Abstraction in Technical Computing
by
Jeffrey Werner Bezanson

A.B., Harvard University (2004)
S.M., Massachusetts Institute of Technology (2012)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2015

(© Massachusetts Institute of Technology 2015. All rights reserved.

Department of Electrical Engineering and Computer Science
May 20, 2015

Alan Edelman
Professor
Thesis Supervisor

Accepted Dy ..o
Leslie Kolodziejski
Chairman, Department Committee on Graduate Students

Abstraction in Technical Computing
by

Jeffrey Werner Bezanson

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2015, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Array-based programming environments are popular for scientific and technical computing.
These systems consist of built-in function libraries paired with high-level languages for in-
teraction. Although the libraries perform well, it is widely believed that scripting in these
languages is necessarily slow, and that only heroic feats of engineering can at best partially
ameliorate this problem.

This thesis argues that what is really needed is a more coherent structure for this func-
tionality. To find one, we must ask what technical computing is really about. This thesis
suggests that this kind of programming is characterized by an emphasis on operator com-
plexity and code specialization, and that a language can be designed to better fit these
requirements.

The key idea is to integrate code selection with code specialization, using generic functions
and data-flow type inference. Systems like these can suffer from inefficient compilation, or
from uncertainty about what to specialize on. We show that sufficiently powerful type-based
dispatch addresses these problems. The resulting language, Julia, achieves a Quine-style
“explication by elimination” of many of the productive features technical computing users
expect.

Thesis Supervisor: Alan Edelman
Title: Professor

Acknowledgments

Contents

List of Figures

List of Tables

1

2

Introduction

1.1 The technical computing problem

1.2 Solution space
1.2.1 Dispatch
1.2.2 Staged programming

1.3 Summary of contributionso

The nature of technical computing

2.2 Why dynamic typing?
2.2.1 Mismatches with mathematical abstractions
2.2.2 I/O and data-oriented programming

2.3 Tradeoffs in current designso
2.3.1 Vectorization
2.3.2 Data representationo o Lo

2.4 A compiler for every problemo

2.5 Social phenomena

11

13

15
17
18
18
20
21

3 Design space 37

3.1
3.2

3.3

3.4
3.5

3.6

4 The
4.1
4.2

4.3

4.4
4.5

A binding time dilemmao 37
Domain theory 40
3.2.1 Programs and domains 41
Dispatch systems 44
3.3.1 A hierarchy of dispatch 45
3.3.2 Predicate dispatch 49
3.3.3 Symbolic programmingo 50
3.3.4 Choices, choices 51
Subtyping 52
Specialization 52
3.5.1 Parametric vs. ad hoc polymorphism 52
3.5.2 Separate compilation vs. performance 53
Design summaryo 54
Julia approach 55
Core calculus o 5%)
Type systemo 58
4.2.1 Type constructorso 63
4.2.2 Subtyping 64
Dispatch system 68
4.3.1 Type and method caches 68
4.3.2 Specificityo 69
4.3.3 Parametric dispatcho o000 70
4.3.4 Diagonal dispatch oL 70
4.3.5 Constructors 71
4.3.6 Ambiguities 72
Generic programming 73
Staged programming 75

4.6 Higher-order programming Lo

4.6.1 Problems for code selection
4.6.2 Problems for code specialization
4.6.3 Possible solutions oo
4.6.4 Implementingmap.
4.7 Performance modelo
4.7.1 Typeinference
4.7.2 Specialization
4.7.3 Performance predictability o000
4.8 Dispatch utilizationo

5 Case studies

5.1 Conversion and comparisono
5.2 Numeric types and embeddings
5.3 Multidimensional array indexing
5.4 Numerical linear algebrao oL
5.5 Unibs o o
5.6 Algebraic modeling with JuMP
5.7 Boundary element method oL
5.8 Beating the incumbents L Lo
6 Conclusion
6.1 Performance
6.2 Implementation issueso
6.3 Future work
6.4 Project status

A Subtyping algorithm

B Staged numerical integration

87
87
89
96
99
100
102
105
110

113
114
114
114
114

115

121

Bibliography 125

10

List of Figures

1-1

2-1

3-1

4-1
4-2

49 technical computing languages 16
Performance of vectorized codeo oL 32
A lattice of array types 42
Subtyping algorithm 64
An implementation of map 82

11

12

List of Tables

1.1

2.1

3.1

4.1
4.2

5.1

Programming language prioritieso L 17
Performance of vander Lo 28
Attributes of code selection features 51
Sharing of function types 79
Multiple dispatch use statistics oL 86
Performance of linear programming tools 104

13

14

Chapter 1

Introduction

Scientific computing has evolved from being essentially the only kind of computing that
existed, to being a small part of how and why computers are used. Over this period of time,
programming tools have advanced in terms of the abstractions and generalizations they are
capable of.

Science as a whole evolves through the incorporation of specialized bits of knowledge into
more powerful general theories. There is a parallel in the world of programming languages:
special-purpose languages have been subsumed by more powerful and general languages.
How has this trend affected scientific computing? The surprising answer is: not as much as
we would like. We see scientists and technical users generally either turning away from the

best new programming languages, or else pushing them to their limits in unusual ways.

In fact, we have discovered at least 49 programming languages designed for technical
computing since Fortran (figure 1-1). This high number begs for an explanation. We propose
that technical users crave the flexibiltiy to pick notation for their problems, and language
design — the highest level of abstraction — is where you go when you need this level of
flexibility. The desire for scientists to rework their code is not so surprising when one reflects
on the tradition of inventing new notation in mathematics and science.

The need for language-level flexibility is corroborated by the ways that the technical

computing domain uses general purpose languages. Effective scientific libraries extensively

15

Productivity Performance
Matlab Maple Mathematica SciPy Fortress
SciLab IDL R Octave Chapel
S-PLUS SAS J APL X10
Maxima Mathcad Axiom Sage SAC
Lush Ch LabView O-Matrix | ZPL
PV-WAVE Igor Pro OriginLab FreeMat
Yorick GAUSS MuPad Genius
SciRuby Ox Stata JLab
Magma Euler Rlab Speakeasy
GDL Nickle gretl ana
Torch7 A+ PDL Nial

Figure 1-1: 49 technical computing languages classified as primarily designed for productivity or
performance

employ polymorphism, custom operators, and compile time abstraction. Code generation
approaches (writing programs that write programs) are unusually common. Most of these
techniques are presently fairly difficult to use, and so programmers working at this level give

up the notational conveniences of the purpose-built languages above.

The goal of this thesis is to identify and address the fundamental issues that have made
productive and performant technical computing so difficult to achieve. We ask: which general
purpose language would also be able to handle technical computing, such that the above

workarounds would not have been necessary?

In brief, our answer is to integrate code selection and specialization. The aforementioned
flexibility requirement can be explained as a sufficiently powerful means for selecting which
piece of code to run. When such mechanisms are used in technical computing, there is nearly
always a corresponding need to specialize code for specific cases to obtain performance.
Polymorphic languages sometimes support forms of specialization, but often only through a
designated mechanism (e.g. templates), or deployed conservatively out of resource concerns.
We intend to show that an equilibrium point in the design space can be found by combining
selection and specialization into a single appropriately designed dynamic type-based dispatch

mechanism.

16

Mainstream PL Technical computing

classes, single dispatch complex operators

separate compilation performance, inlining

parametric polymorphism | ad hoc polymorphism, extensibility

static checking experimental computing

modularity, encapsulation | large vocabularies

eliminating tags self-describing data, acceptance of tags

data hiding direct manipulation of data

Table 1.1: Priorities of mainstream object-oriented and functional programming language research
and implementation compared to those of the technical computing domain.

Thesis statement

Integrating code selection and specialization using type-based dynamic dispatch captures

both the performance and productivity requirements of technical computing.

1.1 The technical computing problem

Table 1.1 compares the general design priorities of mainstream programming languages to
those of technical computing languages. The priorities in each row are not necessarily oppo-
sites or even mutually exclusive, but rather are a matter of emphasis. It is certainly possible
to have both parametric and ad hoc polymorphism within the same language, but syntax,
recommended idioms, and the design of the standard library will tend to emphasize one or
the other. Of course, the features on the left side can also be useful for technical computing;
we exaggerate to help make the point.

It is striking how different these priorities are. We believe these technical factors have
contributed significantly to the persistence of specialized environments in this area. Imagine
you want just the features on the left. Then there are many good languages available:
Haskell, ML, Java, C#, perhaps C++. Getting everything on the right, by comparison,

seems to be awkward. The most popular approach is to use multiple languages, as in e.g.

17

NumPy [106], with a high-level productivity language layered on top of libraries written in
lower-level languages. Seeking a similar tradeoff, others have gone as far as writing a C++

interpreter [107].

1.2 Solution space

It is clear that any future scientific computing language will need to be able to match the
performance of C, C++, and Fortran. To do that, it is almost certain that speculative
optimizations such as tracing [45] will not be sufficient — the language will need to be able
to prove facts about types, or at least let the user request specific types. It is also clear that
such a language must strive for maximum convenience, or else the split between performance
languages and productivity languages will persist.

It is fair to say that two approaches to this problem are being tried: one is to design
better statically typed languages, and the other is to apply program analysis techniques to
dynamically typed languages. Static type systems are getting close to achieving the desired
level of flexibility (as in Fortress [4] or Polyduce [22], for instance), but here we will use a
dynamically typed approach.We are mostly interested in types in the sense of data types and
partial information (for an excellent discussion of the many meanings of the word “type”
see [62]). Additionally, some idioms in this domain appear to be inherently, or at least
naturally, dynamically typed (as we will explore in chapter 2). The mechanism we will
explore provides useful run time behavior and, we hope, performance improvements. Many
approaches to statically checking its properties are likely possible, however we leave them to

future work.

1.2.1 Dispatch

There has been a large amount of work on running dynamic languages faster (notable ex-
amples are Self [28], and more recently PyPy [14]). These efforts have been very successful,

but arguably leave something out: a better interface to performance. Performance-critical

18

aspects of most dynamically typed languages (e.g. arithmetic) have fixed behavior, and it
is not clear what to do when your code does not perform as well as it could. Adding type
annotations can work, but raises questions about how powerful the type system should be,
and how it relates to the rest of the language. We speculate that this relative lack of control

keeps experts away, perpetuating the split between performance and productivity languages.

According to our theory, the issue is not really just a lack of types, but an exclusive
focus on specialization, and not enough on selection. In technical computing, it is often so
important to select the best optimized kernel for a problem that it is worth doing a slow
dynamic dispatch in order to do so. Most of the productivity languages mentioned above
are designed entirely around this principle. But their view of code selection is incomplete:
the dispatch mechanisms used are ad hoc and not employed consistently. Even when an
optimizing compiler for the source language is developed, it does not necessarily take all
relevant forms of dispatch into account. For example, NumPy has its own dispatch system
underneath Python’s, and so is not helped as much as it could be by PyPy, which only

understands Python method selection.

A dispatch specification, for example a method signature in a multimethod system, de-
scribes when a piece of code is applicable. A more expressive dispatch system then allows
code to be written in smaller pieces, helping the compiler remove irrelevant code from consid-
eration. It is also more extensible, providing more opportunities to identify special cases that
deserve tailored implementations. Method-at-a-time JIT compilers (e.g. [51, 102]) can spe-
cialize method bodies on all arguments, and so are arguably already equipped to implement
and optimize multiple dispatch (even though most object-oriented languages do not offer it).
At the same time, dispatch specifications are a good way to provide type information to the

compiler.

The remaining question is what exactly we should dispatch on. Naturally, it might be
nice to be able to dispatch on any criteria at all. However there is a balancing act to perform:
if dispatch signatures become too specific, it becomes difficult to predict whether they will

be resolved statically. At one end of the spectrum are mechanisms like static overloading in

19

C++, where the compiler simply insists that it be possible to resolve definitions at compile
time. At the other end of the spectrum, we might dispatch on arbitrary predicates (as in the
SCMUTILS system [103]). We do neither of these. Instead, our dispatch is based on sets of
values that are robust under evaluation: abstract evaluation over such sets is less likely to
diverge. For example, consider the set {1,2}. This set is not closed under “natural” functions.
As we evaluate a recursive function over this abstract value, the set will typically grow, and
the fixed point will be much larger than the original set. So while specializing a method
for {1,2} could in some rare cases be useful, it also leads to unpredictable performance. To
find reasonably robust sets to dispatch on, we begin with structured type tags and take the

closure under data flow operations. This will be developed in detail in section 4.2.

1.2.2 Staged programming

In demanding applications, selecting the right algorithm might not be enough, and we might
need to automatically generate code to handle different situations. While these cases are
relatively rare in most kinds of programming, they are remarkably common in technical

computing. Code generation, also known as staged programming, raises several complexities:

e What is the input to the code generator?
e When and how is code generation invoked?

e How is the generated code incorporated into an application?

These questions lead to practical problems like ad hoc custom syntax, extra build steps,
and excessive development effort (writing parsers and code generators might take more work
than the core problem). If code needs to be generated based on run time information,
then a staged library might need to implement its own dispatch mechanism for invoking its
generated code.

We find that our particular style of dynamic type-based dispatch provides an unusually
good substrate for staged programming. The reason is that the language, though dynam-

ically typed, has a powerful standard notion of partial information that can be used to

20

generate code based on semantic (not just syntactic) information. In general, this semantic
information can also include run time (and always, at least, approximate run time) infor-
mation. Since the types used by dispatch support nested structure, they convey enough
information to drive code generation for a significant class of problems. In this framework
code generators are invoked automatically by the compiler, and the results can be called di-
rectly or even inlined into user code. Libraries can switch to using a staged implementation

without affecting client code.

1.3 Summary of contributions

e We introduce the idea of integrated code selection and specialization. This leads to a

dispatch system that provides a novel combination of performance and expressiveness.

e A type system and subtyping algorithm designed for describing method applicability
and performance-critical aspects of data structures. This is the first system to apply
the semantic subtyping approach to technical computing. We provide a simple imple-
mentation of our subtyping algorithm. This subtyping system is adoptable by dynamic

languages that might benefit from a richer abstract value domain.

e James Morris eloquently observed that “One of the most fruitful techniques of lan-
guage analysis is explication through elimination. The basic idea is that one explains a
linguistic feature by showing how one could do without it.” [85] An additional contribu-
tion of this thesis is the application of our approach to features of technical computing
environments that have not been subject to such analysis before. We provide an ex-
ample application that shows how to use our language to more easily solve a difficult

computational problem.

e Finally, we contribute the Julia software system, currently a growing free software
project. To our knowledge, this is the first technical computing system written in a

single language. This demonstrates that our approach is both practical and appealing

21

to a significant number of users.

22

Chapter 2

The nature of technical computing

The original numerical computing language was Fortran, short for “Formula Translating
System”, released in 1957. Since those early days, scientists have dreamed of writing high-
level, generic formulas and having them translated automatically into low-level, efficient
machine code, tailored to the particular data types they need to apply the formulas to.
Fortran made historic strides towards realization of this dream, and its dominance in so
many areas of high-performance computing is a testament to its remarkable success.

The landscape of computing has changed dramatically over the years. Modern scientific
computing environments such as MATLAB [78], R [58], Mathematica [75], Octave [86],
Python (with NumPy) [106], and SciLab [50] have grown in popularity and fall under the
general category known as dynamic languages or dynamically typed languages. In these
languages, programmers write simple, high-level code without any mention of types like

int, float or double that pervade statically typed languages such as C and Fortran.

2.1 What is a technical computing environment?

This question has not really been answered. In fact technical computing software has been
designed haphazardly. Each system has evolved as a pile of features taken without what we

consider a sufficiently critical argument.

23

Some languages provide a “convenient” experience that is qualitatively different from
“inconvenient” languages. We believe this can be made somewhat precise. A large part of
“convenience” is the reduction of the amount you need to know about any given piece of
functionality in order to use it. This leads languages to adopt various forms of loose coupling,
automation, and elision of software engineering distinctions that are considered important
in other languages.

These systems are function-oriented, typically providing a rather large number of func-
tions and a much smaller number of data types. Type definitions and features for organizing
large systems are de-emphasized. But functions are heavily emphasized, and the functions
in these systems have a particular character one might describe as “manifest”: you just call

them, interactively, and see what they do. This notion includes the following features:

e Performing fairly large tasks in one function
e Minimal “set up” work to obtain suitable arguments
e No surrounding declarations

e Permissiveness in accepting many data types and attempting to automatically handle
as many cases as possible

Providing multiple related algorithms or behaviors under a single name

Language design choices affect the ability to provide this user experience (though the
first two items are also related to library design). Informally, in order to provide the desired
experience a language needs to be able to assign a meaning to a brief and isolated piece of code
such as sin(x). This leads directly to making declarations and annotations optional, eliding
administrative tasks like memory management, and leaving information implicit (for example
the definition scopes and types of the identifiers sin and x). These characteristics are
strongly associated with the Lisp tradition of dynamically typed, garbage collected languages
with interactive REPLs.

However, there are subtle cultural differences. A case in point is the MATLAB m1divide,
or backslash, operator [77]. By writing only A\B, the user can solve square, over- or under-

determined linear systems that are dense or sparse, for multiple data types. The arguments

24

can even be scalars, in which case simple division is performed. In short, a large amount of
linear algebra software is accessed via a single character! This contrasts with the software
engineering tradition, where clarifying programmer intent would likely be considered more
important. Even the Lisp tradition, which originated most of the convenience features
enumerated above, has sought to separate functionality into small pieces. For example
Scheme provides separate functions list-ref and vector-ref [3] for indexing lists and

vectors.

2.1.1 Case study: Vandermonde matrices

To get a sense of how current technical computing environments work, it is helpful to look at a
full implementation example. NumPy [106] provides a function for generating Vandermonde
matrices which, despite its simplicity, demonstrates many of the essential language char-
acteristics this thesis addresses. The user-level vander function is implemented in Python
(here lightly edited for presentation):
def vander(x, N):

x = asarray (x)

if x.ndim '= 1:
raise ValueError ("x must be a one-dimensional array or sequence.")

v = empty((len(x), N), dtype=promote_types(x.dtype, int))

if N > O:
vi:, 0] =1
if N > 1:
vi:, 1:] = x[:, None]
multiply.accumulate(v[:, 1:], out=v[:, 1:], axis=1)

return v

This code has many interesting features. Its overall structure consists of normalizing and
checking arguments, allocating output, and then calling the lower-level kernel multiply.accumulate
(written in C) to run the inner loop. Even though most of the work is done in C, notice

why this part of the code is written in Python. vander accepts nearly anything as its first

25

argument, relying on asarray to convert it to an array. There is no need to write down
requirements on argument x, allowing the set of supported inputs to grow easily over time.
Next, an output array of the correct size is allocated. The key feature of this line of code
is that the data type to use is computed using the function promote_types. This kind of
behavior is difficult to achieve in statically typed languages.

The call to multiply.accumulate invokes a C function called PyUFunc_Accumulate,
which is over 300 lines long. The job of this function is to look up an appropriate com-
putational kernel to use given the types of the input arguments and the operation being
performed (multiply). In other words, it performs dynamic dispatch. This is notable be-
cause Python itself is already based on dynamic dispatch. However, Python’s class-based
dispatch system is not particularly helpful in this case, since the code needs to dispatch
on multiple values. Therefore NumPy’s C code implements a custom dispatch table. The
targets of this dispatch are many compact, specialized loops generated by running C code
through a custom preprocessor.

The mechanism is complicated, but the results are appealing: NumPy code has full run
time flexibility, yet can still achieve good inner-loop performance. Notice that this result
is obtained through a clever, if painstaking, mixture of binding times. Python performs
some late-bound operations, then calls an early-bound C routine, which performs its own
late-bound dispatch to a loop of early-bound operations.

A central message of this thesis is that this kind of program behavior is useful, highly
characteristic of technical computing, and can be provided automatically at the language
level. Here is how the above dispatch scheme might be implemented in Julia (mirroring the

structure of the Python code as much as possible to facilitate comparison):

function vander (x, N::Int)

x = convert (AbstractVector, x)
M = length(x)
v = Array(promote_type(eltype(x),Int), M, N)
if N > 0
vi:, 1] =1
end
if N > 1

26

for i = 2:N; v[:, i] = x; end
accumulate (MulFun (), v, v)
end
return v
end

function accumulate (op, input, output)

M, N = size(input)

for 1 = 2:N

for j = 1:M
output [j,i] = op(inputl[j,il], dinput[j,i-1]1)
end

end
end
This code implements the entire vander computation (with some details left out, for example
it does not provide the axis argument of multiply.accumulate). The C component is
replaced by a general type-based dispatch system that handles specializing and then invoking
an efficient implementation of accumulate for each combination of argument types.

Performance is shown in table 2.1. When repeating the computation many times for
small matrix sizes, the overhead of the two-language dispatch system in NumPy completely
swamps computation time. In the Julia vander, the type of v is known to the compiler, so
it is able to generate a direct call to the correct specialization of accumulate, and there is
no dispatch overhead. For large data sizes dispatch overhead is amortized, and NumPy is
much faster. It is not clear why Julia is still faster in this case; it may be due to NumPy’s
more general algorithm that can accumulate along any dimension. In some cases, built-in
routines in NumPy are slightly faster than Julia implementations. However, the Julia code
for accumulate is so compact that it is reasonable to write manually when needed; a fully
general library function is not required.

In some cases our compiler would not be able to determine the type of v. We simulated
this situation and repeated the benchmark. Results are shown in the rightmost column of
the table. Dispatch overhead is now significant for small data sizes. However, performance

is still fairly good, since there is only a single layer of dispatch. The dynamic dispatch logic

exists in only one place in our code, where it can be extensively optimized.

27

Size # iter | NumPy | Julia | Julia with dispatch

4 x4 250000 5.43 | 0.072 0.204
2000 x 2000 1 0.420 | 0.037 0.037

Table 2.1: Time in seconds to compute vander, 4 x 10% total points arranged in many small

matrices or one large matrix.

There is a perception that the performance of technical code is divided into two cases:
array code and scalar code. Array code is thought to perform well, and while scalar code
has not traditionally performed well, it can be fixed with JIT compilation add-ons or by
rewriting in C or by using extensions like Cython [110, 10]. The results here, though simple,
demonstrate why we feel a different approach is needed instead: abstraction overhead is

important and involves the whole program, not just inner loops.

2.2 Why dynamic typing?

Mathematical abstractions often frustrate our attempts to represent them on a computer.
Mathematicians can move instinctively between isomorphic objects such as scalars and 1-by-
1 matrices, but most programming languages would prefer to represent scalars and matrices
quite differently. Specifying interfaces precisely seems more rigorous, and therefore possibly
of use in mathematics, but technical users have voted with their code not to use languages
that do this. A perennial debate occurs, for example, around the exact relationship between
the notions of array, matriz, and tensor. In MATLAB, scalars and 1 x 1 matrices are
indistinguishable. Informal interfaces, e.g. as provided by “duck typing”, are a viable way
to share code among disciplines with different interpretations of key abstractions. It is not

too surprising that dynamic typing is popular in the technical computing world.

28

2.2.1 Mismatches with mathematical abstractions

Programs in general, deal with values of widely varying disjoint types: functions, numbers,
lists, network sockets, etc. Type systems are good at sorting out values of these different
types. However, in mathematical code most values are numbers or number-like. Numerical
properties (such as positive, negative, even, odd, greater than one, etc.) are what matter,
and these are highly dynamic.

The classic example is square root (sqrt), whose result is complex for negative arguments.
Including a number’s sign in its type is a possibility, but this quickly gets out of hand. When
computing eigenvalues, for example, the key property is matrix symmetry. Linear algebra
provides many more examples where algorithm and data type changes arise from subtle
properties. These will be discussed in more detail in section 5.4.

We must immediately acknowledge that static type systems provide mechanisms for deal-
ing with “dynamic” variations like these. However, these mechanisms require deciding which
distinctions will be made at the type level, and once the choice is made we are restricted
in how objects of different types can be used. In the domain of linear algebra, for example,
it would be useful to have matrices that are considered different types for some purposes
(e.g. having different representations), but not others (e.g. different types of matrices can be

returned from the same function).

2.2.2 1I/0 and data-oriented programming

Inevitably there is a need to refer to a datatype at run time. A good example is file [/O, where
you might want to say “read n double precision numbers from this file”. In static languages
the syntax and identifiers used to specify data types for these purposes are usually different
from those used to specify ordinary types. A typical example is a constant like MPT_DOUBLE
[99], used to indicate the data type of an MPI message. Many libraries, especially those for
tasks like interacting with databases and file formats, have their own set of such tags. Using
more than one of these libraries together can result in boilerplate code to map between tag

systems.

29

Polymorphic languages provide better interfaces in these cases. For example, C++ over-
loading can be used to provide the correct tag automatically based on the type of a function
argument. However, these techniques only work for statically known types. Code like that
in the vander example that determines types using arbitrary computation is excluded. Dy-
namic typing provides a complete solution. Indeed, I/O examples are often used to motivate
dynamic typing [2]. With dynamic typing, a single set of names can be used to refer to
all types regardless of binding time, and the user may write whatever code is convenient to

handle classifying data moving in and out of a program.

2.3 Tradeoffs in current designs

Current systems accept certain design tradeoffs to obtain flexibility.

2.3.1 Vectorization

The attitude of vectorization proponents has been somewhat famously summarized as “Life
is too short to spend writing for loops.” [1] The vectorized style has the following touted

benefits:

1. One may write sin(x) to compute the sine of all elements of x, which is more compact

than writing a loop.

2. Most execution time can be spent inside an expertly written library, taking advantage
of special hardware (e.g. SIMD units or stream processors like GPUs) and parallelism

implicitly.
3. The performance of the high-level language being used becomes less relevant.

4. The compiler can optimize across whole-array operations, potentially drastically rear-
ranging computations in a way that would be difficult to do by examining one scalar

operation at a time.

30

Under close inspection, this argument begins to break down.

An equivocation takes place between being able to write a loop as sin(x) and being
required to. The former is all we really want, and it is possible in any language that supports
some form of function overloading. There is no inherent reason that a high-performance

language like C++ or Fortran cannot also support more compact, high-level notation.

Studies reveal that many real-world applications written in vectorization languages ac-
tually do not spend most of their time in libraries [84]. It is possible for an interpreter to be

so slow that it cancels the advantage of optimized kernels for a range of realistic data sizes.

The final reason, enabling advanced optimizations, is compelling. However at a certain
point a “vectorization bottleneck” can be reached, where performance is limited by expressing
computations in terms of in-memory arrays. Figure 2-1 compares the operation rate of three
different algorithms for evaluating the polynomial 2% + x — 1 over double precision vectors
of varying size. The solid line describes a naive algorithm, where each operation allocates
a new array and fills it with one intermediate result (a total of three arrays are needed
for the full evaluation). The dotted line algorithm is similar in spirit, except the three
operations are “fused” into a single loop. Only one pass is made over the data and one new
array is allocated. Naturally performance is much better in this case, and advanced array

programming environments like APL [40] and ZPL [67] implement this optimization.

However, this level of performance is not impressive compared to the dashed line, which
describes the operation rate for computing the same results but summing them instead of
storing them. Finally, the dash-dotted line uses no memory at all, instead computing input
data points from a linear range. Of course a real use case might require data to be read from
memory or stored, so this comparison is unfair (though not entirely, since many numerical
environments have represented even simple objects like linear ranges using dense vectors
[76]). Still the point should be clear: vectors are not necessarily a good abstraction for
high performance. The observation that memory is a bottleneck is not new, but for our
purposes the important point is that languages that only support vectorized syntax cannot

express the code rearrangements and alternate algorithms that can be necessary to get the

31

5,

GFlops

O,

‘74. ________ ' ________
PR
————— @ ------@ _ _ _
TTe------ - -----
® ... P
.
.

--o- All scalar
-e- Summed
. Fused
—e— Vectorized

Figure 2-1:

10!

Performance of evaluating x? 4+ 2 — 1 over a double precision vector of length n.

102

103 104 10° 106
Vector Size

107

Operation repeated 107 /n times. (Core i7-3517U 1.9GHz, 4MB cache, 8GB RAM)

best performance. A good technical computing language needs a more general interface to

performance.

The performance model resulting from vectorized syntax can be difficult to understand,
since it is difficult for users to predict which optimizations will be applied. A good example
was discussed on the julia-users mailing list [79]. Jason Merrill discovered a Mathematica

[75] list discussion of the fastest way to count how many values fall within a given range. Of

many proposed implementations, the fastest turned out to be

Total@Unitize@Clip[data,{min,max},{0,0}]

Arguably, it is difficult to know that this will run faster than, for example,

Count [data, x_/; min<=x<=max]

32

2.3.2 Data representation

There are two broad categories of programming language data models. The first, favored by
static languages, provides structures that are complex and rigid but efficient. Specific data
types can be grouped and stored together with known offsets and alignments. Most data
is stored directly, and pointer indirection must be explicitly requested. The second kind of
data model, favored by dynamic languages, prioritizes flexibility and simplicity. Most data

consists of pointers to tagged objects. Indirection is the default.

It’s reasonable to guess that these models would trade off about equally. If you want the
flexibility to substitute any kind of value in any location at run time, making everything
a pointer is the best you can do. The data layouts used by static languages require some
amount of metadata to describe, and manipulating this metadata at run time could have
significant overhead. In the “dynamic” data model, even though everything is a pointer,
at least the code knows that everything is a pointer, and so does not waste time switching

between different representations.

Interestingly, this intuition turns out not to be accurate. As memory performance be-
comes a larger bottleneck, using less space and avoiding indirection becomes more important.
Furthermore, most data in dynamic language programs is not as dynamic as its authors
might think, with homogeneous arrays being quite common. Good evidence for this claim
was documented as part of work on storage strategies [15], a technique for adapting dynamic
languages to use more efficient representations. The authors found that it was worthwhile
to represent an array as a wrapper providing a heterogeneous array interface on top of a
homogeneous array of varying type, even at the expense of extra dispatch and occasionally

changing the representation.

In some sense, our work takes this idea to its logical conclusion: why not support a
range of data representations from the beginning, managed by a single sufficiently powerful

dispatch system?

33

2.4 A compiler for every problem

In several prominent cases the language of a scientific sub-discipline is so far removed from
conventional programming languages, and the need for performance is so great, that practi-
tioners decide to write their own compilers. For example, the Tensor Contraction Engine [§]
accepts a mathematical input syntax describing tensor operations used for electronic struc-
ture calculations in quantum chemistry. The software performs many custom optimizations
and finally generates efficient parallel Fortran code. Other examples of such scientific code
generators include Firedrake [90] and FEniCS [70] for FEM problems, PyOP2 [91] for gen-
eral computations on meshes, FFTW [43] for signal processing, and Pochoir [104] for stencil
computations.

These systems can be highly effective, offering performance and productivity for their
problem domains that are not matched elsewhere. In the long term, however, a proliferation
of such projects would not be a good thing. It is substantially harder to reuse code between
languages and compilers than to reuse library code within a language, and it is harder to
develop a compiler than a library. Mainstream languages have not been doing enough to
facilitate these use cases. It would not be realistic to expect to replace all of these systems
at once, but Julia’s style of type-based dispatch helps. This will be discussed further in

section 4.5.

2.5 Social phenomena

In the open source world, the architecture of a system can have social implications. Main-
taining code in multiple languages, plus interface glue between them, raises barriers to con-
tribution. Making the high-level language fast helps tremendously here, but there are also
cultural differences between programmers who understand machine details and want more
control, and those who are happy to use defaults chosen by somebody else. We will argue
that it is possible to blend these styles, creating an effective compromise between the two

camps. Evan Miller expressed this well as “getting disparate groups of programmers to code

34

in the same language...With Julia, it’s the domain experts and the speed freaks.” [80]
This cultural difference often appears in the form of a decision about what to express at
the type level. For example, imagine a user has linear algebra code that decides whether to

use the QR factorization or the LU factorization to solve a system:

if condition
M = qr(A)
else
M = 1u(A)
end
solve (M, x)
Initially, gr and 1u might both return pairs of matrices. Later, linear algebra library develop-
ers might decide that each function should return a specialized type to store its factorization
in a more efficient format, and to provide dispatch to more efficient algorithms. This decision

should not break the user’s intuition that the objects are interchangeable in certain contexts.

We will discuss more extensive examples of such situations in chapter 5.

35

36

Chapter 3

Design space

This chapter will attempt to locate technical computing within the large design space of
programming languages. It will discuss how the priorities introduced in section 1.1 relate to
type systems and dispatch systems. Our lofty goal is to preserve the flexibility and ease of
popular high level languages, while adding the expressiveness needed for performant generic

programming.

3.1 A binding time dilemma
Consider the following fragment of a function called factorize, which numerically analyzes
a matrix to discover structure that can be exploited to solve problems efficiently:

if istril(A)
istriu(A) && return Diagonal (A)

utril = true
for j = 1:n-1, 1 = j+1:m
if utril && A[i,j] '= 0
utril = 1 == j + 1
end
end

utril && return Bidiagonal (diag(A), diag(A, -1), false)
return LowerTriangular (A)
end

37

The code returns different structured matrix types based on the input data. This sort of
pattern can be implemented in object-oriented languages by defining an interface or base
class (perhaps called StructuredMatrix), and declaring Diagonal, Bidiagonal, and so on
as subclasses.

Unfortunately, there are several problems with this solution. Class-based OO ties together
variation and dynamic dispatch: to allow a value’s representation to vary, each use of it needs
to perform an indirect call. A major reason to use structured matrix types like Bidiagonal
is performance, so we’d rather avoid the overhead of indirect calls. Most code operating
on Bidiagonal would be implementing algorithms that exploit its representation. These
algorithms would have to be implemented as methods of Bidiagonal. However this is not
natural, since one cannot expect to have every function that might be applied to bidiagonal
matrices defined in one place. This kind of computing is function-oriented.

Let’s try a different abstraction mechanism: templates and overloading. That would
allow us to write code like this:
if diagonal

solve(Diagonal (M), x)
elseif bidiagonal

solve (Bidiagonal (M), x)
end

Here, structured matrix types are used to immediately select an implementation of solve.
But the part that selects a matrix type can’t be abstracted away. We would like to be able
to write solve(factorize(M), x).

Given these constraints, the traditional design of technical computing systems makes
sense: pre-generate a large number of optimized routines for various cases, and be able to
dispatch to them at run time.

It’s clear what’s going on here: mathematics is dependently typed. If a compiler could
prove that a certain matrix were bidiagonal, or symmetric, there would be no problem.
But knowing what a given object is in a relevant sense can require arbitrary proofs, and in

research computing these proofs might refer to objects that are not yet well understood.

38

Most languages offer a strict divide between early and late binding, separated by what
the type system can statically prove. The less the type system models the domain of interest,
the more it gets in the way. The compiler’s ability to generate specialized code is also coupled
to the static type system, preventing it from being reused for domains the type system does
not handle well. In general, of course, lifting this restriction implies a need to generate code
at run time, which is not always acceptable. However run time code generation might not
be necessary in every case. A compiler could, for example, automatically generate a range of
specialized routines and select among them at run time, falling back to slower generic code

if necessary.

Consider the tradeoff this entails. The programmer is liberated from worrying about
the binding time of different language constructs. With a JIT compiler, performance will
probably be good. But without JIT, performance will be unpredictable, with no clear syn-
tactic rules for what is expected to be fast. So it is not surprising that software engineering
languages shun this tradeoff. However we believe it is the tradeoff technical computing users

want by default, and it has not generally been available in any language.

Designing for this tradeoff requires a change of perspective within the compiler. Most
compilers focus on, and make decisions according to, the language’s source-level type system.
Secondarily, they will perform flow analysis to discover properties not captured by the type
system. Given our goals, we need to invert this relationship. The focus needs to be on
understanding program behavior as thoroughly as possible, since no one set of rules will
cover all cases. Usually changing a language’s type system is a momentous event, but in
the analysis-focused perspective the compiler can evolve rapidly, with “as thoroughly as
possible” handling more cases all the time. This approach is still compatible with static
typing, although we will not discuss it much. Nothing stops us from picking a well-defined

subset of the system, or a separate type system, to give errors about.

The notion of “as thorough as possible” analysis is formalized by domain theory.

39

3.2 Domain theory

In the late 1960s Dana Scott and Christopher Strachey asked how to assign meanings to
programs, which otherwise just appear to be lists of symbols [96]. For example, given
a program computing the factorial function, we want a process by which we can assign
the meaning “factorial” to it. This led to the invention of domain theory, which can be
interpreted as modeling the behavior of a program without running it. A “domain” is
essentially a partial order of sets of values that a program might manipulate. The model
works as follows: a program starts with no information, the lowest point in the partial order
(“bottom”). Computation steps accumulate information, gradually moving higher through
the order. This model provides a way to think about the meaning of a program without
running the program. Even the “result” of a non-terminating program has a representation
(the bottom element).

The idea of “running a program without running it” is of great interest in compiler im-
plementation. A compiler would like to discover as much information as possible about a
program without running it, since running it might take a long time, or produce side effects
that the programmer does not want yet, or, of course, not terminate. The general recipe for
doing this is to design a partial order (lattice) that captures program properties of interest,
and then describe all primitive operations in the language based on how they transform
elements of this lattice. Then an input program can be executed, in an approximate sense,
until it converges to a fixed point. Most modern compilers use a technique like this (some-
times called abstract interpretation [32]) to semi-decide interesting properties like whether
a variable is a constant, whether a variable might be used before it is initialized, whether a
variable’s value is never used, and so on.

Given the general undecidability of questions about programs, analyses like these are
conservative. If our goal is to warn programmers about use of uninitialized variables, we
want to be “better safe than sorry” and print a warning if such a use might occur. Such
a use corresponds to any lattice element greater than or equal to the element represent-

ing “uninitialized”. Such conservative analyses are the essence of compiler transformations

40

for performance (optimizations): we only want to perform an optimization if the program
property it relies on holds for sure.

The generality of this approach allows us to discover a large variety of program properties
as long as we are willing to accept some uncertainty. Even if static guarantees are not the
priority, or if a language considers itself unconcerned with “types”, the domain-theoretic

model is still our type system in some sense, whether we like it or not (as implied by [95]).

3.2.1 Programs and domains

Program analyses of this kind have been applied to high-level languages many times. The
common pitfall is that the analysis can easily diverge for programs that make distinctions
not modeled by the lattice.

Consider the following program that repeatedly applies elementwise exponentiation (. ")

to an array:

A = [n]

for i = 1l:niter
A= f(A .7 A)

end

return A

We will try to analyze this program using the lattice in figure 3-1.
The result depends strongly on how the .~ and ~ functions are defined (assume that .~

calls = on every element of an array). The code might look like this:

function “(x, y)
if trunc(y) ==y
if overflows(x, y)
x = widen (x)
end
use repeated squaring
else
floating point algorithm
end
end

function f(a)

41

T

Array

37T <: Integer Array{T}

/////////’ \\\\\\\\\\

Array{Int} Array{BigInt} Array{Float}

\/

L

Figure 3-1: A lattice of array types

if all(trunc(y) .== y)
integer case
else
general case
end
end

This code implements the user-friendly behavior of automatically switching to the BigInt

type on overflow, by calling widen.

Assume we initially know that n is an Int, and therefore that A is an Array{Int}.
Although A really does have this type (even if the type is only an artifact of the analysis),
the code does not mention types anywhere. Next, the type of an element taken from A (Int)
will flow to the y argument of ~. The function’s behavior crucially depends on the test
trunc(y) == y. It is always true for integer arguments, but it is unlikely that the analysis
can determine this. Therefore = might return an Int, BigInt, or Float, and we can only
conclude that A."A is an Array. When function f is called, it performs a fairly expensive
test to see if every element is an integer. Only through human reasoning about the whole
program do we see that this test is unnecessary. However when the analysis considers f
applied to type Array, our type information is likely to diverge further to T, since we don’t

know anything about the array’s elements.

42

The problem here is that the program is not written in terms of the underlying value do-
main, even though it could be. We might have written isa(y, Integer) instead of trunc(y)
== y. However, there are reasons that code like this might exist. The programmer might
not be aware of the type system, or the conditional might refer to a property that was not
originally reflected in the type system but is later, as the language and libraries evolve.

Our solution is to give some simple tools to the library developer (who, of course, might
be the same person as the programmer). In Julia, one can implement ~ and f as follows:
function “(x, y)

original code
end

function " (x, y::Integer)
if overflows(x, y)
x = widen (x)
end
#
end

function f(a)
original code
end

function f{T<:Integer}(a::Array{T})
integer case

end
Now, from the same source program, we can conclude that only ~(x, y::Integer) is ap-
plicable, so we know that the result of A. A is some integer array. The library writer can
intercept this case with the definition f{T<:Integer}(a::Array{T})!, avoiding the check
all(trunc(y) .== y). Since we started with an integer array, the whole program behaves
exactly as before.

Notice that we have neither added restrictions, nor asked for redundant type annotations.

All we did is add a dispatch system, and encourage people to use it. Using dispatch in this

! Although the signature of this method happens to match one of the lattice elements in figure 3-1, this

is a coincidence. Method applicability is determined dynamically.

43

way is optional, but comes with benefits for structuring programs. For example, the function
f above might perform much better on integer arrays. We can implement this case separately
from the checks and extra logic that might be needed for other data types, leading to cleaner
code and also making the core definition of f smaller and therefore more likely to be inlined.

The original version of this code can also be written in our system, though it probably
will not perform as well. However, it might still perform better than one would expect,
since the functions that it calls are in turn defined using the same dispatch mechanism. This
mechanism is expressive enough to be used down to the lowest levels of the system, providing
leverage one would not get from an object system or performance “add on”.

Having type information attached to user or library definitions increases the value of
reverse data flow analysis. One way to describe why analyses of highly dynamic code diverge
is that everything in the program monotonically increases the number of cases we need to
consider; there is no way to narrow possibilities. But if we know that a function is only

defined on type T, every value that passes through its argument list is narrowed to T.

3.3 Dispatch systems

It would be unpleasant if every piece of every program we wrote were forced to do only one
specific task. Every time we wanted to do something slightly different, we’d have to write a
different program. But if a language allows the same program element to do different things
at different times, we can write whole classes of programs at once. This kind of capability
is one of the main reasons object-oriented programming is popular: it provides a way to
automatically select different behaviors according to some structured criteria (we use the
non-standard term “criteria” deliberately, in order to clarify our point of view, which is
independent of any particular object system).

However in class-based OO there is essentially no way to create an operation that dis-
patches on existing types. This has been called “the expression problem” [108]). While

many kinds of object-oriented programs can ignore or work around this problem, technical

44

programs cannot. In this domain most programs deal with the same few types (e.g. numbers

and arrays), and might sensibly want to write new operations that dispatch on them.

3.3.1 A hierarchy of dispatch

In fact it is possible to illustrate a hierarchy of such mechanisms. As an example, con-
sider a simple simulation, and how it can be written under a series of increasingly powerful

paradigms. First, written-out imperative code:

while running
for a in animals
b = nearby_animal(a)
if a isa Rabbit
if b isa Wolf then run(a)
if b isa Rabbit then mate(a,b)
else if a isa Wolf
if b isa Rabbit then eat(a,b)
if b isa Wolf then follow(a,b)
end
end
end

We can see how this would get tedious as we add more kinds of animals and more
behaviors. Another problem is that the animal behavior is implemented directly inside the
control loop, so it is hard to see what parts are simulation control logic and what parts are

animal behavior. Adding a simple object system leads to a nicer implementation 2:

class Rabbit
method encounter (b)
if b isa Wolf then run()
if b isa Rabbit then mate(b)
end
end

2A perennial problem with simple examples is that better implementations often make the code longer.

45

class Wolf
method encounter(b)
if b isa Rabbit then eat(b)
if b isa Wolf then follow(b)
end
end

while running
for a in animals
b = nearby_animal(a)
a.encounter (b)
end
end

Here all of the simulation’s animal behavior has been compressed into a single program
point: a.encounter(b) leads to all of the behavior by selecting an implementation based
on the first argument, a. This kind of criterion is essentially indexed lookup; we can imagine
that a could be an integer index into a table of operations.

The next enhancement to “selection criteria” adds a hierarchy of behaviors, to provide
further opportunities to avoid repetition. Here A<:B is used to declare a subclass relationship;

it says that an A is a kind of B:

abstract class Animal
method nearby ()
search within some radius
end
end

class Rabbit <: Animal
method encounter(b: Animal)
if b isa Wolf then run()
if b isa Rabbit then mate(b)
end
end

class Wolf <: Animal
method encounter(b: Animal)

46

if b isa Rabbit then eat(b)
if b isa Wolf then follow(b)
end
end

while running
for a in animals
b = a.nearby()
a.encounter (b)
end
end
We are still essentially doing table lookup, but the tables have more structure: every
Animal has the nearby method, and can inherit a general-purpose implementation.
This brings us roughly to the level of most popular object-oriented languages. But in
this example still more can be done. Notice that in the first step to objects we replaced one

level of if statements with method lookup. However, inside of these methods a structured

set of if statements remains. We can replace these by adding another level of dispatch.

class Rabbit <: Animal
method encounter(b: Wolf) = run()
method encounter(b: Rabbit) = mate(b)
end

class Wolf <: Animal

method encounter(b: Rabbit) = eat(b)

method encounter(b: Wolf) = follow(b)
end

We now have a double dispatch system, where a method call uses two lookups, first on

the first argument and then on the second argument. This syntax might be considered a
bit nicer, but the design begs a question: why is n = 2 special? It isn’t, and we could
consider even more method arguments as part of dispatch. But at that point, why is the

first argument special? Why separate methods in a special way based on the first argument?

It seems arbitrary, and indeed we can remove the special treatment:

47

abstract class Animal
end

class Rabbit <: Animal
end

class Wolf <: Animal

end

nearby(a: Animal) = # search
encounter(a: Rabbit, b: Wolf) = run(a)
encounter(a: Rabbit, b: Rabbit) = mate(a,b)
encounter(a: Wolf, b: Rabbit) = eat(a, b)

encounter(a: Wolf, b: Wolf) follow(a, b)

while running
for a in animals
b = nearby(a)
encounter(a, b)
end
end

Here we made two major changes: the methods have been moved “outside” of any classes,
and all arguments are listed explicitly. This is sometimes called external dispatch. This
change has significant implications. Since methods no longer need to be “inside” classes,
there is no syntactic limit to where definitions may appear. Now it is easier to add new
methods after a class has been defined. Methods also now naturally operate on combinations
of objects, not single objects.

The shift to thinking about combinations of objects is fairly revolutionary. Many inter-
esting properties only apply to combinations of objects, and not individuals. We are also
now free to think of more exotic kinds of combinations. We can define a method on any

number of objects:
encounter (ws: Wolf...) = pack(ws)

We can also abstract over more subtle properties, like whether the arguments are two animals

of the same type:

48

encounter{T<:Animal}(a: T, b: T) = mate(a, b)

3.3.2 Predicate dispatch

Predicate dispatch is a powerful object-oriented mechanism that allows methods to be se-
lected based on arbitrary predicates [39]. It is, in some sense, the most powerful possible
dispatch system, since any computation may be done as part of method selection. Since a
predicate denotes a set (the set of values for which it is true), it also denotes a set-theoretic
type. Some type systems of this kind, notably that of Common Lisp [100], have actually
included predicates as types. However, such a type system is obviously undecidable, since it
requires computing the predicates themselves or, even worse, computing predicate implica-
tion.?

For a language that is willing to do run time type checks anyway, the undecidability of
predicate dispatch is not a problem. Interestingly, it can also pose no problem for static
type systems that wish to prove that every call site has an applicable method. Even without
evaluating predicates, one can prove that the available methods are exhaustive (e.g. methods
for both p and —p exist). In contrast, and most relevant to this thesis, predicate types
are a problem for code specialization. Static method lookup would require evaluating the
predicates, and optimal code generation would require understanding something about what
the predicates mean. One approach would be to include a list of satisfied predicates in a
type. However, to the extent such a system is decidable, it is essentially equivalent to multiple
inheritance. Another approach would be to separate predicates into a second “level” of the
type system. The compiler would combine methods with the same “first level” type, and
then generate branches to evaluate the predicates. Such a system would be useful, and

could be combined with a language like Julia or, indeed, most object-oriented languages

3Many type systems involving bounded quantification, such as system F.., are already undecidable [88].
However, they seem to terminate for most practical programs, and also admit minor variations that yield
decidable systems [23]. It is fair to say they are “just barely” undecidable, while predicates are “very”

undecidable.

49

(this has been done for Java [81]). However this comes at the expense of making predicates
second-class citizens of the type system.

In considering the problems of predicate dispatch for code specialization, we seem to be up
against a fundamental obstacle: some sets of values are simply more robust under evaluation
than others. Programs that map integers to integers abound, but programs that map, say,
even integers to even integers are rare to the point of irrelevance. With predicate dispatch,
the first version of the code in section 3.2.1 could have been rearranged to use dispatch
instead of if statements. This might have advantages for readability and extensibility, but

not for performance.

3.3.3 Symbolic programming

There has always been a divide between “numeric” and “symbolic” languages in the world of
technical computing. To many people the distinction is fundamental, and we should happily
live with both kinds of languages. But if one insists on an answer as to which approach
is the right one, then the answer is: symbolic. Programs are ultimately symbolic artifacts.
Computation is limited only by our ability to describe it, and symbolic tools are needed to
generate, manipulate, and query these descriptions. For example in numerical computing,
a successful approach has been to design high-performance kernels for important problems.
From there, the limiting factor is knowing when to use each kernel, which can depend on
many factors from problem structure to data size. Symbolic approaches can be used to
automate this. We will see some examples of this in chapter 5.

Systems based on symbolic rewrite rules arguably occupy a further tier of dispatch so-
phistication. In these systems, you can dispatch on essentially anything, including arbitrary
values and structures. Depending on details, their power is roughly equal to that of predicate
dispatch.

However, symbolic programming lacks data abstraction: the concrete representations of
values are exposed to the dispatch system. In such a system, there is no difference between

being a list and being something represented as a list. If the representation of a value changes,

50

wn
N
Q

Domain | Dynamic | Spec. | ADTs | Pattern | S.

TS.
Methods o(1) v v IV
Virt. methods | O(1) v v v IV
Overloading | O(n) v v IV
Templates O(n) v |V v
Closures O(1) v IV
(n)

Multimethods O(n

Predicates O(nm)

SNENEN

SNENISIENENEN

Typeclasses O(m) 3 v v
Term rewriting || O(nm) v
Julia O(nm) v v

Table 3.1: Attributes of several code selection features. Spec. stands for specialization. S.T.S.
stands for statically type safe. S.C. stands for separate compilation. 1. Depending on design details,
2. When combined with existential types, 3. Optionally, with declarations,

the value can be inadvertently “captured” by a dispatch rule that was not intended to apply

to it, violating abstraction.

3.3.4 Choices, choices

Table 3.1 compares nine language features. Each provides some sort of control flow indirec-
tion, packaged into a structure designed to facilitate reasoning (ideally human reasoning, but
often the compiler’s reasoning is prioritized). The “domain” column describes the amount
of information considered by the dispatch system, where n is the number of arguments and
m is the amount of relevant information per argument. O(1) means each use of the feature
considers basically the same amount of information. O(n) is similar, but extends the process
to every argument. O(m) means that one value is considered, but its structure is taken into

account. “ADTs” refers to support for abstract data types. Squares with question marks are

51

either not fully understood, or too sensitive to design details to answer definitively.

This table illustrates how many combinations of dispatch semantics have been tried.
Keeping track of these distinctions is a distraction when one is focused on a non-programming
problem. Including more than one of these mechanisms makes a languge especially complex

and difficult to learn.

3.4 Subtyping

So far we have seen some reasons why dispatch contributes so significantly to flexiblity and
performance. However we have only actually dispatched on fairly simple properties like
whether a value is an integer. How powerful should dispatch be, exactly? Each method
signature describes some set of values to which it applies. Some signatures might be more
specific than others. The theory governing such questions is subtyping.

It turns out that a lot of relevant work on this has been done in the context of type
systems for XML. XML at first seems unrelated to numerical computing, and indeed it was
quite a while before we discovered these papers and noticed the overlap. However if one
substitutes “symbolic expression” for “XML document”, the similarity becomes clearer. [55]
1]
const ViewIndex = Union(Int, Colon, Range{Int}, UnitRange{Int},

Array{Int,1})

immutable SubArray{T, N, P<:AbstractArray,
I<:Tuple{ViewIndex...}, LD} <: AbstractArray{T,N}

3.5 Specialization

3.5.1 Parametric vs. ad hoc polymorphism

The term polymorphism refers generally to reuse of code or data structures in different
contexts. A further distinction is often made between parametric polymorphism and ad

hoc polymorphism. Parametric polymorphism refers to code that is reusable for many types

52

because its behavior does not depend on argument types (for example, the identity function).
Ad hoc polymorphism refers to selecting different code for different circumstances.

In theory, a parametrically polymorphic function works on all data types. In practice,
this can be achieved by forcing a uniform representation of data such as pointers, which can
be handled by the same code regardless of what kind of data is pointed to. However this
kind of representation is not the most efficient, and for good performance specialized code
for different types must be generated.

The idea of specialization unites parametric and ad hoc polymorphism. Beginning with
a parametrically polymorphic function, one can imagine a compiler specializing it for various
cases, i.e. certain concrete argument values. These specializations could be stored in a lookup
table, for use either at compile time or at run time.

Next we can imagine that the compiler might not optimally specialize certain definitions,
and that the programmer would like to provide hints or hand-written implementations to
speed up special cases. For example, imagine a function that traverses a generic array. A
compiler-generated specialization might inline a specific array types’s indexing operations,
but a human might further realize that the loop order should be switched for certain arrays
types based on their storage order.

However, if we are going to let a human specialize a function for performance, we might
as well allow them to specialize it for some other reason, including entirely different behavior.
But at this point separate ad hoc polymorphism is no longer necessary; we are using a single

overloading feature for everything.

3.5.2 Separate compilation vs. performance

Writing the signature of a generic method that needs to be separately compiled, as in Java,
can be a difficult exercise. The programmer must use the type system to write down sufficient
conditions on all arguments. The following example from a generic Java graph library [47]

demonstrates the level of verbosity that can be required:

public class breadth_first_search {

53

public static<Vertex, Edge extends GraphEdge<Vertex>,
VertexIterator extends Iterator<Vertex>,
OutEdgelterator extends Iterator <Edge>,
Visitor extends BFSVisitor,
ColorMap extends ReadWriteMap<Vertex, Integer>>
void go(VertexListAndIncidenceGraph<Vertex ,h Edge,
VertexIterator ,VerticesSizeType ,OutEdgelterator,
DegreeSizeType> g,
Vertex s, ColorMap c, Visitor vis);

If, however, we are going to specialize the method, the compiler can analyze it using
actual types from call sites, and see for itself whether the method works in each case. This
is how C++ templates are type checked; they are analyzed again for each instantiation.

It is quite interesting that performance and ease-of-use pull this design decision in the

same direction.

3.6 Design summary

1. A fully connected type tree

2. Self-describing data model

3. Type tags with nested structure
4. Dynamic dispatch over all types
5. Data flow type inference

6. Code specialization by default
7. Make type parameters optional

8. Types as ordinary values

o4

Chapter 4

The Julia approach

4.1 Core calculus

Julia is based on an untyped lambda calculus augmented with generic functions, tagged data

values, and mutable cells.

e =X
’ 0 | 1 |
|z =e
| e1sen
| e1(e2)
| if €1 ey e3
| new(esqq, €1, €2,)
| e1.e9
| e1.e0 = €3

| function Zname Etype (x17 Loy«) €body

(variable
(constant
(assignment
(sequencing

(
(

application

(data constructor

(projection

(mutation

)
)
)
)
)
conditional)
)
)
)
)

(method definition

The new construct creates a value from a type tag and some other values; it resembles

the Dynamic constructor in past work on dynamic typing [2].

The tag is determined by

evaluating an expression. This means constructing types is part of programming, and types

95

can contain nearly arbitrary data.! In Julia syntax, types are constructed using curly braces;
this is shorthand for an appropriate new expression (tags are a specific subset of data values
whose tag is the built-in value Tag). Although type expressions are quite often constants,
one might also write MyType{x+y}, to construct a MyType with a parameter determined by
computing x+y. This provides a tradeoff that we feel is highly desirable for our intended

applications:

e The compiler cannot always statically determine types.

e Program behavior does not depend on the compiler’s (in)ability to determine types.

e The compiler can do whatever it wants in an attempt to determine types.

The last point means that if the compiler is somehow able to statically evaluate x+y, it
is free to do so, and gain sharper type information. This is a general property of dynamic
type inference systems [60, 73, 9, 6, 5]. Julia’s types are designed to support this kind of
inference, but they are also used for code selection and specialization regardless of the results

of inference.

In practice, new is always wrapped in a constructor function, abstracting away the incon-
venience of constructing both a type and a value. In fact, new for user-defined data types
is syntactically available only within the code block that defines the type. This provides
some measure of data abstraction, since it is not possible for user code to construct arbitrary

instances.
Constants are pre-built tagged values.

Types are a superset of tags that includes values generated by the special tags Abstract,

Union, and UnionAll, plus the special values Any and Bottom:

"'We restrict this to values that can be accurately compared by ===, which will be introduced shortly.

56

type = Bottom | abstract | var
| Union type type
| UnionAll type<:var<:type type
| Tag Tpame abstractsyper valuex
abstract ::= Any | Abstract Tpame abstractgype, valuex

| Abstract Tuple Any type x type. ..

The last item is the special abstract variadic tuple type.

Data model

The language maps tags to data descriptions using built-in rules, and ensures that the data
part of a tagged value always conforms to the tag’s description. Mappings from tags to data
descriptions are established by special type declaration syntax. Data descriptions have the

following grammar:
data = bit" | ref | datax

where bit" represents a string of n bits, and ref represents a reference to a tagged data
value. Data is automatically laid out according to the platform’s application binary interface
(ABI). Currently all compound types and heterogeneous tuples use the C struct ABI, and
homogeneous tuples use the array ABI. Data may be declared mutable, in which case its
representation is implicitly wrapped in a mutable cell. A built-in primitive equality operator
=== is provided, based on egal [7] (mutable objects are compared by address, and immutable
objects are compared by directly comparing both the tag and data parts bit-for-bit, and

recurring through references to other immutable objects).

Functions and methods

Functions are generally applied to more than one argument. In the application syntax e (es),

es is an implicitly constructed tuple of all arguments. e; must evaluate to a generic function,

57

and its most specific method matching the tag of argument es is called.

We use the keyword function for method definitions for the sake of familiarity, though
method is arguably more appropriate. Method definitions subsume lambda expressions. Each
method definition modifies a generic function named by the argument z,,,,.. The generic
function to extend is specified by its name rather than by the value of an expression in order to
make it easier to syntactically restrict where functions can be extended. This, in turn, allows
the language to specify when new method definitions take effect, providing useful windows of
time within which methods do not change, allowing programs to be optimized more effectively
(and hopefully discouraging abusive and confusing run time method replacements).

The signature, or specializer, of a method is obtained by evaluating ey, which must
result in a type value as defined above. A method has n formal argument names x;. The
specializer must be a subtype of the variadic tuple type of length n. When a method is
called, its formal argument names are bound to corresponding elements of the argument
tuple. If the specializer is a variadic type, then the last argument name is bound to a tuple
of all trailing arguments.

The equivalent of ordinary lambda expressions can be obtained by introducing a unique
local name and defining a single method on it.

Mutable lexical bindings are provided by the usual translation to operations on mutable

cells.

4.2 Type system

Our goal is to design a type system for describing method applicability, and (similarly) for
describing classes of values for which to specialize code. Set-theoretic types are a natural
basis for such a system. A set-theoretic type is a symbolic expression that denotes a set of
values. In our case, these correspond to the sets of values methods are intended to apply
to, or the sets of values supported by compiler-generated method specializations. Since set

theory is widely understood, the use of such types tends to be intuitive.

58

These types are less coupled to the languages they are used with, since one may design a
value domain and set relations within it without yet considering how types relate to program
terms [44, 20]. Since our goals only include performance and expressiveness, we simply skip
the later steps for now, and do not consider in detail possible approaches to type checking.

A good slogan for this attitude might be “evaluate softly and carry a big subtype relation.”

The system we use must have a decidable subtype relation, and must be closed under
data flow operations (meet, join, and widen). It must also lend itself to a reasonable defini-
tion of specificity, so that methods can be ordered automatically (a necessary property for
composability). These requirements are fairly strict. Beginning with the simplest possible
system, we added features as needed to satsify the aforementioned closure properties.

We will define our types by describing their denotations as sets. We use the notation [T]
for the set denotation of type expression 7. Concrete language syntax and terminal symbols
of the type expression grammar are written in typewriter font, and metasymbols are written
in mathematical italic. First there is a universal type Any, an empty type Bottom, and a

partial order <:

[Any] = D
[Bottom] =0

T<S<[T]c[9]

where D represents the domain of all values. Also note that the all-important array type is

written as Array{T,N} where T is an element type and N is a number of dimensions.

Next we add data objects with structured tags. The tag of a value is accessed with
typeof (x). Each tag consists of a declared type name and some number of sub-expressions,
written as Name{E;,---,E,}. The center dots (---) are meta-syntactic and represent a
sequence of expressions. Tag types may have declared supertypes (written as super(T)).
Any type used as a supertype must be declared as abstract, meaning it cannot have direct

instances.

59

[Name{ ---}] = {z | typeof (z) = Name{---}}

[Abstract{---}] = U [T

super (T')=Abstract{---}

These types closely resemble the classes of an object-oriented language with generic (para-
metric) types, invariant type parameters, and no concrete inheritance. We prefer parametric
invariance partly for reasons that have been addressed in the literature [33]. Invariance pre-
serves the property that the only subtypes of a concrete type are Bottom and itself. This is
important given how we map types to data representations: an Array{Int} cannot also be
an Array{Any}, since those types imply different representations (an Array{Any} is an array
of pointers). Tuples are a special case where covariance works, because each component type
need only refer to single value, so there is no need for concrete tuple types with non-concrete
parameters.

Next we add conventional product (tuple) types, which are used to represent the argu-
ments to methods. These are almost identical to the nominal types defined above, but are
different in two ways: they are covariant in their parameters, and permit a special form

ending in three dots (...) that denotes any number of trailing elements:

[[Tuple{Pb U 7Pn}]] = H [[Pl]]

1<i<n

[Tuple{---,P,...}],n>1= U [Tuple{---, P'}]

i>n—1

P! represents i repetitions of the final element P, of the type expression.

Abstract tuple types ending in ... correspond to variadic methods, which provide con-
venient interfaces for tasks like concatenating any number of arrays. Multiple dispatch has
been formulated as dispatch on tuple types before [66]. This formulation has the advantage
that any type that is a subtype of a tuple type can be used to express the signature of a

method. It also makes the system simpler and more reflective, since subtype queries can be

60

used to ask questions about methods.

The types introduced so far would be sufficient for many programs, and are roughly equal
in power to several multiple dispatch systems that have been designed before. However, these
types are not closed under data flow operations. For example, when the two branches of a
conditional expression yield different types, a program analysis must compute the union of
those types to derive the type of the conditional. The above types are not closed under set

union. We therefore add the following type connective:
[Union{A, B}] = [A] U [B]

As if by coincidence, Union types are also tremendously useful for expressing method
dispatch. For example, if a certain method applies to all 32-bit integers regardless of whether
they are signed or unsigned, it can be specialized for Union{Int32,UInt32}.

Union types are easy to understand, but complicate the type system considerably. To see
this, notice that they provide an unlimited number of ways to rewrite any type. For example a
type T can always be rewritten as Union{T,Bottom}, or Union{Bottom,Union{T,Bottom}},
etc. Any code that processes types must “understand” these equivalences. Covariant con-
structors (tuples in our case) also distribute over Union types, providing even more ways to

rewrite types:
Tuple{Union{A,B},C} = Union{Tuple{A,C},Tuple{B,C}}

This is one of several reasons that union types are often considered undesirable. When
used with type inference, such types can grow without bound, possibly leading to slow or
even non-terminating compilation. Their occurrence also typically corresponds to cases that
would fail many static type checkers. Yet from the perspectives of both data flow analysis
and method specialization, they are perfectly natural and even essential [32, 57, 98].

The next problem we need to solve arises from data flow analysis of the new construct.
When a type constructor C is applied to a type S that is known only approximately at
compile time, the type C{S} does not correctly represent the result. The correct result

would be the union of all types C{T'} where T' < S. There is again a corresponding need for

61

such types in method dispatch. Often one has, for example, a method that applies to arrays
of any kind of integer (Array{Int32}, Array{Int64}, etc.). These cases can be expressed
using a UnionAll connective, which denotes an iterated union of a type expression for all

values of a parameter within specified bounds:

[UnionAll L<:T<:U A] = |J [A[T/T]

L<T<U

This is equivalent to an existential type [19]; for each concrete subtype of it there exists
a corresponding T'. Anecdotally, programmers often find existential types confusing. We
prefer the union interpretation because we are describing sets of values; the notion of “there
exists” can be semantically misleading since it sounds like only a single T value might be

involved.

Examples

UnionAll types are quite expressive. In combination with nominal types they can describe
groups of containers such as UnionAll T<:Number Array{Array{T}} (all arrays of arrays
of some kind of number) or Array{UnionAll T<:Number Array{T}} (an array of arrays of
potentially different types of number).

In combination with tuple types, UnionAl1l types provide powerful method dispatch spec-
ifications. For example UnionAll T Tuple{Array{T},Int,T} matches three arguments: an
array, an integer, and a value that is an instance of the array’s element type. This is a natural

signature for a method that assigns a value to a given index within an array.

Type system variants

Our design criteria do not identify a unique type system; some variants are possible. The

following features would probably be fairly straightforward to add:

e Structurally subtyped records
e s-recursive types (regular trees)

e General regular types (allowing ... in any position)

62

The following features would be difficult to add, or possibly break decidability of subtyping:

Arrow types

Negations

Intersections, multiple inheritance

Universal quantifiers

Contravariance

4.2.1 Type constructors

It is important for any proposed high-level technical computing language to be simple and
approachable, since otherwise the value over established powerful-but-complex languages like
C++ is less clear. In particular, type parameters raise usability concerns. Needing to write
parameters along with every type is verbose, and requires users to know more about the
type system and to know more details of particular types (how many parameters they have
and what each one means). Furthermore, in many contexts type parameters are not directly
relevant. For example, a large amount of code operates on Arrays of any element type, and
in these cases it should be possible to ignore type parameters.

Consider Array{T}, the type of arrays with element type T. In most languages with
parametric types, the identifier Array would refer to a type constructor, i.e. a type of a
different kind than ordinary types like Int or Array{Int}. Instead, we find it intuitive and
appealing for Array to refer to any kind of array, so that a declaration such as x::Array

simply asserts x to be some kind of array. In other words,

Array = UnionAll T Array'{T}

where Array’ refers to a hidden, internal type constructor. The { } syntax can then be used

to instantiate a UnionAll type at a particular parameter value.

63

BXLT + T<S BXRT - T<§ e
r'H38XT < S -7 < 38x 5 =
BXL .YET F B<Y vV X< A BYRYRT - B<A
BXL . YET F X<Y BYXRYRT - X <Y
BXRT - T<B BXRT - A<T
JBXET F T<X IXET - X<T
JXET FT<A BXLT - B<T
WDXET FT<X BXLT - X<T

Figure 4-1: Subtyping algorithm for UnionAll (3) and variables. X and Y are variables, A, B, T,
and S are types or variables. ﬁX means X has lower bound A and upper bound B. ® and * track

whether a variable originated on the right or on the left of <. Rules are applied top to bottom.

4.2.2 Subtyping

Computing the subtype relation is the key algorithm in our system. It is used in the following

cases:

e Determining whether a tuple of arguments matches a method signature.

e Comparing method signatures for specificity and equality.

Source-level type assertions.

Checking whether an assigned value matches the declared type of a location.

Checking for convergence during type inference.

Deciding subtyping for base types is straightforward: Bottom is a subtype of everything,
everything is a subtype of Any, and tuple types are compared component-wise. The invariant

parameters of tag types are compared in both directions: to check A{B} < A{C}, check B < C

64

and then C < B. In fact, the algorithm depends on these checks being done in this order, as

we will see in a moment.

Checking union types is a bit harder. When a union AUB occurs in the algorithm, we need
to non-deterministically replace it with either A or B. The rule is that for all such choices on
the left of <, there must exist a set of choices on the right such that the rest of the algorithm
accepts. This can be implemented by keeping a stack of decision points, and looping over all
possibilities with an outer for-all loop and an inner there-exists loop. We speak of “decision
points” instead of individual unions, since in a type like Tuple{Union{A,B}...} a single

union might be compared many times.

The algorithm for UnionAll and variables is shown in figure 4-1. The first row says to
handle a UnionAll by extending the environment with its variable, marked according to
which side of < it came from, and then recurring into the body. In analogy to union types,
we need to check that for all variable values on the left, there exists a value on the right such
that the relation holds. The for-all side is relatively easy to implement, since we can just use
a variable’s bounds as proxies for its value (this is shown in the last row of the figure). We
implement the there-exists side by narrowing a variable’s bounds (raising the lower bound
and lowering the upper bound, in figure row 3). The relation holds as long as the bounds
remain consistent (i.e. lower bound < upper bound). The algorithm assumes that all input
types are well-formed, which includes variable lower bounds always being less than or equal

to upper bounds.

The rules in the second row appear asymmetric. This is a result of exploiting the lack
of contravariant constructors. No contravariance means that every time a right-side variable
appears on the left side of a comparison, it must be because it occurs in invariant position, and
the steps outlined in the first paragraph of this section have “flipped” the order (comparing
both B < C and C < B). This explains the odd rule for comparing two right-side variables:
this case can only occur with differently nested UnionAlls and invariant constructors, in
which case the relation holds only if all involved bounds are equal. By symmetry, one would

expect the rule in row 3, column 2 to update X'’s upper bound to B NT. But because

65

of invariance, 7" < B has already been checked by rule in row 3, column 1. Therefore
BNT =T. This is the reason the “forward” direction of the comparison needs to be checked
first: otherwise, we would have updated B to equal T already and the T" < B comparison
would become vacuous. Alternatively, we could actually compute B NT. However there is
reason to suspect that trouble lies that way. We would need to either add intersection types
to the system, or compute a meet without them. FEither way, the algorithm would become

much more complex and, judging by past results, likely undecidable.

Complexity

These subtyping rules are likely II)-hard. Checking a subtype relation with unions requires
checking that for all choices on the left, there exists a choice on the right that makes the rela-
tion hold. This matches the quantifier structure of 2-TQBF problems of the form Va;.dy;.F
where F' is a boolean formula. If the formula is written in conjunctive normal form, it corre-
sponds to subtype checking between two tuple types, where the relation must hold for each
pair of corresponding types. Now use a type N{x} to represent —z. The clause (x;Vy;) can be
translated to z; <: Union{N{y;}, True} (where the z; and y; are type variables bound by
UnionAll on the left and right, respectively). We have not worked out the details, but this
sketch is reasonably convincing. I} is only the most obvious reduction to try; it is possible
our system equals PSPACE or even greater, as has often been the case for subtyping systems

like ours.

Implementation

Appendix A gives a Julia implementation of this algorithm.

Example deductions

We will briefly demonstrate the power of this algorithm through examples of type relation-
ships it can determine. In these examples, note that < means less than but not equal. Pair

is assumed to be a tag type with two parameters.

66

The algorithm can determine that a type matches constraints specified by another:
Tuple{Array{Integer,1},Int} < (37T <:Integer .3 S <:T . Tuple{Array{T,1},S})
It is not fooled by redundant type variables:

Array{Int,1} = Array{(37 <:Int.T),1}
Variables can have non-trivial bounds that refer to other variables:

Pair{Float32, Array{Float32,1}} <
37T <:Real . 3 S <: AbstractArray{T, 1} . Pair{T, S}

In general, if a variable appears multiple times then its enclosing type is more constrained

than a type where variables appear only once:
AT . Pair{T T} < 3T .38 .Pair{T,S}
However with sufficiently tight bounds that relationship no longer holds (here z is any type):
de<T<iz.doz<S<ix.Pair{T,S} < 3T .Pair{T,T}
Variadic tuples of unions are particularly expressive (“every argument is either this or that”):

Tuple{Vector{Int},Vector{Vector{Int}},Vector{Int},Vector{Int}} <
35 <:Real . Tuple{Union{Vector{S},Vector{Vector{S}}}...}

And the algorithm understands that tuples distribute over unions:

Tuple{Union{A,B},C} = Union{Tuple{A,C},Tuple{B,C}}

Related work

Our algorithm is similar to some that have been investigated for Java generics ([109, 18, 105]).
In that context, the primary difficulty is undecidability due to circular constraints such as

class Infinite<P extends Infinite<?>> and circularities in the inheritance hierarchy

67

such as class C implements List<List<? super C>> (examples from [105]). We have
not found a need for such complex declarations. Julia disallows mentioning a type in the
constraints of its own parameters. When declaring type T a subtype of S, only the direct
parameters of 7" or S can appear in the subtype declaration. We believe this leads to
decidable subtyping.

Dynamic typing provides a useful loophole: it is never truly necessary to declare con-
straints on a type’s parameters, since the compiler does not need to be able to prove that
those parameters satisfy any constraints when instances of the type are used. In theory, an
analogous problem for Julia would be spurious method ambiguities due to an inability to
declare sufficiently strong constraints. More work is needed to survey a large set of Julia
libraries to see if this might be a problem in practice.

Past work on subtyping with regular types [56, 46| is also related, particularly to our

treatment of union types and variadic tuples.

4.3 Dispatch system

Julia’s dispatch system strongly resembles the multimethod systems found in some object-
oriented languages [13, 34, 97, 25, 26, 27|. However we prefer the term type-based dispatch,
since our system actually works by dispatching a single tuple type of arguments. The differ-
ence is subtle and in many cases not noticeable, but has important conceptual implications.
It means that methods are not necessarily restricted to specifying a type for each argument
“slot”. For example a method signature could be Union{Tuple{Any,Int}, Tuple{Int,Any}},

which matches calls where either, but not necessarily both, of two arguments is an Int. 2

4.3.1 Type and method caches

The majority of types that occur in practice are simple. A simple type is a tag, tuple, or

abstract type, all of whose parameters are simple types or non-type values. For example

2Qur implementation of Julia does not yet have syntax for such methods.

68

Pair{Int,Float64} is a simple type. Structural equality of simple types is equivalent to
type equality, so simple types are easy to compare, hash, and sort. Another important set
of types is the concrete types, which are the direct types of values. Concrete types are
hash-consed in order to assign a unique integer identifier to each. These integer identifiers
are used to look up methods efficiently in a hash table.

Some types are concrete but not simple, for example Array{Union{Int,String},1}.
The hash-consing process uses linear search for these types. Fortunately, such types tend to
make up less than 10% of the total type population. On cache misses, method tables also

use linear search.

4.3.2 Specificity

Sorting methods by specificity is a crucial feature of a generic function system. It is not
obvious how to order types by specificity, and our rules for it have evolved with experience.

The core of the algorithm is straightforward:

e If A is a strict subtype of B, then it is more specific than B.
o [f B < A then A is not more specific than B.

e [f some element of tuple type A is more specific than its corresponding element in tuple
type B, and no element of B is more specific than its corresponding element in A, then

A is more specific.

This is essentially the same specificity rule used by Dylan [97] for argument lists. Julia
generalizes this to tuple types; it is applied recursively to tuple types wherever they occur.

We then need several more rules to cover other features of the type system:

e A variadic type is less specific than an otherwise equal non-variadic type.

e Union type A is more specific than B if some element of A is more specific than B,

and B is not more specific than any element of A.

69

e Non-union type A is more specific than union type B if it is more specific than some

element of B.

A tag type is more specific than a tag type strictly above it in the hierarchy, regardless

of parameters.

A variable is more specific than type T if its upper bound is more specific than 7T'.

Variable A is more specific than variable B if A’s upper bound is more specific than

B’s, and A’s lower bound is not more specific than B’s.

So far, specificity is clearly a less formal notion than subtyping.

4.3.3 Parametric dispatch

We use the following syntax to express methods whose signatures are UnionAll types:
func{T<:Integer}(x::Array{T}) =

This method matches any Array whose element type is some subtype of Integer. The
value of T is available inside the function. This feature largely overcomes the restrictiveness
of parametric invariance. Methods like these are similar to methods with “implicit type
parameters” in the Cecil language [26]. However, Cecil (along with its successor, Diesel [27])
does not allow methods to differ only in type parameters. In the semantic subtyping frame-
work we use, such definitions have a natural interpretation in terms of sets, and so are

allowed. In fact, they are used extensively in Julia.

4.3.4 Diagonal dispatch

UnionAll types can also express constraints between arguments. The following definition

matches two arguments of the same concrete type:
func{T}(x::T, y::T) =

70

Section 5.1 discusses an application.

This feature is currently implemented only in the dispatch system; we have not yet formal-
ized it as part of subtyping. For example, the subtyping algorithm presented here concludes
that Tuple{Int,String} is a subtype of UnionA1l T Tuple{T,T}, since T might equal Any
or Union(Int,String). We believe this hurts the accuracy of static type deductions, but not
their soundness, as long as we are careful in the compiler to treat all types as over-estimates
of run time types. In any case, we plan to fix this by allowing some type variables to be
constrained to concrete types. This only affects type variables that occur only in covariant

position; types such as UnionAll T Tuple{Array{T},T} are handled correctly.

4.3.5 Constructors

Generic function systems (such as Dylan’s) often implement value constructors by allowing
methods to be specialized for classes themselves, instead of just instances of classes. We
extend this concept to our type system using a construct similar to singleton kinds [101]:
Type{T} is the type of any type equal to T. A constructor for a complex number type can
then be written as follows:
call{T}(::Type{Complex{T}}, re::Real, im::Real) =
new (Complex{T}, re, im)

This requires a small adjustment to the evaluation rules: in the application syntax e;(es)
when e; is not a function, evaluate call(ey,ey) instead, where call is a particular generic
function known to the system. This constructor can then be invoked by writing e.g.
Complex{Float64}(x,y).

Naturally, Type can be combined arbitrarily with other types, adding a lot of flexibility
to constructor definitions. Most importantly, type parameters can be omitted in constructor
calls as long as there is a call method for the “unspecialized” version of a type:

call{T<:Real}(::Type{Complex}, re::T, im::T) =
Complex{T}(re, im)

71

This definition allows the call Complex(1.0,2.0) to construct a Complex{Float64}.
This mechanism subsumes and generalizes the ability to “infer” type parameters found in
some languages. It also makes it possible to add new parameters to types without changing

client code.

4.3.6 Ambiguities

As in any generic function system, method ambiguities are possible. Two method signatures
are ambiguous if neither is more specific than the other, but their intersection is non-empty.
For arguments that are a subtype of this intersection, it is not clear which method should
be called.

Some systems have avoided this problem by resolving method specificity left to right, i.e.
giving more weight to the leftmost argument. With dispatch based on whole tuple types
instead of sequences of types, this idea seems less defensible. One could extract a sequence
of types by successively intersecting a method type with UnionAll T Tuple{T,Any...},
then UnionAll T Tuple{Any,T,Any...}, etc. and taking the inferred T values. However
our experience leads us to believe that the left to right approach is a bit too arbitrary, so we
have stuck with “symmetric” dispatch.

In the Julia library ecosystem, method ambiguities are unfortunately common. Library
authors have been forced to add many tedious and redundant disambiguating definitions.
Most ambiguities have been mere nuisances rather than serious problems. A representative
example is libraries that add new array-like containers. Two such libraries are Images and
DataArray (an array designed to hold statistical data, supporting missing values). Each
library wants to be able to interoperate with other array-like containers, and so defines e.g.
+(::Image, ::AbstractArray). This definition is ambiguous with +(: :AbstractArray,
: :DataArray) for arguments of type Tuple{Image, DataArray}. However in practice Im-
ages and DataArrays are not used together, so worrying about this is a bit of a distraction.
Giving a run time error forcing the programmer to clarify intent seems to be an acceptable

solution (this is what Dylan does; currently Julia only prints a warning when the ambiguous

72

definition is introduced).

4.4 Generic programming

Modern object-oriented languages often have special support for “generic” programming,
which allows classes, methods, and functions to be reused for a wider variety of types. This
capability is powerful, but has some usability cost as extra syntax and additional rules must
be learned. We have found that the combination of our type system and generic functions
subsumes many uses of generic programming features.

For example, consider this C++ snippet, which shows how a template parameter can be
used to vary the arguments accepted by methods:

template <typename T>
class Foo<T> { int methodl1 (T x); }

The method methodl will only accept int when applied to a Foo<int>, and so on. This

pattern can be expressed in Julia as follows:

method1{T}(this::Foo{T}, x::T) =

Associated types

When dealing with a particular type in a generic program, it is often necessary to mention
other types that are somehow related. For example, given a collection type the programmer
will want to refer to its element type, or given a numeric type one might want to know the

next “larger” numeric type. Such associated types can be implemented as generic functions:

eltype{T}(::AbstractArray{T}) =T

widen (::Type{Int32}) = Int64

73

Simulating multiple inheritance

It turns out that external multiple dispatch is sufficiently powerful to simulate a kind of
multiple inheritance. At a certain point in the development of Julia’s standard library, it
become apparent that there were object properties that it would be useful to dispatch on,
but that were not reflected in the type hierarchy. For example, the array type hierarchy
distinguishes dense and sparse arrays, but not arrays whose memory layout is fully contigu-
ous. This is important for algorithms that run faster using a single integer index instead of
a tuple of indexes to reference array elements.

Tim Holy pointed out that new object properties can be added externally [54], and

proposed using it for this purpose:

abstract LinearIndexing

immutable LinearFast <: LinearIndexing; end
immutable LinearSlow <: LinearIndexing; end

linearindexing (A::Array) = LinearFast ()

This allows describing the linear indexing performance of a type by adding a method to

linearindexing. An algorithm can consume this information as follows:

algorithm(a::AbstractArray) = _algorithm(a, linearindexing(a))

function _algorithm(a, ::LinearFast)
code assuming fast linear indexing
end

function _algorithm(a, ::LinearSlow)
code assuming slow linear indexing
end

The original author of a type like Array does not need to know about this property, unlike
the situation with multiple inheritance or explicit interfaces. Adding such properties after
the fact makes sense when new algorithms are developed whose performance is sensitive to

distinctions not previously noticed.

74

4.5 Staged programming

An especially fruitful use of types in Julia is as input to code that generates other code,
in a so-called “staged” program. This feature is accessed simply by annotating a method

definition with a macro called @generated:

Ogenerated function getindex{T,N}(a::Array{T,N}, I...)

expr = 0
for i = N:-1:1

expr = :((I[$i]l-1) + size(a,$i)*$expr)
end

:(linear_getindex(a, $expr + 1))
end

This simple example implements indexing with N arguments in terms of linear indexing, by
generating a fully unrolled expression for the index of the element. Inside the body of the
method, argument names refer to the types of arguments instead of their values. Parameter
values T and N are available as usual. The method returns a quoted expression. This
expression will be used, verbatim, as if it were the body of a normal method definition for
these argument types.

The remarkable thing about this is how seamlessly it integrates into the language. The
method is selected like any other; the only difference is that the method’s expression-
generating code is invoked on the argument types just before type inference. The optimized
version of the user-generated code is then stored in the method cache, and can be selected
in the future like any other specialization. The caller does not need to know anything about
this, and the author of the function does not need to do any bookkeeping.

One reason this works so well is that the amount of information available at this stage is
well balanced. If, for example, only the classes of arguments in a traditional object-oriented
language were available, there would not be much to base the generated code on. If, on the
other hand, details of the contents of values were needed, then it would be difficult to reuse
the existing dispatch system.

The types of arguments say something about their meaning, and so unlike syntax-based

systems (macros) are independent of how the arguments are computed. A staged method of

5

this kind is guaranteed to produce the same results for arguments 2+2 and 4.

Another advantage of this approach is that the expression-generating code is purely
functional. Staged programming with eval, in contrast, requires arbitrary user code to be
executed in all stages. This has its uses; one example mentioned in [36] is reading a schema
from a database in order to generate code for it. But with @generated, code is a pure
function of type information, so when possible it can be invoked once at compile time and
then never again. This preserves the possibility of full static compilation, but due to dynamic

typing the language cannot guarantee that all code generation will occur before run time.
Tradeoffs of staged programming

4.6 Higher-order programming

Generic functions are first-class objects, and so can be passed as arguments just as in any
dynamically typed language with first-class functions. However, assigning useful type tags
to generic functions and deciding how they should dispatch is not so simple. Past work has
often described the types of generic functions using the “intersection of arrows” formalism
94, 38, 19, 21]. Since an ordinary function has an arrow type A — B describing how it maps
arguments A to results B, a function with multiple definitions can natually be considered to

have multiple such types. For example, a sin function with the following two definitions:

sin(x::Float64) = # compute sine of x in double precision
sin(v::Vector) = map(sin, v)
could have the type (Float64 — Float64)N (Vector — Vector). The intuition is that this
sin function can be used both where a Float64 — Float64 function is expected and where
a Vector — Vector function is expected, and therefore its type is the intersection of these
types.

This approach is effective for statically checking uses of generic functions: anywhere a
function goes, we must keep track of which arrow types it “contains” in order to be sure

that at least one matches every call site and allows the surrounding code to type check.

76

However, despite the naturalness of this typing of generic functions, this formulation is
quite problematic for dispatch and code specialization (not to mention that it might make

subtyping undecidable).

4.6.1 Problems for code selection

Consider what happens when we try to define an integration function:

1-d integration of a real-valued function
integrate(f::Float64->Float64, x0, x1)

multi-dimensional integration of a vector-valued function
integrate (f::Vector->Vector, vO, v1)
The -> is not real Julia syntax, but is assumed for the sake of this example. Here we wish
to select a different integration routine based on what kind of function is to be integrated.
However, these definitions are ambiguous with respect to the sin function defined above. Of
course, the potential for method ambiguities existed already. However this sort of ambiguity
is introduced non-locally — it cannot be detected when the integrate methods are defined.

Such a non-local introduction of ambiguity is a special case of the general problem that a
generic function’s type would change depending on what definitions have been added, which
depends e.g. on which libraries have been loaded. This does not feel like the right abstraction:
type tags are supposed to form a “ground truth” about objects against which program
behavior can be selected. Though generic functions change with the addition of methods, it
would be more satisfying for their types to somehow reflect an intrinsic, unchanging property.

An additional minor problem with the intersection of arrows interpretation is that we
have found, in practice, that Julia methods often have a large number of definitions. For
example, the + function in Julia v0.3.4 has 117 definitions, and in a more recent development
version with more functionality, it has 150 methods. An intersection of 150 types would be
unwieldy, even if only inspected when debugging the compiler.

A slightly different approach we might try would be to imitate the types of higher-

order functions in traditional statically typed functional languages. Consider the classic map

7

function, which creates a new container by calling a given function on every element of a
given container. This is a general pattern that occurs in “vectorized” functions in technical
computing environments, e.g. when a function like + or sin operates on arrays elementwise.
We might wish to write map as follows:

map{A,B}(f::A->B, x::List{A}) =

isempty(x) 7 List{B}() : List{B}(f(head(x)), map(f, tail(x)))

The idea is for the first argument to match any function, and not use the arrow type for
dispatch, thereby avoiding ambiguity problems. Instead, immediately after method selection,
values for A and B would be determined using the element type of x and the table of definitions
of f.

Unfortunately it is not clear how exactly B should be determined. We could require
return type declarations on every method, but this would adversely affect usability (such
declarations would also be helpful if we wanted to dispatch on arrow types, though they would
not solve the ambiguity problem). Or we could use type inference of f on argument type A.
This would not work very well, since the result would depend on partly arbitrary heuristics.
Such heuristics are fine for analyzing a program, but are not appropriate for determining the

value of a user-visible variable, as this would make program behavior unpredictable.

4.6.2 Problems for code specialization

For code specialization to be effective, it must eliminate as many irrelevant cases as possible.
Intersection types seem to be naturally opposed to this process, since they have the ability to
generate infinite descending chains of ever-more-specific function types by tacking on more
terms with N. There would be no such thing as a maximally specific function type. In
particular, it would be hard to express that a function has exactly one definition, which is
an especially important case for optimizing code.

For example, say we have a definition f(g::String->String), and a function h with
a single Int — Int definition. Naturally, f is not applicable to h. However, given the

call site f(h), we are forced to conclude that f might be called with a function of type

78

matching pairs | GFs with matches | mean

arguments only 1831 (0.327%) 329 1.73
arguments and return types 241 (0.043%) 85 0.23

Table 4.1: Number and percentage of pairs of functions with matching arguments, or matching
arguments and return types. The second column gives the number of functions that have matches.

The third column gives the mean number of matches per function.

(Int — Int) N (String — String), since in general Int — Int might be only an approxi-
mation of the true type of the argument.

The other major concern when specializing code is whether, having generated code for a
certain type, we would be able to reuse that code often enough for the effort to be worthwhile.
In the case of arrow types, this equates to asking how often generic functions share the same
set of signatures. This question can be answered empirically. Studying the Julia Base
library as of this writing, there are 1059 generic functions. We examined all 560211 pairs of
functions; summary statistics are shown in table 4.1. Overall, it is rare for functions to share
type signatures. Many of the 85 functions with matches (meaning there exists some other
function with the same type) are predicates, which all have types similar to Any — Bool.
The mean of 0.23 means that if we pick a function uniformly at random, on average 0.23
other functions will match it. The return types compared here depend on our heuristic type
inference algorithm, so it useful to exclude them in order to get an upper bound. If we do
that, and only consider arguments, the mean number of matches rises to 1.73.

The specific example of the sin and cos functions provides some intuition for why there
are so few matches. One would guess that the type behavior of these functions would be
identical, however the above evaluation showed this not to be the case. The reason is that
the functions have definitions to make them operate elementwise on both dense and sparse
arrays. sin maps zero to zero, but cos maps zero to one, so sin of a sparse array gives a
sparse array, but cos of a sparse array gives a dense array. This is indicative of the general

“messiness” of convenient real-world libraries for technical computing.

79

4.6.3 Possible solutions

The general lack of sharing of generic function types suggests the first possible solution:
give each generic function a new type that is uniquely associated with it. For example, the
type of sin would be GenericFunction{sin}. This type merely identifies the function in
question, and says nothing more about its behavior. It is easy to read, and easily specific
enough to avoid ambiguity and specialization problems. It does not solve the problem of
determining the result type of map. However there are corresponding performance benefits,
since specializing code for a specific function argument naturally lends itself to inlining.

Another approach that is especially relevant to technical computing is to use nominal
function types. In mathematics, the argument and return types of a function are often not
its most interesting properties. In some domains, for example, all functions can implicitly be
assumed R — R, and the interesting property might be what order of integrable singularity is
present (see section 5.7 for an application), or what dimension of linear operator the function
represents. The idea of nominal function types is to describe the properties of interest using
a data object, and then allow that data object to be treated as a function, i.e. “called”. Some
object-oriented languages call such an object a functor.

Julia accomodates this approach with the call mechanism used for constructors (see
section 4.3.5).

As an example, we can define a type for polynomials of order N over ring R:

immutable Polynomial{N,R}
coeffs::Vector{R}
end

call{N}(p::Polynomial{N}, x) = sum([p.coeffs[i+1]*x"1 for i=0:N])

Now it is possible to use a Polynomial just like a function, while also dispatching methods
on the relevant properties of order and ring (or ignoring them if you prefer). It is also easy
to examine the polynomial’s coefficients, in contrast to functions, which are usually opaque.

Another possible use of this feature is to implement automatic vectorization of scalar

functions, as found in Chapel [24]. Only one definition would be needed to lift any declared

80

subtype of ScalarFunction to arrays:
call(f::ScalarFunction, a::AbstractArray) = map(f, a)

It is even possible to define a “nominal arrow” type, which uses this mechanism to impose

a classification on functions based on argument and return types:

immutable Arrow{A,B}
f

end
call{A,B}(a::Arrow{A,B}, x::A) = a.f(x)::B

Calling an Arrow will yield a no-method error if the argument type fails to match, and a

type error if the return type fails to match.

4.6.4 Implementing map

So, given typed containers and no arrow types, how do you implement map? The answer
is that the type of container to return must also be computed. This should not be too
surprising, since it is implied by the definition of new at the beginning of the chapter: each

value is created by computing a type part and a content part.

A possible implementation of map for arrays is shown in figure 4-2. The basic strategy
is to try calling the argument function f first, see what it returns, and then optimistically
assume that it will always return values of the same type. This assumption is checked on
each iteration. If f returns a value that does not fit in the current output array dest, we re-
allocate the output array to a larger type and continue. The primitive typejoin computes
a union-free join of types. For uses like map, this does not need to be a true least upper
bound; any reasonable upper bound will do.

This implementation works well because it completely ignores the question of whether
the compiler understands the type behavior of f. However, it cooperates with the compiler
by making the optimistic assumption that f is well-behaved. This is best illuminated by

considering three cases. In the first case, imagine f always returns Int, and that the compiler

81

function map(f, A::Array)
isempty (A) && return Array(Bottom, O0)
el = f(A[1]); T = typeof (el)
dest = Array (T, length(A))
dest [1] = el
for i = 2:1length(A)
el = £(A[i]); S = typeof(el)
if 1(s <: T)
T = typejoin(T, S)
new = similar (dest, T)
copy!(new, 1, dest, 1, i-1)
dest = new
end
dest[i] = el::T
end
return dest
end

Figure 4-2: A Julia implementation of map. The result type depends only on the actual
values computed, made efficient using an optimistic assumption.

is able to infer that fact. Then the test ! (S <: T) disappears by specialization, and the code
reduces to the same simple and efficient loop we might write by hand. In the second case,
imagine f always returns Int, but that the compiler is not able to infer this. Then we incur
the cost of an extra type check on each iteration, but we return the same efficiently stored
Int-specialized Array (Array{Int}). This leads to significant memory savings, and allows
subsequent operations on the returned array to be more efficient. The third case occurs
when f returns objects of different types. Then the code does not do anything particularly
efficient, but is not much worse than a typical dynamically typed language manipulating

heterogeneous arrays.

Overall, the resulting behavior is quite similar to a dynamic language that uses storage
strategies [15] for its collections. The main difference is that the behavior is implemented
at the library level, rather than inside the runtime system. This can be a good thing,
since one might want a map that works differently. For example, replacing typejoin with

promote_type would collect results of different numeric types into a homogeneous array of

82

a single larger numeric type. Other applications might not want to use typed arrays at
all, in which case map can be much simpler and always return an Array{Any}. Still other
applications might want to arbitrarily mutate the result of map, in which case it is difficult
for any automated process to predict what type of array is wanted.

It must be admitted that this map is more complex than what we are used to in typical
functional languages. However, this is at least partly due to map itself being more complex,
and amenable to more different interpretations, than what is usually considered in the context

of those languages.

4.7 Performance model

4.7.1 Type inference

Our compiler performs data flow type inference [60, 32] using a graph-free algorithm [83].
Type inference is invoked on a method cache miss, and recursively follows the call graph
emanating from the analyzed function. The first non-trivial function examined tends to
cause a large fraction of loaded code to be processed.

The algorithmic components needed for this process to work are subtyping (already cov-
ered), join (which can be computed by forming a union type), meet (M), widening operators,
and type-domain implementations (also known as transfer functions) of core language con-
structs.

Meets are challenging to compute, and we do not yet have an algorithm for it that is
as rigorously developed as our subtyping. Our current implementation traverses two types,

recursively applying the rules

T<S§ = TnS=T
S<T — TnNsS==-5
otherwise TS =_1

As this is done, constraints on all variables are accumulated, and then solved. (AU B)MC'is

83

computed as (AMNC)U(BMC). Due to the way meet is used, it is safe for it to over estimate
its result. That will only cause us to conclude that more methods are applicable than really
are, leading to coarser but still correct type inference. Note that for concrete type T', the

rule T < S = TS =T suffices.

Widening is needed in two places:

e Function argument lists that grow in length moving down the call stack.

e Computing the type of a field. Instantiating field types builds up other types, poten-

tially leading to infinite chains.

Each kind of type has a corresponding form of widening. A type nested too deeply can be
replaced by a UnionAll type with variables replacing each component that extends beyond a
certain fixed depth. A union type can be widened using a union-free join of its components.
A long tuple type is widened to a variadic tuple type.

Since the language has few core constructs, not many transfer functions are needed, but
the type system requires them to be fairly sophisticated. For example accessing an unknown
index of Tuple{Int...} can still conclude that the result type is Int. The most important

rule is the one for generic functions:

T(fa targ) = |_| T(Q? targ M 5)
(s,9)€f

where T is the type inference function. t,,, is the inferred argument tuple type. The tuples

(s, g) represent the signatures s and their associated definitions g within generic function f.

4.7.2 Specialization

It might be thought that Julia is fast because our compiler is well engineered, perhaps us-
ing “every trick in the book”. At risk of being self-deprecating, this is not the case. After

type inference we apply standard optimizations: static method resolution, inlining, special-

84

izing variable storage, eliminating tuples that do not escape local scope, unboxing function
arguments, and replacing known function calls with equivalent instruction sequences.

The performance we manage to get derives from language design. Writing complex
functions with many behaviors as generic functions naturally encourages them to be written
in a style that is easier to analyze statically.

Julia specializes methods for nearly every combination of concrete argument types that
occurs. This is undeniably expensive, and past work has often sought to avoid or limit

specialization (e.g. [37]).
4.7.3 Performance predictability

4.8 Dispatch utilization

To evaluate how dispatch is actually used in our application domain, we applied the following

metrics [87]:
1. Dispatch ratio (DR): The average number of methods in a generic function.

2. Choice ratio (CR): For each method, the total number of methods over all generic
functions it belongs to, averaged over all methods. This is essentially the sum of the
squares of the number of methods in each generic function, divided by the total number
of methods. The intent of this statistic is to give more weight to functions with a large

number of methods.

3. Degree of specialization (DoS): The average number of type-specialized arguments per

method.

Table 4.2 shows the mean of each metric over the entire Julia Base library, showing a
high degree of multiple dispatch compared with corpora in other languages [87]. Compared
to most multiple dispatch systems, Julia functions tend to have a large number of definitions.

To see why this might be, it helps to compare results from a biased sample of only operators.

85

Language DR | CR | DoS
Gwydion 1.74 | 18.27 | 2.14
OpenDylan 2.51 | 43.84 | 1.23
CMUCL 2.03| 6.34| 1.17
SBCL 2.37 | 26.57 | 1.11
McCLIM 232 | 1543 | 1.17
Vortex 2.33 | 63.30 | 1.06
Whirlwind 2.07 | 31.65 | 0.71
NiceC 1.36 | 3.46 | 0.33
LocStack 1.50 | 8.92 | 1.02
Julia 5.86 | 51.44 | 1.54
Julia Operators | 28.13 | 78.06 | 2.01

Table 4.2: Comparison of Julia (1208 functions exported from the Base library) to other languages
with multiple dispatch, based on dispatch ratio (DR), choice ratio (CR), and degree of specialization
(DoS) [87]. The “Julia Operators” row describes 47 functions with special syntax (binary operators,

indexing, and concatenation).

These functions are the most obvious candidates for multiple dispatch, and as a result their
statistics climb dramatically. Julia has an unusually large proportion of functions with this

character.

86

Chapter 5

Case studies

This chapter discusses several examples that illustrate the effectiveness of Julia’s abstractions
for technical computing. The first three sections provide an “explication through elimination”
of core features (numbers and arrays) that have usually been built in to technical computing
environments. The remaining sections introduce some libraries and real-world applications

that benefit from Julia’s design.

5.1 Conversion and comparison

Type conversion provides a classic example of a binary method. Multiple dispatch allows us
to avoid deciding whether the converted-to type or the converted-from type is responsible
for defining the operation. Defining a specific conversion is straightforward, and might look

like this in Julia syntax:
convert (::Type{Float64}, x::Int32) = ...

A call to this method would look like convert (Float64, 1).
Using conversion in generic code requires more sophisticated definitions. For example we
might need to convert one value to the type of another, by writing convert (typeof (y),

x). What set of definitions must exist to make that call work in all reasonable cases? Clearly

87

we don’t want to write all O(n?) possibilities. We need abstract definitions that cover many
points in the dispatch matrix. One such family of points is particularly important: those
that describe converting a value to a type it is already an instance of. In our system this

can be handled by a single definition that performs “triangular” dispatch:
convert{T,S<:T}(::Type{T}, x::S) = x

“Triangular” refers to the rough shape of the dispatch matrix covered by such a definition:
for all types T in the first argument slot, match values of any type less than it in the second
argument slot.

A similar trick is useful for defining equivalence relations. It is most likely unavoidable for
programming languages to need multiple notions of equality. Two in particular are natural:
an intensional notion that equates objects that look identical, and an extensional notion that
equates objects that mean the same thing for some standard set of purposes. Intensional
equality (=== in Julia, described in section 4.1) lends itself to being implemented once by
the language implementer, since it can work by directly comparing the representations of
objects. Extensional equality (== in Julia), on the other hand, must be extensible to user-
defined data types. The latter function must call the former in order to have any basis for
its comparisons.

As with conversion, we would like to provide default definitions for == that cover families
of cases. Numbers are a reasonable domain to pick, since all numbers should be equality-

comparable to each other. We might try (Number is the abstract supertype of all numeric
types):
==(x::Number, y::Number) = x ===y

meaning that number comparison can simply fall back to intensional equality. However this
definition is rather dubious. It gets the wrong answer every time the arguments are different
representations (e.g. integer and floating point) of the same quantity. We might hope that its
behavior will be “patched up” later by more specific definitions for various concrete number

types, but it still covers a dangerous amount of dispatch space. If later definitions somehow

88

miss a particular combination of number types, we could get a silent wrong answer instead
of an error. (Note that statically checking method exhaustiveness is no help here.)

“Diagonal” dispatch lets us improve the definition:
=={T<:Number}(x::T, y::T) = x ===y

Now === will only be used on arguments of the same type, making it far more likely to give
the right answer. Even better, any case where it does not give the right answer can be fixed
with a single definition, i.e. ==(x::S, y::S) for some concrete type S. The more general
(Number, Number) case is left open, and in the next section we will take advantage of this

to implement “automatic” type promotion.

5.2 Numeric types and embeddings

We might prefer “number” to be a single, concrete concept, but the history of mathematics
has seen the concept extended many times, from integers to rationals to reals, and then to
complex, quaternion, and more. These constructions tend to follow a pattern: a new set
of numbers is constructed around a subset isomorphic to an existing set of numbers. For
example, the reals are isomorphic to the complex numbers with zero imaginary part.
Human beings happen to be good at equating and moving between isomorphic sets, so
it is easy to imagine that the reals and complexes with zero imaginary part are one and
the same. But a computer forces us to be specific, and admit that a real number is not
complex, and a complex number is not real. And yet the close relationship between them
is too compelling not to model in a computer somehow. Here we have a numerical analog
to the famous “circle and ellipse” problem in object-oriented programming [31]: the set of
circles is isomorphic to the set of ellipses with equal axes, yet neither “is a” relationship in a
class hierarchy seems fully correct. An ellipse is not a circle, and in general a circle cannot
serve as an ellipse (for example, the set of circles is not closed under the same operations
that the set of ellipses is, so a program written for ellipses might not work on circles). This

problem implies that a single built-in type hierarchy is not sufficient: we want to model

89

custom kinds of relationships between types (e.g. “can be embedded in” in addition to “is
a”).

Numbers tend to be among the most complex features of a language. Numeric types
usually need to be a special case: in a typical language with built-in numeric types, describing
their behavior is beyond the expressive power of the language itself. For example, in C
arithmetic operators like + accept multiple types of arguments (ints and floats), but no user-
defined C function can do this (the situation is of course improved in C++). In Python, a
special arrangement is made for + to call either an __add__ or __radd__ method, effectively

providing double-dispatch for arithmetic in a language that is idiomatically single-dispatch.

Implementing type embeddings

Most functions are naturally implemented in the value domain, but some are actually easier
to implement in the type domain. One reason is that there is a bottom element, which most
data types lack.

It has been suggested on theoretical grounds [93] that generic binary operators should
have “key variants” where the arguments are of the same type. We implement this in Julia

with a default definition that uses diagonal dispatch:
+{T<:Number}(x::T, y::T) = no_op_err("+", T)

Then we can implement a more general definition for different-type arguments that tries

to promote the arguments to a common type by calling promote:
+(x::Number, y::Number) = +(promote(x,y)...)

promote returns a pair of the values of its arguments after conversion to a common type, so
that a “key variant” can be invoked.
promote is designed to be extended by new numeric types. A full-featured promotion

operator is a tall order. We would like

e Each combination of types only needs to be defined in one order; we don’t want to

redundantly define the behavior of (T,S) and (S,T).

90

e [t falls back to join for types without any defined promotion.

e [t must prevent promotion above a certain point to avoid circularity.

The core of the mechanism is three functions: promote_type, which performs promotion
in the type domain only, promote_rule, which is the function defined by libraries, and a
utility function promote_result. The default definition of promote_rule returns Bottom,
indicating no promotion is defined. promote_type calls promote_rule with its arguments
in both possible orders. If one order is defined to give X and the other is not defined,
promote_result recursively promotes X and Bottom, giving X. If neither order is defined,

the last definition below is called, which falls back to typejoin:

promote{T,S}(x::T, y::3) =
(convert (promote_type(T,S),x), convert(promote_type(T,S),y))

promote_type{T,S}(::Type{T}, ::Type{S}) =
promote_result (T, S, promote_rule(T,S), promote_rule(S,T))

promote_rule(T, S) = Bottom

promote_result(t,s,T,S) = promote_type(T,S)
If no promote_rule is defined, both directions give Bottom.
In that case use typejoin on the original types instead.
promote_result{T,S}(::Type{T}, ::Type{S},
:: Type{Bottom}, ::Type{Bottom}) = typejoin(T, 8)

The obvious way to extend this system is to define promote_rule, but it can also be
extended in a less obvious way. For the purpose of manipulating container types, we would
like e.g. Int and Real to promote to Real. However, we do not want to introduce a rule
that promotes arbitrary pairs of numeric types to Number, since that would make the above
default definition of + circular. The following definitions accomplish this, by promoting to

the larger numeric type if one is a subtype of the other:
promote_result{T<:Number ,S<:Number} (::Type{T}, ::Type{S},
:: Type{Bottom}, ::Type{Bottom}) =
promote_sup (T, S, typejoin(T,S))

promote numeric types T and S to typejoin(T,S) if T<:S or S<:T

91

for example this makes promote_type(Integer ,Real) == Real without
promoting arbitrary pairs of numeric types to Number.

promote_sup{T<:Number FC::Type{T},:: Type{T},:: Type{T}) =T
promote_sup{T<:Number ,S<:Number}(::Type{T},:: Type{S},::Type{T}) =T
promote_sup{T<:Number ,S<:Number}(::Type{T},::Type{S},::Type{S}) = S

promote_sup{T<:Number ,S<:Number}(::Type{T},::Type{S},::Type) =
error ("no promotion exists for ", T, " and ", S)

Application to ranges

Ranges illustrate an interesting application of type promotion. A range data type, notated
a:s:b, represents a sequence of values starting at a and ending at b, with a distance of s
between elements (internally, this notation is translated to colon(a, s, b)). Ranges seem
simple enough, but a reliable, efficient, and generic implementation is difficult to achieve.

We propose the following requirements:

e The start and stop values can be passed as different types, but internally should be of

the same type.

e Ranges should work with ordinal types, not just numbers (examples include characters,

pointers, and calendar dates).

e If any of the arguments is a floating-point number, a special FloatRange type designed

to cope well with roundoff is returned.

In the case of ordinal types, the step value is naturally of a different type than the
elements of the range. For example, one may add 1 to a character to get the “next” encoded
character, but it does not make sense to add two characters.

It turns out that the desired behavior can be achieved with six definitions.

First, given three floats of the same type we can construct a FloatRange right away:

colon{T<:FloatingPoint}(start::T, step::T, stop::T) =

FloatRange{T}(start, step, stop)

92

Next, if a and b are of the same type and there are no floats, we can construct a general

range:

colon{T}(start::T, step, stop::T) = StepRange(start, step, stop)

Now there is a problem to fix: if the first and last arguments are of some non-floating-
point numeric type, but the step is floating point, we want to promote all arguments to a
common floating point type. We must also do this if the first and last arguments are floats,

but the step is some other kind of number:

colon{T<:Real}(a::T, s::FloatingPoint, b::T)

colon(promote(a,s,b)...)

colon{T<:FloatingPoint}(a::T, s::Real, b::T) colon(promote(a,s,b)...)

These two definitions are correct, but ambiguous: if the step is a float of a different type
than a and b both definitions are equally applicable. We can add the following disambiguat-

ing definition:

colon{T<:FloatingPoint}(a::T, s::FloatingPoint, b::T) =

colon(promote(a,s,b)...)

All of these five definitions require a and b to be of the same type. If they are not, we
must promote just those two arguments, and leave the step alone (in case we are dealing

with ordinal types):

colon{A,B}(a::A, s, b::B) =

colon(convert (promote_type(A,B),a), s, convert(promote_type(A,B),b))

This example shows that it is not always sufficient to have a built-in set of “promoting

operators”. Library functions like this colon need more control.

93

On implicit conversion

In order to facilitate human styles of thinking, many programming languages offer some flex-
ibility in when types are required to match. For example, a C function declared to accept
type float can also be called with an int, and the compiler will insert a conversion automat-
ically. We have found that most cases where this behavior is desirable are handled simply by
method applicability, as shown in this and the previous section. Most of the remaining cases
involve assignment. Julia has a notion of a typed location, which is a variable or mutable
object field with an associated type. The core language requires types to match (as deter-
mined by subtyping) on assignment. However, updating assignments that are syntactically
identifiable (via use of =) cause the front-end to insert calls to convert to try to convert
the assignment right-hand side to the type of the assigned location. Abstract data types
can easily mimic this behavior by (optionally) calling convert in their implementations of
mutating operations. In our experience, this arrangement provides the needed convenience
without complicating the language. Program analyses consuming lowered syntax trees (or
any lower level representation) do not need to know anything about conversion or coercion.

Fortress [4] also provides powerful type conversion machinery. However, it does so through
a special coerce feature. This allows conversions to happen during dispatch, so a method
can become applicable if arguments can be converted to its declared type. There is also
a built-in notion of type widening. This allows conversions to be inserted between nested
operator applications, which can improve the accuracy of mixed-precision code. It is not
possible to provide these features in Julia without doing violence to our “everything is a
method call” semantics. We feel that it is worth giving up these features for a simpler
mental model. We also believe that the ability to provide so much “magic” numeric type

behavior only through method definitions is interesting and novel.

Number-like types in practice

Originally, our reasons for implementing all numeric types at the library level were not

entirely practical. We had a principled opposition to including such definitions in a compiler,

94

and guessed that being able to define numeric types would help ensure the language was
powerful enough. However, defining numeric and number-like types and their interactions
turns out to be surprisingly useful. Once such types are easy to obtain, people find more
and more uses for them.

Even among basic types that might reasonably be built in, there is enough complexity

to require an organizational strategy. We might have

Ordinal types Pointer, Char, Enum

Integer types Bool, Int8, Intl16, Int32, Int64, Int128, UInt8, UInt16, UInt32,
UInt64, UInt128, Biglnt

e Floating point types Float16, Float32, Float64, Float80*, Float128*, BigFloat,
DoubleDouble
e [xtensions Rational, Complex, Quaternion

Types with * have not been implemented yet, but the rest have. In external packages, there
are types for interval arithmetic, dual and hyper-dual numbers for computing first and second
derivatives, finite fields, and decimal floating-point.

Some applications benefit in performance from fixed-point arithmetic. This has been
implemented in a package as Fixed32{b}, where the number of fraction bits is a parameter.

A problem in the design of image processing libraries was solved by defining a new kind of
fixed-point type [61]. The problem is that image scientists often want to work with fractional
pixel values in the interval [0, 1], but most graphics libraries (and memory efficiency concerns)
require 8-bit integer pixel components with values in the interval [0,255]. The solution is a
Ufixed8 type that uses an unsigned 8-bit integer as its representation, but behaves like a
fraction over 255.

Many real-world quantities are not numbers exactly, but benefit from the same mech-

anisms in their implementation. Examples include colors (which form a vector space, and

95

where many different useful bases have been standardized), physical units, and DNA nu-
cleotides. Date and time arithmetic is especially intricate and irregular, and benefits from

permissiveness in operator definitions.

5.3 Multidimensional array indexing

One-dimensional arrays are a simple and essential data structure found in most programming
languages. The multi-dimensional arrays required in scientific computing, however, are a
different beast entirely. Allowing any number of dimensions entails a significant increase in
complexity. Why? The essential reason is that core properties of the data structure no longer
fit in a constant amount of space. The space needed to store the sizes of the dimensions (the
array shape) is proportional to the number of dimensions. This does not seem so bad, but

becomes a large problem due to three additional facts:

1. Code that operates on the dimension sizes needs to be highly efficient. Typically the

overhead of a loop is unacceptable, and such code needs to be fully unrolled.

2. In some code the number of dimensions is a dynamic property — it is only known at

run time.

3. Programs may wish to treat arrays with different numbers of dimensions very differ-
ently. A vector (1d) might have rather different behaviors than a matrix (2d) (for
example, when computing a norm). This kind of behavior makes the number of di-
mensions a crucial part of program semantics, preventing it from remaining a compiler

implementation detail.

These facts pull in different directions. The first fact asks for static analysis. The second
fact asks for run time flexibility. The third fact asks for dimensionality to be part of the
type system, but partly determined at run time (for example, via virtual method dispatch).
Current approaches choose a compromise. In some systems, the number of dimensions has a

strict limit (e.g. 3 or 4), so that separate classes for each case can be written out in full. Other

96

systems choose flexibility, and just accept that most or all operations will be dynamically
dispatched. Other systems might provide flexibility only at compile time, for example a

template library where the number of dimensions must be statically known.

Whatever tradeoff is made, rules must be defined for how various operators act on di-
mensions. Here we focus on indexing, since selecting parts of arrays has particularly rich
behavior with respect to dimensionality. For example, if a single row or column of a matrix
is selected, does the result have one or two dimensions? Array implementations prefer to
invoke general rules to answer such questions. Such a rule might say “dimensions indexed
with scalars are dropped”, or “trailing dimensions of size one are dropped”, or “the rank
of the result is the sum of the ranks of the indexes” (as in APL). A significant amount of
work has been done on inferring properties like these for existing array-based languages (e.g.

[59, 49], although these methods go farther and attempt to infer complete size information).

C++ and Haskell are both examples of languages with sufficiently powerful static se-
mantics to support defining efficient and reasonably flexible multi-dimensional arrays in
libraries. In both languages, implementing these libraries is fairly difficult and places some
limits on how indexing can behave. In C++, the popular Boost libraries include a multi-
array type [48]. To index an array with this library, one builds up an index_gen object by
repeatedly applying the [] operator. On each application, if the argument is a range then
the corresponding dimension is kept, and otherwise it is dropped. This is implemented with
a template as follows:
template <int NumRanges, int NumDims>

struct index_gen A
index_gen<NumRanges+1,NumDims+1> operator [] (const range& r) const

{ ... %
index_gen<NumRanges+1,NumDims> operator [] (index idx) const

{ ... %
by

The number of dimensions in the result is determined by arithmetic on template parameters

and static overloading. Handling arguments one at a time recursively is a common pattern

97

for feeding more complex type information to compilers. In fact, the Haskell library Repa [63]

uses essentially the same approach:

instance Slice sl => Slice (sl :. Int) where

sliceOfFull (fsl :. _) (ssl :. _) = sliceOfFull fsl ssl
instance Slice sl => Slice (sl :. All) where

slice0OfFull (fsl :. All) (ssl :. s) = sliceOfFull fsl ssl :. s

The first instance declaration says that given an Int index, the dimension corresponding to
_1is dropped. The second declaration says that given an A1l index, dimension s is kept.

Our dispatch mechanism permits a novel solution [12]. Indexing behavior can be defined
with method signatures, using a combination of variadic methods and argument “splatting”
(the ability to pass a structure of n values as n separate arguments to a function, known
as apply in Lisp dialects, and written as f(xs...) in Julia). This solution is still a
compromise among the factors outlined above, but it is a new compromise that provides a
modest increment of power.

Below we define a function index_shape that computes the shape of a result array given
a series of index arguments. We show three versions, each implementing a different rule that

users in different domains might want:

drop dimensions indexed with scalars
index_shape() = O
index_shape(i::Real, I...)
index_shape(i, I...)

index_shape(I...)
(length(i), index_shape(I...)...)

drop trailing dimensions indexed with scalars
index_shape(i::Real...) = ()
index_shape(i, I...) (length(i), index_shape(I...)...)

rank summing (APL)
index_shape ()
index_shape(i, I...)

O
(size(i) ..., index_shape(I...)...)

Inferring the length of the result of index_shape is sufficient to infer the rank of the

result array.

98

These definitions are concise, easy to write, and possible for a compiler to understand
fully using straightforward techniques.

The result type is determined using only data flow type inference, plus a rule for splicing
an immediate container (the type of f£((a,b)...) is the type of f(a,b)). Argument list
destructuring takes place inside the type intersection operator used to combine argument
types with method signatures.

This approach does not depend on any heuristics. Each call to index_shape simply
requires one recursive invocation of type inference. This process reaches the base case ()
for these definitions, since each recursive call handles a shorter argument list (for less-well-

behaved definitions, we might end up invoking a widening operator instead).

5.4 Numerical linear algebra

The crucial roles of code selection and code specialization in technical computing are captured
well in the linear algebra software engineer’s dilemma, described in the context of LAPACK

and ScaLAPACK by Demmel and Dongarra, et.al. [35]:

(1) for all linear algebra problems (linear systems, eigenproblems, ...)
(2) for all matrix types (general, symmetric, banded, ...)
3 for all data types (real, complex, single, double, higher precision)
(4) for all machine architectures
and communication topologies
(5) for all programming interfaces
(6) provide the best algorithm(s) available in terms of

performance and accuracy ("algorithms" is plural
because sometimes no single one is always best)

Describing the applicability of BLAS:
const BlasFloat = Union(Float64,Float32,Complex128,Complex64)
axpy !{T<:BlasFloat}(alpha::Number,

x::Union(DenseArray{T},StridedVector{T}),
y::Union(DenselArray{T},StridedVector{T}))

99

5.5 Units

Despite their enormous importance in science, unit quantities have not reached widespread
use in programming. This is not surprising, considering the technical difficulties involved:
units are symbolic objects, so attaching them to numbers can bring significant overhead. To
restore peak performance, units need to be “lifted” into a type system of some kind, to move
their overhead to compile time. However at that point we encounter a tradeoff similar to
that present in multi-dimensional arrays. Will it be possible to have an array of numbers
with different units? What if a program wants to return different units based on criteria the
compiler cannot resolve? Julia’s automatic blending of binding times is again helpful.

The SIUnits package by Keno Fischer [41] implements Julia types for SI units and unit

quantities:

immutable SIUnit{m,kg,s,A,K,mol,cd} <: Number
end

immutable SIQuantity{T<:Number ,m,kg,s,A,K,mol,cd} <: Number
val::T
end
This implementation uses a type parameter to store the exponent (an integer, or perhaps in
the near future a rational number) of each base unit associated with a value. An SIUnit
has only the symbolic part, and can be used to mention units without committing to a
representation. Its size, as a data type, is zero. An SIQuantity contains the same symbolic

information, but wraps a number used to represent the scalar part of the unit quantity.

Definitions like the following are used to provide convenient names for units:

const Meter = SIUnitq{1,0,0,0,0,
0,0,0

0,030
const KiloGram = SIUnit{0,1,0,0,0,0

,030

The approach described in section 5.2 is used to combine numbers with units. Arithmetic is

implemented as follows:
function +{T,S,m,kg,s,A,K,mol,cd}(x::SIQuantity{T,m,kg,s,A,K,mol,cd},

y::SIQuantity{S,m,kg,s,A,K,mol,cd})
val = x.val+y.val

100

SIQuantity{typeof (val) ,m,kg,s,A,K,mol,cd}(val)
end

function +(x::SIQuantity, y::SIQuantity)
error ("Unit mismatch.")
end

In the first definition, the representation types of the two arguments do not have to match,
but the units do (checked via diagonal dispatch). Any combination of SIQuantitys that is
not otherwise implemented is a unit mismatch error.

When storing unit quantities in arrays, the array constructor in Julia’s standard library
is able to automatically select an appropriate type. If all elements have the same units, the
symbolic unit information is stored only once in the array’s type tag, and the array data

uses a compact representation:

julia> a = [1m,2m,3m]
3-element Array{SIQuantity{Int6€4,1,0,0,0,0,0,0},1}:
1m

2 m

3m

julia> reinterpret(Int,a)
3-element Array{Int64,1}:
1
2
3

If different units are present, a wider type is chosen via the array constructor invoking

promote_type:

julia> a = [1m,2s]

2-element Array{SIQuantity{Int64,m,kg,s,A,K,mol,cd},1}:
1m
2 s

Unit quantities are different from most number types in that they are not closed under

multiplication. Nevertheless, generic functions behave as expected. Consider a generic prod

101

function that multiplies elements of a collection. With units, its result type can depend on
the size of the collection:

julia> prod([2m,3m]), typeof (prod([2m,3m]))
(6 m?, SIQuantity{Int64,2,0,0,0,0,0,0})

julia> prod([2m,3m,4m]), typeof (prod([2m,3m,4m]))

(24 m®, SIQuantity{Int64,3,0,0,0,0,0,03})

For simple uses of units, Julia’s compiler will generally be able to infer result types. For
more complex cases like prod it may not be able to, but this will only result in a loss of

performance. This is the tradeoff a Julia programmer accepts.

5.6 Algebraic modeling with JuMP

An entire subfield of technical computing is devoted to solving optimization problems. Linear
programming, the problem of finding variable values that maximize a linear function subject
to linear constraints, is especially important and widely used, for example in operations
research.

Real-world problem instances can be quite large, requiring many variables and con-
straints. Simply writing down a large linear program is challenging enough to require au-
tomation. Specialized languages known as Algebraic Modeling Languages (AMLs) have been
developed for this purpose. One popular AML is AMPL [42], which allows users to specify
problems using a high-level mathematical syntax. Here is an example model of a “knapsack”

problem (from [72]) in AMPL syntax:

var x{j in 1..N} >= 0.0, <= 1.0;

maximize Obj:
sum {j in 1..N} profit[j] * x[j];

subject to CapacityCon:
sum {j in 1..N} weight[j] * x[j] <= capacity;

102

This syntax is “compiled” to a numeric matrix representation that can be consumed by
standard solver libraries. Although solving the problem can take a significant amount of
time, building the problem representation is often the bottleneck. AMPL is highly specialized
to this task and offers good performance.

Providing the same level of performance and convenience for linear programming within
a general purpose language has proven difficult. However many users would prefer this,
since it would make it easier to provide data to the model and use the results within a larger
system. Using Julia, Miles Lubin and Iain Dunning solved this problem, creating the first
embedded AML, JuMP [72], to match both the performance and notational advantages of
specialized tools.

The solution is a multi-stage program: first the input syntax is converted to conventional
loops and function calls with a macro, then the types of arguments are used to decide how to
update the model, and finally code specialized for the structure of the input problem runs.
The second stage is handled by a combination of generic functions and Julia’s standard
specialization process. Model parameters can refer to variables in the surrounding Julia
program, without JuMP needing to understand the entire context.

Lubin and Dunning provide an example of how this works. The input

Q@addConstraint (m, sumweight[jl#*x[j], j=1:N + s == capacity)

is lowered to (lightly edited):

aff = AffExpr ()
for i = 1:N

addToExpression(aff, 1.0xweight[i], x[i])
end
addToExpression(aff, 1.0, s)
addToExpression(aff, -1.0, capacity)
addConstraint (m, Constraint (aff,"=="))

addToExpression includes the following methods (plus others):

addToExpression (ex::Number, c::Number , x::Number)
addToExpression (ex::Number, c::Number, x::Variable)
addToExpression (ex::Number, c::Number, x::AffExpr)

103

L | JuMP/Julia | AMPL | Gurobi/C++ | PuLP/PyPy
1000 1.0 0.7 0.8 4.8
5000 4.2 3.3 3.9 26.4

10000 8.9 6.7 8.3 50.6
50000 48.3 35.0 39.3 225.6

Table 5.1: Performance (time in seconds) of several linear programming tools for generating
models in MPS format (excerpted from [72]). L is the number of locations solved for in a facility

location problem.

addToExpression (ex::Number, c::Variable, x::Variable)
addToExpression (ex::Number, c::AffExpr, x::AffExpr)
addToExpression(aff::AffExpr, c::Number, x::Number)

addToExpression(aff::AffExpr, c::Number, x::Variable)
addToExpression(aff::AffExpr, c::Variable, x::Variable)
addToExpression(aff::AffExpr, c::Number, x::AffExpr)
addToExpression(aff::AffExpr, c::Number, x::QuadExpr)

When the arguments are all numbers, ex + c*x is computed directly. Or, given an
AffExpr and a variable, the AffExpr’s lists of variables and coefficients are extended. Given
two variables, a quadratic term is added. With this structure, new kinds of terms can be
added with minimal code, without needing to update the more complicated syntax transfor-

mation code.

Table 5.1 shows performance results. JuMP is only marginally slower than AMPL or
direct use of the Gurobi solver’s C++ API. The C++ implementation, unlike the other
systems compared in the table, is not solver-independent and does not provide convenient
high-level syntax. PuLP [82] is Python-based, and was benchmarked under the PyPy JIT
compiler [14].

104

5.7 Boundary element method

There are lots of general packages [70, 90] implementing the finite-element method (FEM) [111]
to solve partial differential equations (PDEs), but it is much more difficult to create such a
“multi-physics” package for the boundary-element method (BEM) [16, 30] to solve surface-
integral equations (SIEs). One reason is that BEM requires integrating functions with singu-
larities many times in the inner loop of the code that builds the problem matrix, and doing
this efficiently requires integration code, typically written by hand, that is specialized to the
specific problem being solved.

Recent work [92] managed a more general solution using Mathematica to generate C++
code for different cases, in combination with some hand-written code. This worked well, but
was difficult to implement and the resulting system is difficult to apply to new problems..
We see the familiar pattern of using multiple languages and code-generation techniques,
with coordination of the overall process done either manually or with ad hoc scripts. To
polish the implementation for use as a practical library, a likely next step would be to add
a Python interface, adding yet another layer of complexity. Instead, we believe that the
entire problem can be solved efficiently in Julia, relying on Julia’s rich dispatch system
and integrated code-generation facilities, and especially on staged functions to automate
the generation of singular-integration code while retaining the interface of a simple function
library.

Thanks to Professor Steven Johnson for providing the following section describing the

problem.

Galerkin matrix assembly for singular kernels

A typical problem in computational science is to form a discrete approximation of some
infinite-dimensional linear operator £ with some finite set of basis functions {b,,} via a
Galerkin approach[17, 16, 111], which leads to a matrix L with entries L, = (by,, Lb,) =
(b, b) where (-, -) denotes some inner product (e.g. (u,v) = [wwv is typical) and (-,-)

is the bilinear form of the problem. Computing these matrix elements is known as the

105

matrix assembly step, and its performance is a crucial concern for solving partial differential
equations (PDEs) and integral equations (IEs).

A challenging case of Galerkin matrix assembly arises for singular integral operators L,
which act by convolving their operand against a singular “kernel” function K(x): u = Lv
means that u(z) = [K(z — 2')v(2’)dz’. For example, in electrostatics and other Poisson
problems, the kernel is K(z) = 1/|z| in three dimensions and In|z| in two dimensions,
while in scalar Helmholtz (wave) problems it is e’*1//|z| in three dimensions and a Hankel
function H(()l)(k‘|a:|) in two dimensions. Formally, Galerkin discretizations lead to matrix
assembly problems similar to those above: Ly, =: (b, Lb,) = [by () K (x —2")by, (2)dx d2’.

However, there are several important differences from FEM:

e The kernel K (z) nearly always diverges for |z| = 0, which means that generic cubature
schemes are either unacceptably inaccurate (for low-order schemes) or unacceptably
costly (for adaptive high-order schemes, which require huge numbers of cubature points

around the singularity), or both.

e Integral operators typically arise for surface integral equations (SIEs) [16, 30], and
involve unknowns on a surface. The analogue of the FEM discretization is then a
boundary element method (BEM) [16, 30], which discretizes a surface into elements
(e.g. triangles), with basis functions that are low-order polynomials defiend piecewise
in the elements. However, there are also volume integral equations (VIEs) which have

FEM-like volumetric meshes and basis functions.

e The matrix L is typically dense, since K is long-range. For large problems, L is often
stored and applied implicitly via fast-multipole methods and similar schemes [29, 68],
but even in this case the diagonal L,,,, and the entries L,,, for adjacent elements must
typically be computed explicitly. (Moreover, these are the integrals in which the K

singularity is present.)

These difficulties are part of the reason why there is currently no truly “generic” BEM

software, analogous to FEniCS [69] for FEM: essentially all practical BEM code is written for

106

a specific integral kernel and a specific class of basis functions arising in a particular physical
problem. Changing anything about the kernel or the basis—for example, going from two- to

three-dimensional problems—is a major undertaking.

Novel solution using Julia

Julia’s dispatch and specialization features make this problem significantly easier to address:

e Dispatch on structured types allows the cubature scheme to be selected based on the
dimensionality, the degree of the singularity, the degree of the polynomial basis, and
so on, and allows specialized schemes to be added easily for particular problems with

no run time penalty.

e Staged functions allow computer algebra systems to be invoked at compile time to
generate specialized cubature schemes for particular kernels. New developments in
BEM integration schemes [92] have provided efficient cubature-generation algorithms
of this sort, but it has not yet been practical to integrate them with run time code in

a completely automated way.

A prototype implementation of this approach follows. First we define nominal function

types that represent kernel functions:
abstract AbstractKernel

any kernel that decays as X'p for X < s and X"q for X > s
abstract APowerLaw{p,q,s} <: AbstractKernel

rP power law
type PowerlLaw{p} <: APowerLaw{p,pl}; end

Next we add a type representing the integral K, (X) = [w"K(wX)dw, and implement it

for the case K(x) = z?:
type FirstIntegral{K<:AbstractKernel ,n}; end

function call{p,n}(::FirstIntegral{PowerLaw{p},n}, X::Number)

107

return p >= 0 ? X'p / (1 + n + p) : inv(X"(-p) * (1 + n + p))
end

Code for instances of this function is specialized for p and n. Here is a sample session

creating a function instance, and showing the LLVM [65] code generated for it:
F = FirstIntegral{PowerLaw{-1}, 3}()
@code 1lvm F(2.5)

define double @julia_call 90703 (%jl_value_t*, double) {

top:
%2 = fmul double %1, 3.000000e+00
%3 = fdiv double 1.000000e+00, %2

ret double %3

Analytically known special cases can be added for other kernels. Here are two more.

Notice that a Helmholtz kernel is also a power law kernel !:
type Helmholtz{k} <: APowerLaw{-1,-1}; end # ém74ﬂr

function call{k,n}(::FirstIntegral{Helmholtz{k},n}, X::Number)
ikX = im*kx*X
return exp(ikX) * exprel(n, -ikX) / (4m*n*xX)

end

magnetic field integral equation
type MFIE{k} <: APowerLaw{-3,-3}; end # (ikr—1)x*e*" /4mr3

function call{k,n}(::FirstIntegral{MFIE{k},n}, X::Number)
ikX = imx*xkx*X
return exp(ikX) * (im*kxexprel(n-1,-ikX)/((n-1)=*X) -
exprel (n-2,-1kX)/((n-2)*X"2)) / (47xX)
end
It is possible to implement FirstIntegral for the general case of any APowerLaw using
numerical integration, however this procedure is too slow to be useful. Instead, we would like

to compute the integral for a range of parameter values in advance, construct a Chebyshev

approximation, and use efficient polynomial evaluation at run time. Julia’s staged methods

!The exprel function used here is available in the external GSL package; see appendix B.

108

provide an easy way to automate this process. Appendix B presents a full working imple-
mentation of the general case, computing Chebyshev coefficients at compile time. The final
generated code is a straight-line sequence of adds and multiplies. Here we show a rough

outline of how the method works:

@generated function call{P<:APowerLaw,n}(K::FirstIntegral{P,n},

X::Real)

compute Chebyshev coefficients ¢ based on K
#
quote

X <= 0 && throw(DomainError ())

§=1- (X + 8(27°(1/9))) " "8q

C = @evalcheb & $(c...)

return $p < 0 7 C * (X"$p + $(s"p)) : C
end

end

The method signature reflects the shape of the problem: the user might implement any
kernel at all, but if it does not take the form of an APowerLaw{p} then this numerical
procedure is not useful. p must be known, and cannot be easily extracted from an arbitrary
opaque function. If the interface allowed an opaque function to be passed, the value of p
would need to be passed separately, which de-couples the property from the function, and
requires a custom lookup table for caching generated code.

One might hope that with a sufficient amount of constant propagation and functional
purity analysis, a compiler could automatically move computation of the Chebyshev coeffi-
cients to compile time. That does indeed seem possible. The point of @generated, then,
is to make it so easy to get the desired staging that one does not have to worry about
what amazing feats the compiler might be capable of. Without it, one would face a difficult
debugging challenge when the compiler, for whatever opaque reasons, did not perform the
desired optimizations.

To complete the picture, here is pseudocode for how this library would be used to solve
a boundary element problem over a triangle mesh. The three cases inside the loop are a
translation of the three formulas from figure 1 in [92] (only the first formula’s code is shown

in full for simplicity):

109

FP = [(FirstIntegral{K,i}(), polynomial(i)) for i imn N]
for trianglepair in mesh
i, j = indexes based on triangles
if common(trianglepair)
M[i,j] = integrate(y->sum([F(y)*P(y) for (F,P) imn FP]),
0, 1)
elseif commonedge (trianglepair)
a 2d integral
elseif commonvertex(trianglepair)
a 3d integral
else
separate triangles
end
end

5.8 Beating the incumbents

There is anecdotal evidence that libraries written in Julia are occasionally faster than their
equivalents in established languages like C++4, or than built-in functions in environments
like MATLAB [78]. Here we collect a few examples.

Special functions (e.g. Bessel functions, the error function, etc.) are typically evaluated
using polynomial approximations. Traditional libraries often read polynomial coefficients
from arrays. When we wrote some of these functions in Julia we used a macro to expand
the polynomials in line, storing the coefficients in the instruction stream, leading to better
performance. There is an efficient algorithm for evaluating polynomials at complex-valued
arguments [64], but it is fairly subtle and so not always used. If the code can be generated
by a macro, though, it is much easier to take advantage of, and Julia’s @evalpoly does so.

Julia’s function for generating normally distributed random numbers is significantly faster
than that found in many numerical environments. We implemented the popular ziggurat
method [74], which consists of a commonly used fast path and a rarely used more complicated
procedure. The fast path and check for the rare case can be put in a small function, which
can be inlined at call sites in user code. We attribute most of the performance gain to this

trick. This demonstrates that removing “glue code” overhead can be worthwhile.

110

Julia has long used the Grisu algorithm for printing floating-point numbers [71], at first
calling the original implementation in C+4. An opportunity to do an unusually direct
comparison arose when this code was ported to Julia [89]. The Julia implementation is at
worst 20% slower, but wins on productivity: the C++ code is around 6000 lines, the Julia

code around 1000 lines.

111

112

Chapter 6

Conclusion

“I've yet to hear anyone explain how you decide what are the boundaries of a ‘domain-specific’

language. Isn’t the ‘domain’ mathematics and science itself?” [53]

A generation of dynamic languages have been designed by trying variants of the class-
based object oriented paradigm. This process has been aided by the development of standard
techniques (e.g. bytecode VMs) and reusable infrastructure such as code generators, garbage

collectors, and whole VMSs like the JVM and CLR.

It is possible to envision a future generation of languages that generalize this design to
set-theoretic subtyping instead of just classes. This next generation will require its own new
tools, such as partial evaluators (already under development in PyPy and Truffle). One can
also imagine these future language designers wanting reusable program analyses, and tools

for developing lattices and their operators.

Julia encourages lattice-theoretic execution models to become integral parts of languages.
dispatch was an especially natural way to do this, are there others? What else can we do

with partial information as part of a programming model?

113

6.1 Performance

If we are interested in abstraction, then type specialization is the first priority for getting

performance. However in a broader view there is much more to performance.

6.2 Implementation issues

6.3 Future work

formalize more details of dispatch, meet, join, widen

e product domains, how to incorporate finer types more smoothly
e how to incorporate static checks? [52]

e separate compilation

e function types

e shared memory, cilk

e can we implement BLAS?

e incorporate autotuning?

6.4 Project status

114

Appendix A

Subtyping algorithm

abstract Ty

type TypeName
super:: Ty
TypeName () = new()
end

type TagT <: Ty
name : : TypeName
params
vararg::Bool
end

Any, Bottom, and Tuple

const AnyT = TagT(TypeName (),
const BottomT = BottomTy ()
TupleName .super = AnyT

type BottomTy <: Ty;

const TupleName = TypeName ();

type application
inst(t::TagT) =t

inst(t::UnionAllT, param)
inst(t::UnionAllT, param,

super (t::TagT) =

t.name===TupleName 7 AnyT

extend(d::Dict, k, v)
subst (t, env)

merge (d,

type UnionT <: Ty
a; b
end

type Var
1b; ub
end

type UnionAllT <: Ty
var::Var
T

end

AnyT.name.super = AnyT

subst(t.T, Dict(t.var => param))
rest...)

= inst(inst (t,param), rest...
inst (t.name.super, t.params...)
Dict (k=>v))

115

subst (t::TagT, env) =
t===AnyT ? t : TagT(t.name, map(x->subst(x,env), t.params),
t.vararg)

subst (t::UnionT, env) = UnionT(subst(t.a,env), subst(t.b,env))
subst (t::Var, env) = get(env, t, t)
function subst(t::UnionAllT, env)

newVar = Var (subst(t.var.lb,env), subst(t.var.ub,env))

UnionAllT (newVar, subst(t.T, extend(env, t.var, newVar)))
end

rename (t::UnionAllT) = let v = Var(t.var.1lb, t.var.ub)
UnionAllT (v, inst(t,v))
end

type Bounds
1b; ub # current lower and upper bounds of a Var
right::Bool # this Var is on the right-hand side of A <: B
end

type UnionState
depth::Int # number of nested union decision points

more: :Bool # new union found; need to grow stack

stack::Vector{Bool} # stack of decisions

UnionState() = new(1,0,Booll[])

end

type Env

vars::Dict{Var,Bounds}

Lunions::UnionState

Runions::UnionState

Env() = new(Dict{Var,Bounds}(), UnionState(), UnionState())
end

issub(x, y) forall
issub(x, y, env) = (x
issub(x::Ty, y::Ty, env) (x

ists_issub(x, y, Env(), false)

_ex
V)
y) |l x === BottomT

function forall_exists_issub(x, y, env, anyunions::Bool)

for forall in false:anyunions
if !isempty(env.Lunions.stack)

env.Lunions.stack[end] = forall
end

lexists_issub(x, y, env, false) && return false

116

if env.Lunions.more
push! (env.Lunions.stack, false)
sub = forall_exists_issub(x, y, env,
pop! (env.Lunions.stack)
I'sub && return false

end end

return true
end

function exists_issub(x, y, env, anyunions::Bool)

for exists in false:anyunions
if !isempty(env.Runions.stack)

env.Runions.stack[end] = exists
end
env.Lunions.depth = env.Runions.depth =
env.Lunions.more = env.Runions.more = false
found = issub(x, y, env)

if env.Lunions.more

return true # return up to forall_exists_issub

end
if env.Runions.more
push! (env.Runions.stack, false)
found = exists_issub(x, y, env, true)
pop! (env.Runions.stack)
end
found && return true
end
return false
end

function issub union(t, u::UnionT, env, R)

state = R 7 env.Runions : env.Lunions
if state.depth > length(state.stack)
state.more = true
return true
end
ui = state.stack[state.depth]; state.depth +=
choice = u.(1+ui)
return R 7 issub(t, choice, env) : issub(choice,
end
issub(a::UnionT, b::UnionT, env) = issub_union(a,

issub(a::UnionT, b::Ty, env)

117

issub_union (b,

t,

b,
a,

env)

env ,
env ,

true)
false)

issub(a::Ty, b::UnionT, env) = issub _union(a, b, env, true)
take apart unions before handling vars

issub(a::UnionT, b::Var, env) = issub_union(b, a, env, false)
issub(a::Var, b::UnionT, env)

issub _union(a, b, env, true)

function issub(a::TagT, b::TagT, env)
a === b && returmn true
b === AnyT && returm true
a === AnyT && return false
if a.name !== b.name
return issub(super(a), b, env)
end
if a.name === TuplelName
va, vb = a.vararg, b.vararg
la, 1b = length(a.params), length(b.params)
ai = bi =1
while ai <= la
bi > 1b && returm false
'issub(a.params[ail], b.params[bi], env) && return false
ai += 1
if bi < 1b || !vb
bi += 1
end end
return (la==1b && va==vb) || (vb && (la >= (va ? 1b : 1b-1)))
end
for i = 1:length(a.params)
ai, bi = a.params[i], b.params[i]
(issub(ai, bi, env) && issub(bi, ai, env)) || return false
end
return true

end

function join(a,b,env)

(a===BottomT || b===AnyT || a === b) && return b
(b===BottomT || a===AnyT) && return a
UnionT(a,b)

end

issub(a::Ty, b::Var, env) = var_gt(b, a, env)

issub(a::Var, b::Ty, env) var_lt(a, b, env)
function issub(a::Var, b::Var, env)
a === b && return true
aa = env.varsla]; bb = env.vars/[b]
if aa.right
bb.right && return issub(bb.ub, bb.1lb, env)

118

return var _1lt(a, b, env)

else
if !bb.right # check Va,b . a<:b
return issub(aa.ub, b, env) || dissub(a, bb.lb, env)
end
return var_gt(b, a, env)
end
end

function var_lt(b::Var, a::Union(Ty,Var), env)
bb = env.vars|[b]
!'bb.right && return issub(bb.ub, a, env) # check Vb . b<:a
lissub(bb.1lb, a, env) && return false
for contravariance we would need to compute a meet here, but
because of invariance bb.ub 1 a == a here always.
bb.ub = a # meet(bb.ub, a)
return true
end

function var_gt(b::Var, a::Union(Ty,Var), env)
bb = env.vars|[b]
!bb.right && return issub(a, bb.lb, env) # check Vb . b>:a
lissub(a, bb.ub, env) && return false
bb.1lb = join(bb.lb, a, env)
return true
end

function issub_uall(t::Ty, u::UnionAllT, env, R)

haskey (env.vars, u.var) && (u = rename(u))
env.vars[u.var] = Bounds(u.var.lb, u.var.ub, R)
ans = R ? issub(t, u.T, env) : issub(u.T, t, env)

delete! (env.vars, u.var)
return ans
end

issub(a::UnionAllT, b::UnionAllT, env) = issub _uall(a,b,env,true)
issub(a::UnionT, b::UnionAllT, env)
issub(a::UnionAllT, b::UnionT, env)
issub(a::Ty, b::UnionAllT, env)
issub(a::UnionAllT, b::Ty, env)

issub _uall(a,b,env,true)
issub_uall(b,a,env,false)
issub _uall(a,b,env,true)
issub _uall(b,a,env,false)

119

120

Appendix B

Staged numerical integration

abstract AbstractKernel

any kernel X'p for X < s and X"q for X > s
abstract APowerlLaw{p,q,s} <: AbstractKernel

type FirstIntegral{K<:AbstractKernel ,n}; end
type PowerLaw{p} <: APowerlLaw{p,p}; end # r "p power law

N chebyshev points (order N) on the interval (-1,1)
chebx (N) = [cos(m*(n+0.5)/N) for n in 0:N-1]

import GSL
exprel(n, x) = GSL.sf_exprel_n(n, x)

N chebyshev coefficients for vector of f(x) values on chebx
points x
function chebcoef (f::AbstractVector)
a = FFIW.r2r (f, FFTW.REDFT10) / length(f)
all]l /= 2
return a
end

given a function f and a tolerance, return enough Chebyshev
coefficients to reconstruct f to that tolerance on (-1,1)
function chebcoef (f, tol=1e-13)

N = 10

local c

121

while true
x = chebx (N)
¢ = chebcoef (float ([f(y) for y imn x]))
look at last 3 coefs, since individual c’s might be O
if max(abs(clend]),
abs(c[end-1]),
abs(cl[end-2])) < tol * maxabs(c)
break
end
N *x= 2
end
return c[1:findlast(v -> abs(v)>tol, c)] # shrink to min length
end

given cheb coefficients a, evaluate them for x in (-1,1) by
Clenshaw recurrence
function evalcheb(x, a)
-1 < x <1 || throw(DomainError ())
br+1 = bgya = zero(x)
for k = length(a):-1:2
br = alk] + 2x*bpy; - bpgo
br+2 = Dbgt1
bry1 = bg
end
return al[l] + x*bpy; - biyo
end

inlined version of evalcheb given coefficents a, and x in (-1,1)
macro evalcheb(x, a...)
Clenshaw recurrence, evaluated symbolically:
bgy1 = bgy2 = O
for k = length(a):-1:2
br = esc(alk])

if bpyy != O
by = :(muladd(t2, $bgy1, $br))
end
if bgyo '= 0
by = :($by - $bpio)
end

brio = brga

bry1 = bg
end
ex = esc(alll])
if bgyr '= O
ex = :(muladd(t, $bgy1, $ex))

122

end
if bgyo !'= 0
ex = :($ex - $bgy2)
end
Expr (:block, :(t = $(esc(x))), :(t2 = 2t), ex)
end

extract parameters from an APowerLlaw
APowerLaw_params{p,q,s}(::APowerLaw{p,q,s}) = (p, q, s)

O@generated function call{P<:APowerlLaw,n}(::FirstIntegral{P,n},
X::Real)
compute the Chebyshev coefficients of the rescaled K,
K =PQO
P, 9, s = APowerLaw_params (K)
K, = X->quadgk(w -> w'n * K(wxX), 0, 1, abstol=1le-14,
reltol=1e-12) [1]
scale out X < s singularity
L, =p <07 X ->K,(X) / (s7p + X'p) : K,
q > 0 && throw(DomainError()) # can’t deal with growing kernels
ginv = 1/q
¢ = chebcoef (¢ -> L,((1-¢)"ginv - 27 ginv), 1le-9)
return an expression to evaluate K, via C(&)
quote
X <= 0 && throw(DomainError ())
£ =1 - (X + $(27qginv)) " "$q
C = @evalcheb & $(c...)
return $p < 0 7 C * (X"$p + $(s"p)) : C
end
end

123

124

Bibliography

1]
2]

Getting Started with MATLAB. Version 5. MATHWORKS Incorporated, 1998.

ABADI, M., CARDELLI, L., PIERCE, B., AND PLOTKIN, G. Dynamic typing in
a statically typed language. ACM Trans. Program. Lang. Syst. 13, 2 (Apr. 1991),
237-268.

ABELSON, H., DyBviG, R. K., HAYNES, C. T., Rozas, G. J., Apams, IV, N. 1.,
FriepmAN, D. P., KOHLBECKER, E., STEELE, JrR., G. L., BARTLEY, D. H.,
HAvLsTEAD, R., OXLEY, D., SussMAN, G. J., BRooks, G., Hanson, C., PiT-
MAN, K. M., AND WAND, M. Revised report on the algorithmic language scheme.
SIGPLAN Lisp Pointers IV (July 1991), 1-55.

ALLEN, E., CHASE, D., HALLETT, J., LUCHANGCO, V., MAESSEN, J.-W., Ryu,
S., STEELE, JR., G. L., AND TOBIN-HOCHSTADT, S. The fortress language specifi-
cation version 1.0. Tech. rep., March 2008.

AN, J.-H. D., CHAUDHURI, A., FOSTER, J. S., AND Hicks, M. Dynamic inference
of static types for ruby. SIGPLAN Not. 46 (Jan. 2011), 459-472.

BAKER, H. G. The nimble type inferencer for common lisp-84. Tech. rep., Tech.
Rept., Nimble Comp, 1990.

BAKER, H. G. Equal rights for functional objects or, the more things change, the
more they are the same. Tech. rep., Tech. Rept., Nimble Comp, 1992.

BAUMGARTNER, G., AUER, A., BERNHOLDT, D. E., BIBIREATA, A., CHOPPELLA,
V., CocCiorvA, D., Gao, X., HARRISON, R. J., HIRATA, S., KRISHNAMOORTHY,
S., ET AL. Synthesis of high-performance parallel programs for a class of ab initio
quantum chemistry models. Proceedings of the IEEE 93, 2 (2005), 276-292.

BEER, R. D. Preliminary report on a practical type inference system for common
lisp. SIGPLAN Lisp Pointers 1 (June 1987), 5-11.

BEHNEL, S., BRADSHAW, R., CiTrO, C., DALCIN, L., SELJEBOTN, D. S.; AND
SMITH, K. Cython: The best of both worlds. Computing in Science and Engg. 13, 2
(Mar. 2011), 31-39.

125

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[21]

BENZAKEN, V., CASTAGNA, G., AND FRISCH, A. CDuce: an XML-centric general-
purpose language. In ICFP 03, 8th ACM International Conference on Functional
Programming (Uppsala, Sweden, 2003), ACM Press, pp. 51-63.

BEZANSON, J., CHEN, J., KARPINSKI, S., SHAH, V., AND EDELMAN, A. Array
operators using multiple dispatch. In Proc. ACM SIGPLAN Int. Work. Libr. Lang.
Compil. Array Program. - ARRAY’14 (New York, New York, USA, 2014), ACM,
pp- H6-61.

BoBrow, D. G., DEMICHIEL, L. G., GABRIEL, R. P., KEENE, S. E., KICZALES,
G., AND MooN, D. A. Common lisp object system specification. SIGPLAN Not. 23
(September 1988), 1-142.

Bovrz, C. F., Cuni, A., FIJALKOWSKI, M., AND RiGO, A. Tracing the meta-level:
PyPy’s tracing JIT compiler. In Proceedings of the jth workshop on the Implementa-
tion, Compilation, Optimization of Object-Oriented Languages and Programming Sys-
tems (New York, NY, USA, 2009), ICOOOLPS ’09, ACM, pp. 18-25.

Bovrz, C. F., DIEKMANN, L., AND TRATT, L. Storage strategies for collections in
dynamically typed languages. In Proc. 2013 ACM SIGPLAN Int. Conf. Object oriented
Program. Syst. Lang. Appl. - OOPSLA ’13 (New York, New York, USA, 2013), ACM
Press, pp. 167-182.

BoONNET, M. Boundary Integral Equation Methods for Solids and Fluids. Wiley,
Chichester, England, 1999.

Boyp, J. P. Chebyshev and Fourier Spectral Methods, 2nd ed. Dover, New York, NY,
USA, 2001.

CAMERON, N., AND DROSSOPOULOU, S. On subtyping, wildcards, and existential

types. In Proceedings of the 11th International Workshop on Formal Techniques for
Java-like Programs (New York, NY, USA, 2009), FTfJP ’09, ACM, pp. 4:1-4:7.

CARDELLI, L., AND WEGNER, P. On understanding types, data abstraction, and
polymorphism. ACM Comput. Surv. 17, 4 (Dec. 1985), 471-523.

CASTAGNA, G., AND FRIsCH, A. A gentle introduction to semantic subtyping. In
Proceedings of the 7th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (New York, NY, USA, 2005), PPDP 05, ACM,
pp- 198-199.

CAsTAGNA, G., GHELLI, G., AND LONGO, G. A calculus for overloaded functions
with subtyping. Inf. Comput. 117, 1 (Feb. 1995), 115-135.

126

[22]

[23]

[24]

[25]

[31]

[32]

CAsTAGNA, G., NGUYEN, K., XU, Z., Im, H., LENGLET, S., AND PADOVANI, L.
Polymorphic functions with set-theoretic types. part 1: Syntax, semantics, and evalu-
ation. In POPL 14, 41th ACM Symposium on Principles of Programming Languages
(jan 2014), pp. 5-17.

CASTAGNA, G., AND PIERCE, B. C. Decidable bounded quantification. In Proceed-
ings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (New York, NY, USA, 1994), POPL ’94, ACM, pp. 151-162.

CHAMBERLAIN, B. L., CALLAHAN, D., AND ZiMA, H. P. Parallel programmabil-

ity and the chapel language. International Journal of High Performance Computing
Applications 21, 3 (2007), 291-312.

CHAMBERS, C. Object-oriented multi-methods in cecil. In Proceedings of the European
Conference on Object-Oriented Programming (London, UK, 1992), Springer-Verlag,
pp. 33-56.

CHAMBERS, C. The cecil language specification and rationale: Version 2.1.
CHAMBERS, C. The diesel language specification and rationale: Version 0.2.

CHAMBERS, C., UNGAR, D., AND LEE, E. An efficient implementation of self: a

dynamically-typed object-oriented language based on prototypes. SIGPLAN Not. 2/
(September 1989), 49-70.

CHEw, W. C., JIN, J.-M., MICHIELSSEN, E., AND SONG, J., Eds. Fast and Efficient
Algorithms in Computational Electromagnetics. Artech, Norwood, MA, 2001.

Cuew, W. C., TonGg, M. S., AND Hu, B. Integral Equation Methods for Electro-
magnetic and Elastic Waves. Synthesis Lectures on Computational Electromagnetics.
Morgan and Claypool, San Rafael, CA, 2007.

CLINE, M. P., AND LoMmow, G. A. C++ FAQs. Addison-Wesley, 1995.

Cousor, P., AND CousoT, R. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceed-
ings of the Jth ACM SIGACT-SIGPLAN symposium on Principles of programming
languages (New York, NY, USA, 1977), POPL 77, ACM, pp. 238-252.

Day, M., GRUBER, R., Liskov, B., AND MYERS, A. C. Subtypes vs. where
clauses: Constraining parametric polymorphism. In Proceedings of the Tenth Annual
Conference on Object-oriented Programming Systems, Languages, and Applications

(New York, NY, USA, 1995), OOPSLA '95, ACM, pp. 156-168.

127

[34]

[35]

[36]

[40]

[41]

[42]

DEMICHIEL, L., AND GABRIEL, R. The common lisp object system: An overview. In
ECOOPGAZ 87 European Conference on Object-Oriented Programming, J. BAlzivin,
J.-M. Hullot, P. Cointe, and H. Lieberman, Eds., vol. 276 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 1987, pp. 151-170.

DeEMMEL, J. W., DONGARRA, J. J., PARLETT, B. N., KAHAN, W., GU, M.,
BINDEL, D. S., Hipa, Y., L1, X. S., MARrRQUES, O. A., RIEDY, E. J., VOMEL,
C., LANGou, J., Luszczek, P., Kurzak, J., BurTArl, A., LANGOU, J., AND
Tomov, S. Prospectus for the next LAPACK and ScaLAPACK libraries. Tech. Rep.
181, LAPACK Working Note, Feb. 2007.

DeViTo, Z., RiTcHIE, D., FISHER, M., AIKEN, A., AND HANRAHAN, P. First-
class runtime generation of high-performance types using exotypes. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (New York, NY, USA, 2014), PLDI 14, ACM, pp. 77-88.

DrAGOS, I., AND ODERSKY, M. Compiling generics through user-directed type spe-
cialization. In Proceedings of the 4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems (New York, NY,
USA, 2009), ICOOOLPS 09, ACM, pp. 42-47.

DunrIELD, J. Elaborating intersection and union types. In Proceedings of the 17th
ACM SIGPLAN International Conference on Functional Programming (New York,
NY, USA, 2012), ICFP "12, ACM, pp. 17-28.

ErNsT, M. D., KarLAN, C. S., AND CHAMBERS, C. Predicate dispatching: A
unified theory of dispatch. In ECOOP 98, the 12th Furopean Conference on Object-
Oriented Programming (Brussels, Belgium, July 20-24, 1998), pp. 186-211.

FALKOFF, A. D., AND IVERSON, K. E. The design of APL. SIGAPL APL Quote
Quad 6 (April 1975), 5-14.

FiscHER, K. SI units package, 2014. https://github.com/Keno/SIUnits. jl.

FOURER, R., GAy, D. M., AND KERNIGHAN, B. AMPL, vol. 119. Boyd & Fraser,
1993.

Frico, M., AND JOHNSON, S. G. The design and implementation of FFTW3.
Proceedings of the IEEE 93, 2 (2005), 216-231. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

FriscH, A., CASTAGNA, G., AND BENZAKEN, V. Semantic subtyping. In Logic
in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on (2002),
pp- 137-146.

128

[45]

[46]

[47]

GAL, A., EicH, B., SHAVER, M., ANDERSON, D., MANDELIN, D., HAGHIGHAT,
M. R., KArLAN, B., HOARE, G., ZBARSKY, B., ORENDORFF, J., RUDERMAN,
J., SmiTH, E. W., REITMAIER, R., BEBENITA, M., CHANG, M., AND FrANZ, M.
Trace-based just-in-time type specialization for dynamic languages. In Proceedings of
the 2009 ACM SIGPLAN conference on Programming language design and implemen-
tation (New York, NY, USA, 2009), PLDI 09, ACM, pp. 465-478.

GAPEYEV, V., AND PIERCE, B. Regular object types. In ECOOP 2003 G¢AS Object-
Oriented Programming, L. Cardelli, Ed., vol. 2743 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2003, pp. 151-175.

GARciA, R., JAarvi, J., LuMSDAINE, A., SiEK, J. G., AND WILLCOCK, J. A
comparative study of language support for generic programming. In Proceedings of
the 18th Annual ACM SIGPLAN Conference on Object-oriented Programing, Sys-
tems, Languages, and Applications (New York, NY, USA, 2003), OOPSLA ’03, ACM,
pp. 115-134.

GARCIA, R., AND LUMSDAINE, A. MultiArray: a C++ library for generic program-
ming with arrays. Software: Practice and FEzxperience 35, 2 (2005), 159-188.

GARG, R., AND HENDREN, L. Just-in-time shape inference for array-based languages.
In Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages,
and Compilers for Array Programming (New York, NY, USA, 2014), ARRAY’14,
ACM, pp. 50:50-50:55.

GoMEz, C., Ed. Engineering and Scientific Computing With Scilab. Birkh&user, 1999.

GRCEVSKI, N., KIELSTRA, A., STOODLEY, K., STOODLEY, M. G., AND SUN-
DARESAN, V. Java just-in-time compiler and virtual machine improvements for server
and middleware applications. In Virtual Machine Research and Technology Symposium
(2004), pp. 151-162.

HaNsoN, L. TypeCheck.jl, 2014. https://github.com/astrieanna/TypeCheck. j1.

HARPER, R. There is such a thing as a declarative language, and it’s the
world’s best DSL, 2013. https://existentialtype.wordpress.com/2013/07/22/
there-is-such-a-thing-as-a-declarative-language/.

Hovry, T. Traits using multiple dispatch, 2014. https://github.com/Julialang/
julia/issues/2345#issuecomment-54537633.

Hosova, H., AND PIERCE, B. C. XDuce: A typed XML processing language.
In Third International Workshop on the Web and Databases (WebDB2000) (2000),
vol. 1997, Springer, pp. 226-244.

129

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[64]

[65]

[66]

[67]

[68]

Hosova, H., VouiLLON, J., AND PIERCE, B. C. Regular expression types for xml.
In ACM SIGPLAN Notices (2000), vol. 35, ACM, pp. 11-22.

IcArASHI, A., AND NAGIRA, H. Union types for object-oriented programming. In
Proceedings of the 2006 ACM Symposium on Applied Computing (New York, NY, USA,
2006), SAC 06, ACM, pp. 1435-1441.

IHAKA, R., AND GENTLEMAN, R. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics 5 (1996), 299-314.

JOISHA, P. G., AND BANERJEE, P. An algebraic array shape inference system for
matlab®. ACM Trans. Program. Lang. Syst. 28, 5 (Sept. 2006), 848-907.

KAPLAN, M. A., AND ULLMAN, J. D. A scheme for the automatic inference of
variable types. J. ACM 27 (January 1980), 128-145.

KArpPINSKI, S., HoLy, T., AND DANISCH, S. Parametric color types, 2014. http:
//github.com/Julialang/Color. jl/issues/42.

KELL, S. In search of types. Proc. 2014 ACM Int. Symp. New Ideas, New Paradig.
Reflections Program. Softw. - Onward! 14 (2014), 227-241.

KELLER, G., CHAKRAVARTY, M. M., LESHCHINSKIY, R., PEYTON JONES, S., AND
LipPMEIER, B. Regular, shape-polymorphic, parallel arrays in Haskell. In Proceed-
ings of the 15th ACM SIGPLAN International Conference on Functional Programming
(New York, NY, USA, 2010), ICFP ’10, ACM, pp. 261-272.

KnutH, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms.
Addison-Wesley, 1969.

LATTNER, C., AND ADVE, V. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the 2004 International Symposium on

Code Generation and Optimization (CGO’04) (Palo Alto, California, Mar 2004).

LEAaVvENS, G. T., AND MILLSTEIN, T. D. Multiple dispatch as dispatch on tuples.
ACM SIGPLAN Not. 33, 10 (Oct. 1998), 374-387.

LiNn, C., AND SNYDER, L. ZPL: An array sublanguage. In Languages and Compilers
for Parallel Computing, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds.,
vol. 768 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 1994,
pp- 96-114.

Liu, Y. Fast Multipole Boundary Element Method: Theory and Applications in Engi-
neering. Cambridge University Press, New York, NY, USA, 2014.

130

[69]

[70]

[71]

[72]

[73]

Loca, A., MARDAL, K.-A., AND WELLS, G. Automated Solution of Differential
Equations by the Finite Element Method: The FEniCS Book. Lecture Notes in Com-
putational Science and Engineering. Springer, New York, NY, USA, 2012.

Loca, A., OLcaArD, K. B., RoGNEs, M. E., AND WELLS, G. N. FFC: the
FEniCS Form Compiler. Springer, 2012, ch. 11.

LorrscH, F. Printing floating-point numbers quickly and accurately with integers.
SIGPLAN Not. 45, 6 (June 2010), 233-243.

LuBiN, M., AND DUNNING, [. Computing in operations research using julia. IN-
FORMS Journal on Computing 27, 2 (2015), 238-248.

Ma, K.-L., AND KESSLER, R. R. TICLAATa type inference system for common lisp.
Software: Practice and Ezxperience 20, 6 (1990), 593-623.

MARSAGLIA, G., AND TSANG, W. W. The ziggurat method for generating random
variables. Journal of Statistical Software 5, 8 (10 2000), 1-7.

MATHEMATICA. http://www.mathematica.com.

MATHWORKS, INC. MATLAB Manual: linspace, r2014b ed. Natick, MA.
MATHWORKS, INC. MATLAB Manual: mldivide, r2014b ed. Natick, MA.
MATLAB. http://www.mathworks. com.

MERRILL, J. Julia vs mathematica (wolfram language): high-level features, 2014.
https://groups.google.com/d/topic/julia-users/EQH5LJZqe8k/discussion.

MiLLER, E. Why I'm betting on julia, 2014. http://www.evanmiller.org/
why-im-betting-on-julia.html.

MiLLSTEIN, T., FrROST, C., RYDER, J., AND WARTH, A. Expressive and modular
predicate dispatch for Java. ACM Trans. Program. Lang. Syst. 31, 2 (Feb. 2009),
7:1-7:54.

MITCHELL, S., OAAZSULLIVAN, M., AND DUNNING, I. PuLP: a linear programming
toolkit for python. The University of Auckland, Auckland, New Zealand (2011).

MOHNEN, M. A graphéATfree approach to datadATflow analysis. In Compiler Con-
struction, R. Horspool, Ed., vol. 2304 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2002, pp. 185-213.

MORANDAT, F., HiLL, B., OsvALD, L., AND VITEK, J. Evaluating the design of the
r language. In ECOOP 2012 - Object-Oriented Programming, J. Noble, Ed., vol. 7313
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 104-131.

131

[85]

[80]

[87]

8]

[89]

[90]

[91]

[92]

[93]

[94]

[95]
[96]

Morris, J. H. J. Lambda-Calculus Models of Programming Languages. PhD thesis,
Massachusetts Institute of Technology, 1968.

MURPHY, M. Octave: A free, high-level language for mathematics. Linux J. 1997
(July 1997).

MuscHEVICI, R., POTANIN, A., TEMPERO, E., AND NOBLE, J. Multiple dispatch
in practice. SIGPLAN Not. 43 (October 2008), 563-582.

PiErCE, B. Bounded quantification is undecidable. Information and Computation
112, 1 (1994), 131 — 165.

QUINN, J. Grisu algorithm in julia, 2014. https://github.com/Julialang/julia/
pull/7291.

RATHGEBER, F., HaAM, D. A., MITCHELL, L., LANGE, M., LUPORINI, F., MCRAE,
A. T., BERCEA, G.-T., MARKALL, G. R., AND KELLY, P. H. Firedrake: automat-
ing the finite element method by composing abstractions. Submitted to ACM TOMS
(2015).

RATHGEBER, F., MARKALL, G., MITCHELL, L., LorianT, N., Ham, D.,
BerToLLI, C., AND KELLY, P. PyOP2: A high-level framework for performance-
portable simulations on unstructured meshes. In High Performance Computing, Net-
working, Storage and Analysis (SCC), 2012 SC' Companion: (Nov 2012), pp. 1116—
1123.

REmD, M. T. H., WHITE, J. K., AND JOHNSON, S. G. Generalized Taylor—Duffy
method for efficient evaluation of Galerkin integrals in boundary-element method com-
putations. IEEE Transactions on Antennas and Propagation PP (November 2014),
1-16.

REYNOLDS, J. Using category theory to design implicit conversions and generic op-
erators. In Semantics-Directed Compiler Generation, N. Jones, Ed., vol. 94 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1980, pp. 211-258.

RoncHI DELLA Rocca, S. Principal type scheme and unification for intersection
type discipline. Theor. Comput. Sci. 59, 1-2 (July 1988), 181-2009.

ScotT, D. Data types as lattices. Siam Journal on computing 5, 3 (1976), 522-587.

ScorT, D., AND STRACHEY, C. Toward a mathematical semantics for computer

languages, vol. 1. Oxford University Computing Laboratory, Programming Research
Group, 1971.

SHALIT, A. The Dylan reference manual: the definitive guide to the new object-oriented
dynamic language. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 1996.

132

[98]

[99]
[100]
[101]

[102]

103]

[104]

[105]

106]

[107]

108

[109]

[110]

[111]

SMITH, D., AND CARTWRIGHT, R. Java type inference is broken: Can we fix it? In
Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented Programming
Systems Languages and Applications (New York, NY, USA, 2008), OOPSLA "08, ACM,
pp- H05-524.

SNIR, M. MPI-the Complete Reference: The MPI core, vol. 1. MIT press, 1998.
STEELE, G. L. Common LISP: the language. Digital press, 1990, ch. 4.

STONE, C. A., AND HARPER, R. Deciding type equivalence in a language with
singleton kinds. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (New York, NY, USA, 2000), POPL 00, ACM,
pp. 214-227.

SucaNUMA, T., YAsug, T., KawaHITO, M., KOMATSU, H., AND NAKATANI, T.
Design and evaluation of dynamic optimizations for a java just-in-time compiler. ACM
Trans. Program. Lang. Syst. 27, 4 (July 2005), 732-785.

SussMAN, G. J., AND WispoM, J. Structure and Interpretation of Classical Me-
chanics. MIT Press, Cambridge, MA, USA, 2001.

TANG, Y., CHOWDHURY, R. A., KuszmauL, B. C., Luk, C.-K., AND LEISERSON,
C. E. The pochoir stencil compiler. In Proceedings of the twenty-third annual ACM
symposium on Parallelism in algorithms and architectures (2011), ACM, pp. 117-128.

TATE, R., LEUNG, A., AND LERNER, S. Taming wildcards in java’s type system.
SIGPLAN Not. 46, 6 (June 2011), 614-627.

VAN DER WALT, S., COLBERT, S. C., AND VAROQUAUX, G. The NumPy array: a
structure for efficient numerical computation. CoRR abs/1102.1523 (2011).

VASILEV, V., CANAL, P., NAUMANN, A., AND Russo, P. Cling-the new interactive
interpreter for ROOT 6. In Journal of Physics: Conference Series (2012), vol. 396,
IOP Publishing, p. 052071.

WADLER, P. The expression problem. Java-genericity mailing list (1998).

WEHR, S., AND THIEMANN, P. Subtyping existential types. 10th FTfJP, informal
proceedings (2008).

WILBERS, I. M., LANGTANGEN, H. P., AND @DEGARD, A. Using cython to speed
up numerical python programs. Proceedings of MekIT 9 (2009), 495-512.

ZIENKIEWICZ, O. C., TAYLOR, R. L., AND ZHU, J. Z. The Finite Element Method:
Its Basis and Fundamentals, Tth ed. Butterworth-Heinemann, Oxford, England, 1967.

133

