipulation
techniques were employed. Their use of multiple views has been adopted in
ThingLab. Among the differences between the two systems is that Steele and
Sussman’s language retains dependency information, that is, a record of the
justifications for each conclusion, for producing explanations and for implement-
ing efficient backtracing when search is needed (dependency-directed backtrack-
ing). On the other hand, their system has no graphics capabilities. Also, ThingLab
has two significant advantages in regard to efficiency. First, it compiles plans into
the base language, whereas in Steele and Sussman’s system constraint satisfaction
is done interpretively. Compilation is essential if constraint languages are to
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become practical tools. Second, Thingl.ab has a class-instance mechanism, in-
cluding multiple inheritance, that allows information common to several objects
to be factored out, while their system uses a macro facility for abstraction, which
has the disadvantage that a complete copy of the constraint network is required
for each instance.

Steele’s recent Ph.D. dissertation [12], completed after the work described
above and the author’s own dissertation, gives a clear statement of design goals
for a complete, general-purpose language organized around constraints and de-
scribes further progress toward implementing such a language. The system deals
explicitly with the problem of behaving properly in the presence of contradictions,
which is important for the interactive construction of large systems, and further
develops the notions of assumptions and defaults. While its usual mode of
operation is interpretive, it also includes a constraint compiler like that used in
ThingLab.

Other related work on languages includes SIMULA [3], which is one of the
principal ancestors of Smalltalk. The distinction that Smalltalk makes between
the inside and the outside of an object is also closely related to the data-
abstraction mechanisms in languages such as MESA [10], CLU [9], and AL-
PHARD [17]. These languages separate the interface specification of a type from
its internal implementation, just as Smalltalk distinguishes the external message
protocol of an object from its internal aspects. Thus, in programs in these data-
abstraction languages, changes to the implementation of a type (but not its
interface) do not affect the users of that type; so more modular systems result.

ABSET [4] is a set-oriented language developed at the University of Aberdeen
with a number of constraint-like features; for example, given the statement A +
B = 3 AND A = 1, it can deduce B’s value. Also, it emphasizes the avoidance of
unnecessary ordering restrictions in the statement of a program. The ACTOR
languages [5] use and extend the notion of objects that communicate by passing
messages. Representation languages for artificial intelligence work, such as KRL
[1], develop the notion of multiple inheritance. ThingLab’s facility for class
definition by example is related to work on programming by example [8, 11].

There is a large body of work in artificial intelligence on reasoning and problem-
solving systems of various kinds. Most of these systems are concerned with more
complex problem-solving tasks than those tackled in ThingLab. By contrast, in
ThingLab much of the emphasis has been on finding ways of generalizing plans
and compiling them as procedures so that they may be used efficiently in a
graphic environment. However, the problem-solving techniques developed in
these other systems may well prove useful if ThingLab’s constraint satisfaction
abilities are to be strengthened.

This artificial intelligence work includes a number of systems that use con-
straints and constraint satisfaction as such. Steels [14] has constructed a reasoning
system, modeled on a society of communicating experts, that uses propagation of
constraints in its reasoning process. Unlike either ThingLab or Steele and
Sussman’s system, Steels’ system is description-oriented and does not require
that constraint satisfaction yield a unique value. Stefik [15] uses the technique of
constraint posting in MOLGEN, a system for planning experiments in molecular
genetics. His system uses hierarchical planning and dynamically formulates and
propagates constraints during its planning process.
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2. SOME EXAMPLES

Before plunging into a technical discussion of the system, it is useful to present
some examples of its operation. A brief description of the operation of the
ThingLab user interface is needed first. The user interacts with ThingLab via a
window, a rectangular area on the computer’s display. The window notion is
central to Smalltalk’s user interface philosophy. The ThingLab window described
here is typically one of several windows on the screen, with other windows being
available for debugging, editing system code, freehand sketching, and so on.

The ThingLab window is divided into five panes: the class pane, the format
pane, the messages pane, the arguments pane, and the picture pane. The class
pane is a menu of names of classes that may be viewed and edited. Once a class
has been selected, a menu of formats in which it can display itself appears in the
format pane immediately to the right. The class shows itself in the chosen format
in the large picture pane at the bottom of the window.

The two remaining panes, messages and arguments, contain menus used for
graphic editing of the class’ prototype. All editing operations are performed by
sending a message to the object being edited; the ThingLab window allows us to
compose and send certain kinds of editing messages graphically. The messages
pane contains a list of message names, such as insert and delete, while the
arguments pane contains a list of possible classes for the message argument. The
argument itself will be an instance of that class, either newly created or selected
from among the parts in the picture.

The user communicates with the system primarily by means of a mouse and
secondarily by use of a keyboard. The mouse is a small box-shaped object that
can be moved about on the user’s desk top; as it moves, its relative position is
tracked by a cursor on the screen (the arrow in the illustrations). If some graphic
object on the screen is “attached” to the cursor, that object moves as well. The
mouse also has three buttons on it, which serve as control keys.

In the menu panes, a black stripe indicates a selected item. Thus, in Figure 1,
Triangle and prototype’s picture have been selected. Since a menu may be too
long to fit in its pane, all the menus can be scrolled up or down so that the user
can view and select any of the items. To make a selection, the user positions the
cursor over the item to be selected and pushes a button on the mouse.

2.1 A Geometric Example

As an introductory example, we use ThingLab to construct a quadrilateral and to
view it in several ways. We then use the system to demonstrate a theorem about
quadrilaterals.

2.1.1 Defining the Class of Quadrilaterals. First, we define the class of quad-
rilaterals. New classes are always defined as a subclass of some more general
class; if nothing better is available, they can be made subclasses of class Object,
the most general class in the system. In this case, we create the new class
Quadrilateral as a subclass of GeometricObject.

One of the important features of the ThingLab environment is that the user
can define classes by example. To be more precise, the structural aspects of a
class (its part descriptions and constraints) may be specified incrementally by
editing its prototypical instance. We define the class Quadrilateral in this way.
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Fig. 1. Panes of the ThingLab window.

First, we ask to view the picture of the prototype Quadrilateral. So far, the
prototype has no parts, and so its picture is blank. We now edit the prototype by
adding and connecting four sides. Using the mouse, we select the word insert in
the messages pane and the word Line in the arguments pane. When we move the
cursor into the bottom pane, a blinking picture of a line appears, attached to the
cursor by one of its endpoints. As the cursor is moved, the entire line follows.
When the endpoint attached to the cursor is in the desired location, we press a
button. This first endpoint stops moving, and the cursor jumps to the second
endpoint. The second endpoint follows the cursor, but this time the first endpoint
remains stationary. We press the button again to position the second endpoint
(Figure 2).

We insert another line in the same way. To connect the new line to the first, we
position the endpoint attached to the cursor near one of the endpoints of the first
line. When the two points are close together, the moving point locks onto the
stationary point, and the line stops blinking. This indicates that the two points
will merge if the button is pressed. We press the button and the points merge.
The two lines now share a common endpoint. Also, a record of the merge is kept
by the class Quadrilateral. Similarly, we position the other endpoint and insert
the remaining two lines (Figure 3).

During this editing session, the system has been updating the structure common
to all quadrilaterals that is stored in the class Quadrilateral, as well as saving the
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particular locations of the prototype’s sides. To see the structure of the class
Quadrilateral, we select structure in the menu of formats. The class responds by
listing its name, superclasses, part descriptions, and constraints (Figure 4). We
may also view the values stored in the prototype by selecting prototype’s values
(Figure 5).

2.1.2 Demonstrating a Geometry Theorem. We may now use the new class in
demonstrating a geometry theorem. The theorem states that, given an arbitrary
quadrilateral, if one bisects each of the sides and draws lines between the adjacent
midpoints, the new lines form a parallelogram.

To perform the construction, we make a new class named QTheorem. As
before, we create it as a subclass of GeometricObject and define it by example.
We first add an instance of class Quadrilateral as a part. We select insert and
Quadrilateral. As we move the cursor into the bottom pane, a blinking picture
of a quadrilateral, whose shape has been copied from the prototype, appears. We
position the quadrilateral and press a button.

The next step is to add midpoints to the sides of the quadrilateral. To do this,
we use four instances of the class MidPointLine. This class specifies that each of
its instances has two parts: a line and a point. In addition, it has a constraint that,
for each instance, the point be halfway between the endpoints of the line. As we
insert each instance of MidPointLine, we move it near the center of one of the
sides of the quadrilateral and merge the line part of the MidPointLine with the
side of the quadrilateral (Figure 6). The last step is to add four lines connecting
the midpoints to form the parallelogram.

Once the construction is complete, we may move any of the parts of the
prototype QTheorem and observe the results. In general, it is not enough for the
system simply to move the selected part; because of the constraints we have
placed on the object, other parts, such as the midpoints, may need to be moved
as well to keep all the constraints satisfied. Suppose we want to move a vertex.
We select the message move and the argument Point. A blinking point appears
in the picture that is attached to the cursor. We position it over the vertex to be
moved and hold down a button. The vertex follows the cursor until the button is
released (Figure 7). (The first time we try to move the vertex, there will be a long
pause as the system plans how to satisfy the constraints.) We notice that indeed
the lines connecting the midpoints form a parallelogram no matter how the
quadrilateral is deformed. The theorem remains true even when the quadrilateral
is turned inside out!

2.1.3 Constraint Satisfaction. The user described how QTheorem should be-
have in terms of the midpoint constraint and the various merges, but not by
writing separate methods for moving each part of QTheorem. The midpoint
constraint (as defined by an experienced user) describes methods that can be
invoked to satisfy itself. Three such methods were specified: the first asks the
midpoint to move to halfway between the line’s endpoints; the second asks one
of the line’s endpoints to move; and the third asks the other endpoint to move. It
was up to QTheorem to decide which of these methods to invoke, and when and
in what order to use them.

In general, the constraints on an object might specify its behavior incompletely
or redundantly, or they might be unsatisfiable. QTheorem, for example, is
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Fig. 6. Adding a midpoint.

underconstrained. The behavior we observed was only one way of moving the
vertex while satisfying the constraints. Two other possibilities would have been
for the entire object to move, or for the midpoints to remain fixed while the other
vertices moved. Neither of these responses would have been as pleasing to us as
human observers. (If we had wanted the entire object to move, we would have
specified move @Theorem instead.) Therefore, besides the more mathematical
techniques for finding some way of satisfying its constraints, or for deciding that
they are unsatisfiable, an object can also take the user’s preferences into account
in deciding its behavior. In this case, the midpoint constraint specified that the
midpoint was to be moved in preference to one of the endpoints of the line.

We might override the preference specified in the midpoint constraint by
anchoring the midpoints, as in Figure 8. (Anchor is a subclass of Point, with an
added constraint that its instances may not be moved during constraint satisfac-
tion.)

2.2 Constructing a Program for a Graphic Calculator

In this second example, we construct some graphic programs for a simulated
calculator. In the process, we use a number of classes from a “calculator kit.” One
simple but important class is NumberNode. An instance of NumberNode has two
parts: a real number and a point. Its purpose is to provide a graphic representation
of a register in the calculator. Another class is NumberLead, consisting of a
number node and an attached line. As with leads on electrical components, it is
used to connect parts of the calculator. Also, classes that represent the various
arithmetic operations have been defined. There is a general class Number-
Operator, whose parts are a frame containing the operator’s symbol and three
number leads that terminate on the edges of the frame. Four subclasses of
NumberOperator are defined, namely, Plus, Minus, Times, and Divide. Plus, for
example, has three number leads with number nodes at the ends, which are
inherited from NumberOperator (Figure 9). It has an added constraint that the

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.



‘[eadjeLIpERD 83 JO X009A B SutAolN ‘L T

FNLELL | o s e s o s
sliuIsey

tATE AP

s o o s s o DL s s s o s s
Ftnd | abuuisay 3%2) NP2
DLSIETURE NI

e et e i s Mt |
1o { funyy3xa)

Ml
TN

amihiuea

A01IND4IIY
A
133[q0 U0

ISP UMD
-l
PRI R R TIE )

AT I

JUI04
128030

AL |
funy) 1xa)
Akl aey
LABPIPEN

bt )

ey
g 3xa]
f [QITHERD

L0 E0)
an
12310 UTHAULDAC

AT
2 U
g JELIG b B E )

a0 o e st e e s e

X0 i)

ANl

04




‘syutodpria pazoyoue Yjm [ersjequpenb y g i

nod
5] S ———— 12310
mqdulm HUTIUICG TN
U

mn UMLIIEUD
Par
a5

gy

Ve

ANATALE

gy




The Programming Language Aspects of ThingLab . 367

FrintingConueresr ure
b 3

RIRRT]

ratureCanpery
gt Thirg
Thermony

Thermomaters HumberPringer
Tirmes Flus
T f‘iJlTlA;llE Foine

Fig. 9. Picture of the prototype for Plus.

number at the node on the right always be the sum of the numbers at the leads
on the left. The classes for Minus, Times, and Divide prototypes have been
defined analogously.

To view and edit a number at a node, the class NumberPrinter has been
constructed. Its parts are a number lead and an editable piece of text. Also, it has
a constraint that the number at its node correspond to that displayed in the text.
If the node’s number changes, the text is updated; if the text is edited, the node’s
number is changed correspondingly. A special kind of NumberPrinter is a Con-
stant. For constants, the constraint is unidirectional. The text may be edited,
thus changing the number; but the number may not be changed to alter the text.

2.2.1 Constructing a Celsius-to-Fahrenheit Converter. Using these parts, let
us construct a Celsius-to-Fahrenheit converter. After creating a new class,
TemperatureConverter, we select insert and Times. As we move the cursor into
the picture pane, a blinking picture of an instance of the class Times appears. We
position the frame that holds the multiplication symbol, and then the three nodes.
Next, we insert a Plus operator in the same manner, connecting its addend node
to the product node of the times operator. (The connection is made by merging
the nodes, in the same way that the endpoints of the sides of the quadrilateral
were connected.) Finally, we insert two instances of Constant, connecting them
to the appropriate nodes of the operators. We then invoke the edit text message
and change the constants to 1.8 and 32.0. The result is shown in Figure 10.

Once the converter has been defined, we may use it as a part of other objects
(i.e., as a subroutine). As an example, we define a new class PrintingConverter.
We add an instance of TemperatureConverter as a part, and also two instances
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The Programming Language Aspects of ThingLab . 369

of NumberPrinter to display the Celsius and Fahrenheit temperatures (Figure
11). If we edit the Celsius temperature, the PrintingConverter satisfies its con-
straints by updating the numbers at its nodes and the Fahrenheit temperature
displayed in the frame on the right.

However, because of the multiway nature of the constraints, the device works
backward as well as forward! Thus, we can edit the Fahrenheit temperature, and
the Celsius temperature is updated correspondingly (Figure 12). This demon-
strates the need for the special class Constant: without it, the system could
equally well have satisfied the constraints by changing one of these coefficients
rather than the temperatures.

We may also connect the converter to other types of input/output devices, for
example, a simulated thermometer. We can select move and Point and grab
either of the columns of mercury with the cursor. When we move one of the
columns up or down, the other column moves correspondingly (Figure 13).

2.2.2 Solving a Quadratic Equation. After experimenting with the converter,
we might try building a more complex device, such as the network for solving
quadratic equations shown in Figure 14.

When we edit any of the constants, the value in the frame on the left changes
to satisfy the equation. In the picture, the coefficients of the equation x> — 6x +
9 = 0 have been entered, and a solution, x = 3, has been found. This case is unlike
the temperature converter examples: the system was unable to find a one-pass
ordering for solving the constraints and has resorted to the relaxation method.
Relaxation will converge to one of the two roots of the equation, depending on
the initial value of x.

Now let us try changing the constant term ¢ from 9 to 10. This time, the system
puts up an error message, protesting that the constraints cannot be satisfied.
Some simple algebra reveals that the roots of this new equation are complex; but
the number nodes hold real numbers, and so the system was unable to satisfy the
constraints.

A better way of finding the roots of a quadratic equation is to use the standard
solution to the quadratic equation ax®> + bx + ¢ = 0, namely, x = (-b +
(&® — 4ac)?) / 2a. The system can be told about this canned formula by defining
a class QuadraticSolver whose parts include four NumberNodes a, b, ¢, and x and
a constraint that x = (—b + (b — 4ac)?) / 2a. (Since the class NumberNode does
not allow multiple values, in the QuadraticSolver’s constraint one of the roots
has been chosen arbitrarily as the value for x. A more general solution would be
to define a class MultipleRoots and set up the constraint so that it determined
both the number of roots and their values.)

We can insert an instance of QuadraticSolver into the network, merging its
number nodes with the appropriate existing nodes in the network (Figure 15).
Now, the system can find a simple one-pass ordering for satisfying the constraints
and does not need to use relaxation.

In inserting an instance of QuadraticSolver into the network, we have added
another view of the constraints on x. In the sense that the permissible values of
x are the same with or without it (ignoring the multiple-root problem), the new
constraint adds no new information. However, QuadraticSolver’s constraint is
computationally better suited to finding the value of x. This technique of
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introducing multiple redundant constraints on an object is an important way of
dealing with circularity.

3. OBJECTS
3.1 The Part-Whole Relationship

In ThingLab, an object is composed of named parts, each of which is in turn
another object. The parts are thus composed of subparts, and so on. The recursion
stops with primitive objects such as integers and strings. Consider a line:
Line
pointl: a Point
x: 50
y: 100
point2: a Point
x: 200
y: 200.

The line is composed of two parts that are its endpoints. Each endpoint is in turn
composed of an x and a y value; these are primitive objects (integers). An object
is sometimes referred to as the owner of its parts. For example, the above line
owns its endpoints.

3.1.1 Part Descriptions. A PartDescription is an object that describes the
common properties of the corresponding parts of all instances of a class. Every
class has a list of part descriptions, one for each part owned by its instances. The
following things are associated with each part description:

name an identifier;

constraints the set of constraints that apply to the corresponding part of each
instance;

merges the set of merges that apply to the corresponding part of each
instance;

class the class of the corresponding part of each instance. This is more

restrictive than in Smalltalk, where the class of the contents of an
instance field is not declared. Imposing this restriction makes the job
of constraint satisfaction easier.

When a part description is added to a class, messages are compiled automatically
in the class’ message dictionary to read and write the part.

For example, the class Line has two part descriptions that describe the parts of
each instance of Line. The first part description has the name pointl. It has no
constraints or merges, and it specifies that the pointl part of each line be an
instance of class Point. The other part description is defined analogously. For a
class that specifies some constraints, for example, the class HorizontalLine, the
pointl part description would also indicate that there was a constraint that
applied to the pointl part of each of its instances.

3.1.2 Insides and Outsides. As described in Section 1.3, one of the important
features of Smalltalk is the sharp distinction it makes between the inside and the
outside of an object. In ThingLab, the notion of having a part has implications
for both the internal and external aspects of the object that owns the part.
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Internally, the object must have an instance field in which the part is stored, as
well as a corresponding part description in its class; externally, the object should
understand messages to read and write the part. However, these internal and
external aspects are separate. A virtual part, as proposed in [2], is an example of
the use of this separation. Such a part would have all the external manifestations
of a part, that is, messages to read and write it. Internally, however, there would
be no corresponding field; rather, the part would be computed as needed.
(Smalltalk already has virtual parts; the proposed mechanism would add the
necessary declarative superstructure so that the constraint satisfaction mecha-
nism could know about them.)

3.1.3 Paths. A path is a ThingLab object that represents a symbolic reference
to a subpart. Each path is a hierarchical name, consisting of a list of part names
that indicates a way to get from some object to one of its subparts. The path
itself does not own a pointer to the object to which it is applied; this must be
supplied by the user of the path. Thus the same path can be used to refer to the
corresponding subpart of many different objects. For example, pointl x is a path
to get to the x value of the first endpoint of any line. Typically, the path as such
is used only during compilation; this path would compile code that sent the
message pointl to a line and then sent the message x to the result.

While the definition of a path is simple, the idea behind it has proved quite
powerful and has been essential in allowing the constraint- and object-oriented
metaphors to be integrated. As mentioned above, Smalltalk draws a distinction
between the inside and the outside of an object. The notion of a path helps
strengthen this distinction by providing a protected way for an object to provide
external references to its parts and subparts. For example, if a triangle wishes to
allow another object to refer to one of its vertices, it does so by handing back a
path such as side2 pointl, rather than by providing a direct pointer to the vertex.
If this other object wants to change the location of the vertex, it must do so by
routing the request through the triangle, rather than by simply making the
change itself. This allows the triangle to decide whether or not to accept the
change; if it does accept it, it knows what has been altered, so that it can update
its other parts as necessary to satisfy all its constraints.

In addition to these semantic considerations, a major pragmatic benefit of this
discipline is that no backpointers are needed. (If the triangle did hand out a direct
pointer to its vertex, the vertex would need a pointer back to the triangle so that
it could inform the triangle when it changed.) Access to parts is somewhat slower
using this technique, since each access involves following a path. However, an
access via a path can often be moved out of the inner loops by the constraint
compiler. Another pragmatic consideration is that constraints and merges can be
represented symbolically using paths, so that they apply to all instances of a class,
rather than to a particular instance. This allows the system to compile constraint
satisfaction plans in the form of standard Smalltalk methods.

ThingLab’s constraint satisfaction techniques all depend on noticing when one
constraint applies to the same subpart as another. Paths are used to specify
which parts or subparts of an object are affected by the constraint. Two paths
overlap if one can be produced from the other by adding zero or more names to
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the end of the other’s list. The following paths overlap the path sidel pointl:

sidel pointl x
sidel pointl
sidel

(the empty path)

The following paths do not overlap sidel pointl:

sidel point2
side2

To test if two constraints apply to the same subpart, the system checks to see if
any of their paths overlap.

3.2 Inheritance

A new class may be defined as a subclass of one or more existing classes. The
subclass inherits the part descriptions, constraints, merges, and message protocol
of its superclasses. It may add new information of its own, and it may override
inherited responses to messages. Every class (except class Object) must be a
subclass of at least one other class.

The superclasses of an object are represented by including an instance of each
superclass as a part of the object. The field descriptions for such parts are
instances of SuperclassDescription, a subclass of PartDescription. These parts
may have constraints and merges applied to them in the usual way; among other
things, this allows the user to indicate that parts inherited from several super-
classes are in fact to be represented by only a single part in the subclass. The
only difference between these instances of superclasses and ordinary parts is that
messages are forwarded to them automatically. (The actual implementation is
somewhat more arcane, to take advantage of the efficient single-superclass
mechanism built into Smalltalk. However, the effect is as described, and the
reader should think of it in this way.)

3.2.1 Class Object. The most general class in both Smalltalk and ThingLab is
class Object. As part of the ThingLab kernel, a large number of methods have
been added to this class. These methods provide defaults for adding or deleting
parts, merging parts, satisfying constraints, showing in a ThingLab window, and
so on. In general, these methods treat an object as the sum of its parts. For
example, to show itself, an object asks each of its parts to show; to move itself by
some increment, the object asks each of its parts to move by that increment. This
strict hierarchy is, however, modified by the object’s constraints and merges.
Thus, when an object decides exactly how to move, it must watch for overlap
between its parts due to merges, and it must also keep all its constraints satisfied.

3.2.2 Message Behavior. When an object receives a message, the object’s class
first checks its own message dictionary. If a corresponding method is found, that
method is used. If not, the class asks each of its superclasses if any of them has
an appropriate method. In turn, each superclass, if it does not itself define the
method, will ask its superclasses, and so forth, thus implementing inheritance
through multiple levels of the hierarchy. If there is a single inherited method for
that message, then that method is used. If there is no method, or if there are
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several conflicting inherited methods, an error occurs. Note that the overriding
of inherited methods is still allowed; it is an error only if a class with no method
of its own inherits different methods via two or more of its immediate superclasses.
If the user wants to choose among conflicting messages, or to combine them
somehow, an appropriate method for doing this should be defined in the subclass.
To avoid this search the next time the message is received, the class automatically
compiles a message forwarder that will intercept that message in the future and
relay it directly to the appropriate superclass part.

As an example of the use of multiple superclasses, suppose that a user has
available a class of horizontal lines and another class of lines of constant length.
The class of horizontal lines of constant length may then be defined as a subclass
of both of these.

Multiple superclasses also provide a way of implementing multiple represen-
tations of objects. For example, suppose the user desires to represent a point in
both Cartesian and polar forms. This may be done as follows:

Class CartesianPoint

Superclasses

GeometricObject
Part Descriptions

x: a Real
y: a Real

Class PolarPoint
Superclasses
GeometricObject
Part Descriptions
r: a Real
theta: a Real

Class MultiplyRepresentedPoint
Superclasses
C: CartesianPoint
P: PolarPoint
Constraints
C = P asCartesian
C « P asCartesian
P « C asPolar

The constraint on MultiplyRepresentedPoint keeps the parts representing the
two superclasses in coordination. It makes use of an auxiliary message to
PolarPoint that returns its Cartesian equivalent, and of an analogous message to
CartesianPoint.

3.2.3 Prototypes. For a given class, a prototype is a distinguished instance that
owns default or typical parts. All classes understand the message prototype and
respond by returning their prototypical instance. If the user does not specify
otherwise, the prototype has nil in each of its instance fields. However, if the user
has defined the class by example, the prototype holds the particular values from
the example. These values may also be set by writing an initialization message.

Prototypes provide a convenient mechanism for specifying default instance
values. Thus, in the introductory example, when a new line was being inserted
into the quadrilateral, its initial length and orientation were copied from the
prototype Line. Such defaults are essential in graphic editing, since every object
needs some appearance.
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More important, a prototype serves as a representative of its class. ThingLab
distinguishes between messages that have no side effects for the receiver (read-
only messages), messages that alter the values stored in the receiver, and messages
that alter the receiver’s structure. Any instance accepts read-only or value-
altering messages, but only prototypes accept structure-altering messages. The
reason is that this latter type of message affects the class. The prototype is in
charge of its class and is willing to alter it, but, for instances other than the
prototypical one, the class is read-only. Requests to move a side of a polygon, or
even turn it inside out, are examples of value-altering messages. On the other
hand, requests to add or delete a side, edit a constraint, or merge two points are
structure-altering messages.

3.2.4 Defining Classes by Example. When the user defines a class by example,
the editing messages are always sent to the prototype, rather than sometimes to
the class and sometimes to one of its instances. The prototype takes care of
separating the generic information that applies to all instances of its class from
the specific information that applies only to the default values that it holds in its
fields. With its class it associates the number and class of the parts, the con-
straints, and the merges. With its own instance fields it associates the default
values for its parts.

It is not possible to define all classes by example; some, such as classes for new
constraint types and abstract classes like GeometricObject, must be entered by
writing an appropriate Smalltalk class definition. In general, there are many
possible classes that could be abstracted from a given example; which one should
be abstracted depends on the user’s purposes. The ThingLab facility for definition
by example provides a reasonable default, but it is not a general solution to this
problem. If the user wants some other sort of class, he or she should write an
appropriate definition.

4. CONSTRAINT REPRESENTATION

This section describes the representation of ThingLab constraints. To support
constraints, some new kinds of objects were implemented. In Smalltalk, objects
communicate by sending and receiving messages; an object’s response to a
message is implemented by a method (i.e., a procedure). ThingLab objects are
described that stand for Smalltalk messages and methods. The purpose of this
additional mechanism is to provide tools for reasoning about messages and
methods, and in particular about the interactions among messages and con-
straints.

4.1 Message Plans

A message plan is an abstraction of the Smalltalk notion of sending a message. A
message plan does not stand for a particular act of sending a message; rather, it
is a template for any number of messages that might be sent. A message plan is
itself an object: an instance of class MessagePlan. The parts of a message plan
include a receiver, a path, an action, and zero or more arguments. The receiver
is normally a particular object, although for some uses it may be nil or may be a
prototype representing any instance of a class of objects that might receive the
message. The path tells how to get to one of the receiver’s subparts, which will be
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called the target of the message plan. The action is a selector for a Smalltalk
method understood by the target. The arguments may be either actual or
symbolic. Actual arguments are pointers to other objects; symbolic arguments
are simply names (strings). The arguments correspond to the arguments passed
at run time to the Smalltalk method invoked by the action. For example, here is
a message plan asking a triangle to move one of its vertices right by ten screen
dots:

triangle sidel point2 moveby: 10@0.

The receiver is triangle, the path is sidel point2, the action is moveby:, and the
argument is the point 10@0.

An important use of message plans is to describe the methods for satisfying a
constraint. If a message plan is used in this way, the plan will have several
Boolean flags and a pointer to the constraint that generated it, in addition to the
parts listed above. The flags are the following:

uniqueState true if there is only one state of the target that will satisfy the
constraint (given that all other parts of the receiver are fixed).
See Section 4.3.2 below;

referenceOnly true if the action described by the message plan only refer-
ences its target, rather than altering it;

compileTimeOnly true if the message plan is used only during constraint satis-
faction planning and not in producing executable code.

4.2 Methods

In ThingLab, an explicit class Method has been defined. The parts of a method
are a list of keywords, a matching list of symbolic arguments, a list of temporaries,
and a procedural body. The selector for the method is constructed by concate-
nating the keywords. These parts are the same as those of a Smalltalk method,
the only difference being that in Smalltalk the method is stored as text, and the
parts must be found by parsing the text. One reason for defining an explicit class
in ThingLab is to simplify access to the parts of a method. This is useful because
methods are often generated by the system rather than being entered by the user,
with different parts of the method coming from different parts of the system.
Also, some methods have their own special properties. For example, all the
methods that an object has for showing itself are indexed in a table used by the
ThingLab user interface.

After a ThingLab method has been constructed, it is usually asked to add itself
to some class’ method dictionary. In the implementation, the method does this
by constructing a piece of text and handing it to the regular Smalltalk compiler.
The Smalitalk compiler in turn produces a byte-coded string for use at run time
and indexes it in the class’ method dictionary.

4.3 The Structure of a Constraint

As described in Section 1, a constraint represents a relation among the parts of
an object that must always hold. Constraints are themselves objects. New kinds
of constraints are defined by specifying both a rule and a set of methods for
satisfying the constraint. Adding or modifying a constraint is a structural change;
so only prototypes accept new constraints or allow existing ones to be edited.
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.
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Constraints are indexed in several tables in the prototype’s class for easy retrieval
during constraint satisfaction.

The constraint’s methods describe alternate ways of satisfying the constraint;
if any one of the methods is invoked, the constraint will be satisfied. These
methods are represented as a list of instances of class Method. The constraint
also has a matching list of instances of MessagePlan. Each message plan specifies
how to invoke the corresponding method and describes its effects. When the
constraint satisfier decides that one of the methods will need to be invoked at run
time, the message plan that represents that method is asked to generate code
that will send the appropriate Smalltalk message to activate the method. Exactly
which methods are used depends on the other constraints and on the user’s
preferences as to what should be done if the object is underconstrained.

The rule is used to construct a procedural test for checking whether or not the
constraint is satisfied and to construct an error expression that indicates how
well the constraint is satisfied. Both the test and the error expression are instances
of class Method. These methods are constructed in a fairly simple-minded way.
If the constraint’s rule equates numbers or points, the test checks that the two
sides of the equation are equal to within some tolerance; the error will be the
difference of the two sides of the equation. If the constraint is nonnumerical, the
rule is used directly to generate the test; the error will be zero if the constraint is
satisfied and one if it is not. If the user wants to override these default methods,
he or she can replace them with hand-coded Smalltalk methods.

4.3.1 Example of a Constraint. Consider the structure described by the class
MidPointLine used in the quadrilateral example.

Class MidPointLine
Superclasses
Geometric Object
Part Descriptions
line: a Line
midpoint: a Point
Constraints
midpoint = (line pointl + line point2)/2
midpoint < (line pointl + line point2)/2
line pointl «— midpoint * 2 — line point2
line point2 < midpoint * 2 — line pointl

The class MidPointLine has a constraint that the midpoint lie halfway between
the endpoints of the line. The constraint has three alternate ways of satisfying
itself, as described by the methods listed under the rule. The first method alters
the midpoint, the second one alters one endpoint of the line, and the third alters
the other endpoint.

The user may want one method to be used in preference to another if there is
a choice. This is indicated by the order of the methods: if the system has a choice
about which method to use to satisfy the constraint, the first one on the list is
used. In the case of the midpoint, the user preferred that the constraint be
satisfied by moving the midpoint rather than by moving an end of the line.

4.3.2 Relations Among the Parts of a Constraint. The relations among the
parts of a constraint are fairly rigidly defined. Each of the methods, if invoked,
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must cause the constraint to be satisfied. For every part that is referenced by the
rule, there must be either a method that alters that part or a dummy method
referencing it. Currently, it is up to the user to see that these requirements are
met; none of this is checked by the system.

As has been previously discussed, Smalltalk makes a strong distinction between
the inside and the outside of an object. A method for satisfying a constraint is
internal to the constraint and its owner, while the message plan that describes
the method is the external handle of that method. It is the message plan that is
used by the constraint satisfier in planning how to satisfy an object’s constraints.

In particular, the path of a message plan describes the side effects of its method.
The constraint satisfier uses this information to detect overlap in the parts
affected by the various methods. Therefore, the more precisely one can specify
which subparts are affected by the method, the more information the constraint
satisfier has to work with. Also, the constraint satisfier can do more with a
method if it is known that there is only one state of the subpart affected by the
method that satisfies the constraint, given the states of all other parts. This is
described by the Boolean variable uniqueState listed previously; in the example
above, uniqueState is true.

This way of describing constraints allows the representation of relations that
are not very tractable analytically. Any sort of relation can be expressed as a
constraint, if a procedural test exists and some algorithm can be specified for
satisfying the relation. In the most extreme case of analytical intractability, the
constraint has a single method that affects the entire object that owns the
constraint, and this message is not uniqueState. However, in such a case, the
constraint satisfier has little to work with, and only one such constraint can be
handled.

4.4 Merges

An important special case of a constraint is a merge. When several parts are
merged, they are constrained to be all equal. For efficiency, they are usually
replaced by a single object, rather than being kept as several separate objects.
The owner of the parts maintains a symbolic representation of the merge for use
by constraint satisfiers, as well as for reconstruction of the original parts if the
merge is deleted. There are two principal uses of merging, both of which were
illustrated by the introductory example in Section 2.1. The first use is to represent
connectivity, for example, to connect the sides of the quadrilateral. The other is
for applying predefined constraints, as was done with the midpoint constraint. As
with constraints, adding or modifying a merge is a structural change; so only
prototypes allow their merges to be edited. The process of merging is the same
for both these uses. The object that owns the parts to be merged (e.g., QTheorem)
is sent the message merge: paths, where paths is a list of paths to the parts to be
merged.

When it can be done, the replacement of several merged objects by a single
object yields a more compact storage format and speeds up constraint satisfaction
considerably, since information need not be copied back and forth between the
parts that have been declared equal. It does not result in any loss of information,
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since the owner of the parts keeps a symbolic representation of the merge that
contains enough information to reconstruct the original parts. On the other hand,
it is slower to merge or unmerge parts, since more computation is required; so, for
applications in which the structure of the object changes frequently, equality
constraints would be more efficient. Another efficiency consideration is that a
single merge can apply to an indefinite number of objects, while constraints have
built into them the number of objects to which they apply. Thus, it is simple to
make five separate points be equal using merges. To do this with equality
constraints would require either that four separate constraints be used or that a
special equality constraint be defined for use with five objects.

The most difficult parts of the ThingLab system to program and debug were
those that deal with adding and deleting merges, due especially to interactions
among merges at different levels of the part~-whole hierarchy. For example, in the
quadrilateral construction presented in Section 2.1, when merging the line part of
the MidPointLine with the side of the quadrilateral, the system not only had to
substitute a new line for the two line parts, but because of the merges connecting
the sides of the quadrilateral it also had to substitute a new endpoint for the two
connecting sides. In fact, at one point the author gave up in disgust and always
represented merges by using equality constraints; but he eventually backtracked
on this choice because it made things too slow for typical uses of ThingLab.
Future implementers of systems using merges are hereby warned!

5. CONSTRAINT SATISFACTION

5.1 Overview

Constraint satisfaction is divided into two stages: planning and run time. Planning
commences when an object is presented with a message plan. This message plan
is not an actual request to do something; rather, it is a declaration of intent: a
description of a message that might be sent to the object. Given this description,
the object generates a plan to be used at run time for receiving such messages,
while satisfying any constraints that might be affected. The results of this
planning are compiled as a Smalltalk method. Directions for calling the compiled
method are returned as a new message plan.

Consider the quadrilateral example described in Section 2.1. When the user
selects move Point and first positions the cursor over a vertex of the quadrilateral,
the ThingLab window composes a message plan and presents it to the quadri-
lateral. The quadrilateral decides how to move its vertex while still keeping all
the midpoint constraints satisfied and embeds this plan in a compiled Smalltalk
method. It then returns another message plan that gives directions for invoking
that method. As the user pulls on the vertex with the cursor, the window
repeatedly sends the quadrilateral a message asking it to update its position. This
message invokes the Smalltalk method that was just compiled.

During planning, the object that is presented with the message plan creates an
instance of ConstraintSatisfier to handle all the work. The constraint satisfier
gathers up all the constraints that might be affected by the change and plans a
method for satisfying them. The constraint satisfier first attempts to find a one-
pass ordering for satisfying the constraints. There are two techniques available
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for doing this: propagation of degrees of freedom and propagation of known
states. If there are constraints that cannot be handled by either of these tech-
niques, the constraint satisfier asks the object for a method for dealing with
circularity. Currently, relaxation is the only such method available. If relaxation
is used, the user is warned, so that perhaps some other redundant constraints can
be supplied that eliminate the need for relaxation. Relaxation is described in
Section 5.2.3.

5.2 Constraint Satisfaction Methods

The constraint satisfaction methods used in ThingLab are now described in more
detail. To illustrate the operation of the methods, an electrical circuit example is
used (Figure 16). Briefly, the classes involved are as follows. Instances of class
Node are connection points. The parts of a node are a voltage and a set of
currents flowing into that node; there is also a constraint that the sum of the
currents be zero. (This is Kirchhoff’s current law.) A subclass of Node is Ground,
which has an additional constraint that its voltage be zero. Instances of Lead, like
their physical counterparts, are used to connect devices. The parts of a lead are
a node and a current; there is a constraint that the current belong to the node’s
set of currents flowing into it. Leads are connected by merging their nodes. There
is a general class TwoLeadedObject, whose parts are two instances of Lead, and
which has a constraint that the currents in the lead be equal and opposite. A
number of subclasses of TwoLeadedObject are defined, including Resistor, Bat-
tery, Wire, and Meter; Meter in turn has subclasses Ammeter and Voltmeter. All
these objects have appropriate constraints on their behavior: a resistor must obey
the Ohm’s law constraint relating its resistance, the current flowing through it,
and the voltage across it; an ammeter must display the current flowing through
it; and so forth. A complete listing of the ThingLab classes for building electrical
circuit simulations is given in [2].

5.2.1 Propagation of Degrees of Freedom. In propagating degrees of freedom,
the constraint satisfier looks for a part with enough degrees of freedom so that it
can be altered to satisfy all its constraints. If such a part is found, that part and
all the constraints that apply to it can be removed from further consideration.
Once this is done, another part may acquire enough degrees of freedom to satisfy
all its constraints. The process continues in this manner until either all constraints
have been taken care of or no more degrees of freedom can be propagated.

Because of the difficulty of giving a precise definition of degrees of freedom for
nonnumeric objects, the constraint satisfier uses a simpleminded criterion for
deciding if a part has enough degrees of freedom to satisfy its constraints: it has
enough degrees of freedom if there is only one constraint that affects it. It does
not matter whether or not the constraint determines the part’s state uniquely
(removes all its degrees of freedom).

In deciding when a constraint affects a part, the part-whole hierarchy must be
taken into account. The set of constraints that affect a given part is found by
checking whether the path to the part overlaps the paths of any of the message
plans generated by the constraints. Thus, a constraint on the first endpoint of a
line affects the line as a whole, the first endpoint, and the x coordinate of the first
endpoint; but it does not affect the line’s second endpoint.
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Fig. 16. A voltage divider.

In the voltage divider example, the text that displays the voltmeter’s reading
has only a single constraint on it: that it correspond to the voltage drop between
m2 leadl node and m2 lead2 node. Similarly, the text in the ammeter is
constrained only by its relation to m1 leadl current. Therefore, these pieces of
text can be updated after the voltage drop and current are determined, and their
constraints can be removed from further consideration. In this case, there are no
propagations that follow.

5.2.2 Propagation of Known States. This method is very similar to the previ-
ous one. In propagating known states, the constraint satisfier looks for parts
whose state will be completely known at run time, that is, parts that have no
degrees of freedom. If such a part is found, the constraint satisfier looks for one-
step deductions that will allow the states of other parts to be known at run time,
and so on recursively. For the state of part A to be known (in one step) from the
state of part B, there must be a constraint that connects A and B and that
determines A’s state uniquely. This is indicated by the uniqueState flag on the
message plan whose target is A. When propagating known states, the constraint
satisfier can use information from different levels in the part-whole hierarchy: if
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the state of an object is known, the states of all its parts are known; if the states
of all the parts of an object are known, the state of the object is known.

If the state of a part is uniquely determined by several different constraints,
one of the constraints is used to find its state, and run-time checks are compiled
to see if the other constraints are satisfied.

In the example, this method would be used as follows. By the constraint on the
ground, at run time b1 lead2 node voltage is known. (Actually, it was already
known during planning, but the constraint satisfier does not use this information.)
Also, by the battery’s constraint, &1 leadl node voltage is known, and it is the
same as ml leadl node voltage. The ammeter has a constraint that there be no
voltage drop across it, and so ml lead2 node voltage is known. Similarly, the
voltmeter has a constraint that it draw no current, and so the current in its
leads and connecting wires is known. Finally, by the constraint on the wires, wl
lead2 node voltage, w2 lead2 node voltage, and w3 leadl node voltage are all
known.

The voltage at the node between the resistors, and all the other currents, are
still unknown.

5.2.3 Relaxation. If there are constraints that cannot be handled by either of
these techniques, the constraint satisfier asks the object for a method for dealing
with circularity. Currently, relaxation is the only such method available (unless
the user supplies more information; see below). Relaxation can be used only with
objects that have all numeric values; also, the constraints must be such that they
can be adequately approximated by a linear equation.

When relaxation is to be used, a call on an instance of Relaxer is compiled. At
run time, the relaxer changes each of the object’s numerical values in turn so as
to minimize the error expressions of its constraints. These changes are determined
by approximating the constraints on a given value as a set of linear equations and
finding a least-mean-squares fit to this set of equations. The coefficients of each
linear equation are calculated by noting the initial error and by numerically
finding the derivative of the error expressions with respect to the value. Relaxa-
tion continues until all the constraints are satisfied (all the errors are less than
some cutoff), or until the system decides that it cannot satisfy the constraints
(the errors fail to decrease after an iteration).

Often, many more parts would be relaxed than need to be. To help ease this
situation, a trick is used during planning. The trick is to try assuming that the
state of one of the parts to be relaxed, say P, is known. This part P is chosen by
looking for the part with the largest number of constraints connecting it to other
still unknown parts. P is placed in a set S. Then the method of propagation of
known states is invoked to see if the states of any other parts would become
known as a result. All the parts which would become known, along with P itself,
are eliminated from the set of parts to be relaxed. The process is repeated until
the set of parts to be relaxed is empty. At run time, only the parts in S are relaxed.
As each part P in S is relaxed, the system also computes the new states of the
parts which had become known as a result of assuming that P was known. In
computing the error in satisfying the constraints on P, the system considers the
errors in satisfying the constraints on both P itself and also these other parts.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981.



The Programming Language Aspects of ThingLab . 385

! 0.0 !

003 -

+
-—-——‘I I_'N'rtp = llﬁ———

n

Ik
|

.||I

Fig. 17. The voltage divider with an added instance of SeriesResistors.

In the voltage divider, r2 leadl current has three constraints connecting it to
other unknowns: the Ohm’s law constraint on r2, r2’s constraint inherited from
TwoLeadedObject, and the Kirchhoff’s law constraint on r2 leadl node. No other
unknown has more constraints, and so the system tries assuming that it is known.
Given its value, r2 leadl node voltage and all the other currents would be known.
Therefore, at run time, only r2 leadl current is relaxed.

5.2.4 Using Multiple Views to Avoid Relaxation. Using the method employed
by Steele and Sussman [13], another view of the voltage divider may be added
that obviates the need for relaxation. First, a new class SeriesResistors is defined
that embodies the fact that two resistors in series are equivalent to a single
resistor. An instance of SeriesResistors has three parts: resistors rA and B, which
are connected in series, and an equivalent single resistor rSeries. There is a
constraint that the resistance of rSeries be equal to the sum of rA’s resistance
and rB’s resistance.

To add this new description to the voltage divider, an instance of Series-
Resistors is inserted in the circuit (call it series), and the resistors rA and rB of
series are merged with the existing resistors r1 and r2 in the circuit (Figure 17).
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Using this additional description, all the constraints can be satisfied in one
pass. As previously described, m1 lead2 node voltage and w1 lead2 node voltage
are both known. These are the same as series rSeries leadl node voltage and
series rSeries lead2 node voltage, respectively. Thus, by the Ohm’s law constraint
on series rSeries, series rSeries leadl current is known. But this is the same
current as series rA leadl current and also the same as rl leadl current. Again
by Ohm’s law, the voltage at the midpoint, 71 lead2 node voltage, is known. All
the other currents are also known.

It is appropriate to apply this redundant view to a pair of resistors in series
only if there is no significant current flowing from the center node of the resistors.
If this is not the case, then some of the constraints are not satisfiable, and the
user is notified. However, in the present implementation there is no explicit
representation of the fact that a redundant description has been provided; the
system could do a better job of describing the reason that the constraints could
not be satisfied if it knew about the use of such descriptions.

6. CONCLUSION

This paper has described ThingLab, a simulation laboratory. The system uses a
number of concepts and techniques (in particular, constraints) that could add
significant power to programming languages. A promising direction for future
research is to explore the design of a full constraint-oriented programming
language; work on this topic is underway, both by the author and by other
researchers. Constraints will be taking an increasingly prominent position in our
paradigms for programming in the years to come.
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