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We review the history of the thermodynamics of 
information processing, beginning with the 
paradox of Maxwell's demon; continuing through 
the efforts of Szilard, Brillouin, and others to 
demonstrate a thermodynamic cost of 
information acquisition; the discovery by 
l^ndauer of the thermodynamic cost of 
information destruction; the development of the 
theory of and classical models for reversible 
computation; and ending with a brief survey of 
recent woilc on quantum reversible computation. 

Concern with the thermodynamic limits of computation 
was preceded historically by the paradox of Maxwell's 
demon [1] and the realization that one bit of information is 
somehow equivalent to A: In 2 units of entropy, or about 
2.3 X 10"" cal/Kelvin. This equivalence was implicit in the 
work of Szilard [2] and became explicit in Shannon's use [3] 
of the term "entropy" and the formula 

H=~l F,,logP, 
i 

to describe the self-information of a message source. 
The history of this subject is noteworthy because it offers 

an example of how ideas that are strikingly successful in one 

'̂Copyright 1988 by International Business Machines Corporation. 
Copying in printed form for private use is permitted without 
payment of royalty provided that (1) each reproduction is done 
without alteration and (2) the Journal reference and IBM copyright 
notice are included on the first page. The title and abstract, but no 
other portions, of this paper may be copied or distributed royalty 
free whhout further permission by computer-based and other 
information-service systems. Permission to republish any other 
portion of this paper must be obtained from the Editor, 

area of science (in this case the uncertainty principle and the 
theory of black-body radiation) can stimulate unconscious 
false analogies, and so impede progress in other areas of 
science (thermodynamics of measurement and 
computation). 

In the nineteenth century, despite the vision of Babbage, 
computation was thought of as a mental process, not a 
mechanical one. Accordingly, the thermodynamics of 
computation, if anyone had stopped to wonder about it, 
would probably have seemed no more urgent as a topic of 
scientific inquiry than, say, the thermodynamics of love. 
However, the need to think seriously about the 
thermodynamics of perceptual and mental processes was 
thrust upon science by the famous paradox of "Maxwell's 
demon," described as follows by its inventor, in a passage of 
admirable clarity and foresight [1]: 

"One of the best established facts in thermodynamics is 
that it is impoKible in a system enclosed in an envelope 
which permits neither change of volume nor passage of heat, 
and in which both the temperature and the pressure are 
everywhere the same, to produce any inequality of 
temperature or pressure without the expenditure of work. 
This is the second law of thermodynamics, and it is 
undoubtedly true as long as we can deal with bodies only in 
mass, and have no power of perceiving or handling the 
separate molecules of which they are made up. But if we 
conceive a being whose faculties are so sharpened that he 
can follow every molecule in its course, such a being, whose 
attributes are still as essentially finite as our own, would be 
able to do what is at present impossible to us. For we have 
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seen that the molecules in a vessel full of air at uniform 
temperature are moving with velocities by no means 
uniform, though the mean velocity of any great number of 
them, arbitrarily selected, is almost exactly uniform. Now let 
us suppose that such a vessel is divided into two portions, A 
and B, by a division in which there is a small hole, and that 
a being, who can see the individual molecules, opens and 
closes this hole, so as to allow only the swifter molecules to 
pass from A to B, and only the slower ones to pass from B to 
A. He will thus, without expenditure of work, raise the 
temperature of B and lower that of A, in contradiction to the 
second law of thermodynamics. 

"This is only one of the instances in which conclusions we 
have drawn from our experience of bodies consisting of an 
immense number of molecules may be found not to be 
applicable to the more delicate observations and experiments 
which we may suppose made by one who can perceive and 
handle the individual molecules which we deal with only in 
large masses. 

"In dealing with masses of matter, while we do not 
perceive the individual molecules, we are compelled to adopt 
what I have described as the statistical method of 
calculation, and to abandon the strict dynamical method, in 
which we follow every motion by the calculus. 

"It would be interesting to enquire how far those ideas 
about the nature and methods of science which have been 
derived from examples of scientific investigation in which 
the dynamical method is followed are applicable to our 
actual knowledge of concrete things, which, as we have seen, 
is of an essentially statistical nature, because no one has yet 
discovered any practical method of tracing the path of a 
molecule, or of identifying it at different times. 

"I do not think, however, that the perfect identity which 
we observe between different portions of the same kind of 
matter can be explained on the statistical principle of the 
stability of averages of large numbers of quantities each of 
which may differ from the mean. For if of the molecules of 
some substance such as hydrogen, some were of sensibly 
greater mass than others, we have the means of producing a 
separation between molecules of different masses, and in this 
way we should be able to produce two kinds of hydrogen, 
one of which would he somewhat denser than the other. As 
this cannot be done, we must admit that the equality which 
we assert to exist between the molecules of hydrogen applies 
to each individual molecule, and not merely to the average 
of groups of millions of molecules." 

Maxwell offered no definitive refutation of the demon, 
beyond saying that we lack its ability to see and handle 
individual molecules. In subsequent years Smoluchowski [4] 
partly solved the problem by pointing out that a simple 
automatic apparatus, such as a trap door, would be 
prevented by its own Brownian motion from functioning as 
an effective demon. He also remarked [5], 

"As far as we know today, there is no automatic, 
permanently effective perpetual motion machine, in spite of 
molecular fluctuations, but such a device might, perhaps, 
function regularly if it were appropriately operated by 
intelligent beings...." 

This apparent ability of intelligent beings to violate the 
second law called into question the accepted belief that such 
beinp obey the same laws as other material systems. Szilard, 
in his famous paper [2], "On the Decrease of Entropy in a 
Thermodynamic System by the Intervention of Intelligent 
Beings," attempted to escape from this predicament by 
aiguing that the act of measurement, by which the demon 
determines the molecule's speed (or, in Szilard's version of 
the apparatus, determines which side of the partition it is on) 
is necessarily accompanied by an entropy increase sufficient 
to compensate the entropy decrease obtained later by 
exploiting the result of the measurement. Szilard was 
somewhat vague about the nature and location of this 
entropy increase, but a widely held interpretation of the 
situation, ever since his paper appeared, has been that 
measurement is an inevitably irrevereible process, attended 
by an increase of entropy in the universe as a whole by at 
least fc In 2 per bit of information acquired by the 
measurement. Later we shall see this is not quite correct: 
The measurement itself can be performed reversibly, but an 
unavoidable entropy increase, which prevents the demon 
from violating the second law, occurs when the demon 
erases the result of one measurement to make room for the 
next. The existence of an irreducible thermodynamic cost for 
information destruction (as opposed to information 
acquisition) was only clearly recognized three decades later 
by Landauer [6], and another two decades elapsed before 
Landauer's insight was applied to explain the demon without 
invoking any thermodynamic cost of measurement {7-9]. 

Ironically, Szilard came quite close to understanding the 
thermodynamic cost of information destruction. At the end 
of his paper, where he followed one version of his demon 
apparatus through a complete cycle of operation, he found 
that resetting the demon in preparation for the next 
measurement generated A: In 2 of entropy. Unfortunately, he 
did not pursue this inding to the ptoint of recognizing that 
information destruction is always thermodynamically costly, 
and that therefore no thermodynamic cost need be 
postulated for information acquisition. 

Szilard's partial insight was lost as subsequent workers 
neglected resetting, and instead attempted to prove in detail 
the irreversibility of various measurement processes, 
p>articularly those in which the demon observes the molecule 
with light. The emphasis on measurement and neglect of 
resetting probably represented unconscious biases from 
everyday experience, where information is thought of as 
valuable or at worst neutral, and from quantum mechanics, 
which strikingly demonstrated the nontriviality of the 17 
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measurement process. The influence of quantum mechanics, 
particularly the quantum theory of black-body radiation, can 
be seen in a discussion of Maxwell's demon in Brillouin's 
influential 1956 book Science and Information Theory [10]: 

"The essential question is ... Is it actually possible for the 
demon to see the individual atoms?... The demon is in an 
enclosure at equilibrium at constant temperature, where the 
radiation must be black body radiation, and it is impossible 
to see anything in the interior of a black body The 
demon would see thermal radiation and its fluctuations, but 
he would never see the molecules. 

"It is not surprising that Maxwell did not think of 
including radiation in the system in equilibrium at 
temperature T. Black body radiation was hardly known in 
1871, and it was thirty years before the thermodynamics of 
radiation was clearly understood and Planck's theory was 
developed." 

Brillouin goes on to consider a dissipative measurement 
scheme in which the demon observes the molecules by 
photons from a non-equihbrium source such as a hot lamp 
filament, concluding that to see the molecule, the demon 
must use at least one photon more energetic than the 
photons comprising the thermal background, thereby 
dissipating an energy of order kTin the process of 
measurement. 

By the 1950s the development of the theory of 
computation by Turing and others had made it 
commonplace to think of computation as a mechanical 
process. Meanwhile the development of electronic digital 
computers had naturally raised the question of the ultimate 
thermodynamic cost of computation, especially since heat 
removal has always been a major engineering consideration 
in the design of computers, limiting the density with which 
active components can be packed. 

The general folklore belief at this time, descended from 
Szilard's and Brillouin's analyses, is expressed in a remark 
[11] from a 1949 lecture by von Neumann, to the effect that 
a computer operating at temperature T must dissipate at 
least kT In 2 of energy "per elementary act of information, 
that is. per elementary decision of a two-way alternative and 
per elementary transmittal of one unit of information." 

A major turning point in understanding the 
thermodynamics of computation took place when Landauer 
[6] attempted to prove this folklore belief and found he 
couldn't. He was able to prove a lower bound of order kT 
for some data operations, but not for others. Specifically, he 
showed that "logically irreversible" operations—those that 
throw away information about the previous logical state of 
the computer—necessarily generate in the surroundings an 
amount of entropy equal to the information thrown away. 
The essence of Landauer's argument was that such 
operations compress the phase space spanned by the 

computer's information-bearing degrees of freedom, and so, 
in order to occur spontaneously, they must allow a 
corresponding expansion, in other words, an entropy 
increase, in other degrees of freedom. 

[This argument is not without its subtleties; for example, a 
many-to-one operation such as erasure may be 
thermodynamically reversible or not, depending on the data 
to which it is applied. When truly random data (e.g., a bit 
equally likely to be 0 or 1) is erased, the entropy increase of 
the surroundings is compensated by an entropy decrease of 
the data, so the operation as a whole is thermodynamically 
reversible. This is the case in resetting Maxwell's demon, 
where two equiprobable states of the demon's mind must be 
compressed onto one. By contrast, in computations, logically 
irreversible operations are usually applied to nonrandom 
data deterministically generated by the computation. When 
erasure is applied to such data, the entropy increase of the 
environment is not compensated by an entropy decrease of 
the data, and the operation is thermodynamically irreversible 
[7].] 

About 1970, having read Landauer's paper and heard him 
talk, I began thinking about the thermodynamics of 
computation. Initially I assumed, as he, that at least some 
logicaUy irreversible operations were necessary to nontrivial 
computation. However, as a side project, I experimented 
with simple computations that could be done without them. 
For example, I wrote a reversible program that used repeated 
subtraction to test whether one integer is divisible by 
another. Such experiments revealed a common pattern: The 
computation consisted of two halves, the second of which 
almost exactly undid the work of the first. The first half 
would generate the desired answer (e.g., divisible or not) as 
well as, typically, some other information (e.g., remainder 
and quotient). The second half would dispose of the 
extraneous information by revereing the process that 
generated it, but would keep the desired answer. This led me 
to realize [12] that any computation could be rendered into 
this reversible format by accumulating a history of all 
information that would normally be thrown away, then 
disposing of this history by the reverse of the process that 
created it. To prevent the reverse stage from destroying the 
desired output along whh the undesired history, it suifices, 
before beginning the reverse stage, to copy the output on 
blank tape. No history is recorded during this copying 
operation, and none needs to be, since copying onto blank 
tape is already logically reversible; the reverse stage of 
computation then destroys only the original of the output, 
leaving the copy intact. My technique for performing an 
arbitrary computation reversibly is illustrated in Table 1, 
with underbars indicating the positions of the tape heads. 

A proof of the thermodynamic reversibility of 
computation requires not only showing that logically 
irreversible operations can be avoided, but also showing that, 
once the computation has been rendered into the logically 
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reversible format, some actual hardware, or some physically 
reasonable theoretical model, can perform the resulting 
chain of logically reversible operations in a 
thermodynamically reversible fashion. Approaching the 
problem with a background of prior interests in biochemistry 
and computability theory, I saw an analogy between DNA 
and RNA and the tapes of a Turing machine. The notion of 
an informational macromolecule, undergoing transitions of 
its logical state by highly specific (e.g., enzyme-catalyzed) 
reversible chemical reactions, offered a felicitous model 
within which thermodynamic questions about information 
processing could be asked and rigorously answered. Within 
this theoretical framework it is easy to design an "enzymatic 
Turing machine" [7, 12] which would execute logically 
reversible computations with a dissipation per step 
proportional to the speed of computation. Near equilibrium, 
the machine would execute a slightly biased random walk, 
making backward steps nearly as often as forward ones. The 
backward steps would not resuh in errors, since they would 
be undone by subsequent forward steps. True errors— 
transitions to logically unrelated states—would also occur in 
any system with finite potential energy barriers, but their 
rate could be made small (in principle arbitrarily small) 
compared to the rate of logically correct forward and 
backward transitions. The enzymatic Turing machine is an 
example of a "Brownian" reversible computer, in which the 
non-information-bearing degrees of freedom are strongly 
coupled to, and exert a viscous drag on, the information-
bearing ones, resulting in a dissipation per step proportional 
to the speed of computation. 

Although there are no known general-purpose (i.e., 
universal) enzymatic Turing machines in nature, there are 
enzymes analogous to special-purpose Turing machines, 
notably RNA polymerase. This enzyme, whose function is to 
make an RNA transcript of the genetic information in one 
or more DNA genes, may be viewed as a special-purpose 
tape-copying Turing machine. Under physiological 
conditions the enzyme is driven hard forward, and dissipates 
about 20 kT per step; however, the operation of RNA 
polymerase is both logically and thermodynamically 
reversible, and it is routinely operated both forward and 
backward in the laboratory by varying the relative 
concentrations of reactants (nucleoside triphosphates) and 
product (pyrophosphate) [13, 14]. When operating backward 
the enzyme performs the logical inverse of copying: It 
removes bases one by one from the RNA strand, checking 
each one for complementarity with the DNA before 
removing it. 

Edward Fredkin, at MIT, independently arrived at similar 
conclusions concerning reversible computation. Fredkin was 
motivated by a conviction that computers and physics 
should be more like each other. On one hand he was 
dissatisfied with a theoretical physics based on partial 
differential equations and continuous space-time. He felt it 

T s b l e 1 Scheme for reversible computation. 
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HISTORY-
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-OUTPUT 

-OUTPUT 
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-OUTPUT 

unreasonable to invoke an infinite number of bits of 
information to encode the state of one cubic centimeter of 
nature, and an infinite number of digital operations to 
exactly simulate one second of its evolution. By the same 
token he felt it wrong to base the theory of computation on 
irreversible primitives, not found in physics. To remedy this 
he found a reversible three-input three-output logic function, 
the "conservative logic gate" able to simulate all other logic 
operations, including the standard ones AND, OR, and 
NOT [15, 16]. He showed that conservative logic circuits can 
perform arbitrary computations by essentially the same 
programming trick I had used with reversible Turing 
machines: Do the computation, temporarily saving the extra 
information generated in the course of obtaining the desired 
answer, then dispose of this information by the reverse of the 
process by which it was created. 

Fredkin's displeasure with continuum models resembles 
Landauer's well-known displeasure [ 17] with mathematical 
operations that have no physical way of being performed, 
e.g., calculating the 10'°*'th digit of pi. These doubts, 
however, led Fredkin to pursue the radical goal of finding a 
fully discrete basis for physics, whereas in Landauer they 
merely inspired a certain aesthetic indifference toward 
nonconstructive mathematics. 

Fredkin was joined by T. Toffoli (who in his doctoral 
thesis [ 18] had refuted, by counterexample, an accepted but 
erroneous proof that reversible cellular automata cannot be 
computationally universal), and later by Gerard Vichniac 
and Norman Margolus to form the Information Mechanics 
group at MIT. The activities of this group are largely 
responsible for stimulating the current interest in reversible 
cellular automata with direct physical significance, notably 
deterministic Ising models [19-21] and momentum-
conserving lattice gases that support a macroscopic 
hydrodynamics [22]. 

A major step toward Fredkin's goal of finding a reversible 
physical basis for computation was his discovery of the 
billiard-ball model of computation [16]. This takes 19 
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B&-A 

A&-B 

A&B 

20 

Use of a billiard-ball collision to realize a two-input, four-output 
logic function; data (1 or 0) represented by the presence or absence of 
a billiard ball on a given trajectory. 

advantage of the fact that a colEsion between two classical 
hard spheres ("balls") diverts each one from the path it 
would have followed had the other been absent; thus a 
collision can be thought of as a two-input, four-output logic 
function whose outputs, for inputs A and B, are, respectively 
(cf Figure 1), 

A and B, 
B and not A, 
A and not B, 
A and B. 

Fredkin showed that, with the addition of "mirrors" to 
redirect the balls, such collisions can simulate any 
conservative logic function, and therefore any ordinary logic 
function. This implies that an infinite two-dimensional hard 
sphere gas, in an appropriate periodic potential (i.e., a 
periodic array of mirrors), is computationally universal— 
capable of being programmed through its initial condition to 
simulate any digital computation. 

The billiard-ball computer is the prime example of a 
ballistic reversible computer. In contrast to the Brownian 
computers described earlier, ballistic computers operate with 
zero dissipation at finite speed, but they depend on isolating 
the information-bearing degrees of freedom from all sources 
of thermal noise, such as internal degrees of freedom of the 
balls or mirrors. Another way of characterizing the difference 
between Brownian and ballistic computers is to say that the 
former work by creating a low-potential energy labyrinth in 
configuration space, isomorphic to the desired computation, 
through which the system drifts despite thermal noise; the 
latter instead work by creating a dynamical trajectory 

isomorphic to the desired computation, which the system 
follows exactly in the absence of noise. 

A number of other classical-mechanical models of 
reversible computation can be characterized as clocked 
Brownian models: The information-bearing degrees of 
freedom are locked to and driven by a master "clock" degree 
of freedom, with dissipation proportional to speed. These 
include the eariy coupled-potential-well models of Landauer 
and Keyes [6, 23], which were invented before the trick of 
reversible programming was known, but would function as 
Brownian reversible computers if reversibly programmed; 
the author's clockwork Turing machine [7], which invokes 
infinitely hard potentials to achieve zero error in a Brownian 
setting; Likharev's reversible computer based on Josephson 
junctions [24], which could probably be built, and 
Landauer's ball-and-pipe model [15,25]. 

Returning to the question of Maxwell's demon, we can 
now give a detailed entropy accounting of the demon's cycle 
of operation. We refer to Szilard's [2] version of the demon, 
which uses a gas consisting of a single molecule. The demon 
first inserts a partition trapping the molecule on one side or 
the other, next performs a measurement to learn which side 
the molecule is on, then extracts ^r in 2 of work by allowing 
the molecule to expand isothermally to fill the whole 
container again, and finally clears its mind in preparation for 
the next measurement. The discussion below of the cl^sical 
Szilard engine follows [7]; an analogous quantum analysis 
has been given by Zurek [26]. 

According to our current understanding, each step of the 
cycle is thermodynamically reversible if we make the usual 
idealization that operations are carried out quasistatically. In 
particular, the measurement is reversible and does not 
increase the entropy of the universe. What the measurement 
does do, however, is to establish a correlation between the 
state of the demon's mind and the position of the molecule. 
This correlation means that after the measurement the 
entropy of the combined system (demon + molecule) is no 
longer equal to the sum of the entropies of its parts. 
Adopting a convenient origin for the entropy scale, the 
entropy of the molecule is one bit (since it may be, 
equiprobably, on either side of the partition), the entropy of 
the demon's mind is one bit (since it may think, 
equiprobably, that the molecule is on either side of the 
partition), but the entropy of the combined system is only 
one bit, because the system as a whole, owing to the 
correlation, has only two equiprobable states, not four. 

The next phase of the cycle, the isothermal expansion, 
reduces the entropy of the environment by one bit while 
increasing the entropy of the demon -(- molecule system 
from one bit to two bits. Because the expansion destroys the 
correlation between demon and molecule (rendering the 
information obtained by the measurement obsolete), the 
entropy of the demon + molecule system is now equal to the 
sum of the entropies of its parts, one bit each. 
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The last phase of the cycle, resetting the demon's mind, 
reduces the entropy of the demon from one bit to zero, and 
accordingly, by Landauer's argument, must increase the 
entropy of the environment by one bit. This increase cancels 
the decrease brought about during the expansion phase, 
bringing the cycle to a close with no net entropy change of 
demon, molecule, or environment. 

One may wonder how, in view of the arguments of 
Brillouin and others, the demon can make its measurement 
without dissipation. Though plausible, these arguments only 
demonstrated the dissipativeness of certain particular 
mechanisms of measurement, not of all measurements. In a 
sense, the existence of copying mechanisms such as RNA 
polymerase demonstrates the reversibiUty of measurement, if 
one is wilhng to call RNA synthesis a measurement of the 
DNA. More traditional reversible-measurement schemes can 
also be devised which are ideal in the sense of having no 
other effect than to establish the desired correlation between 
the measuring apparatus and the system being measured. 
Such a measurement begins with the measuring apparatus in 
a standard dynamical or thermodynamic state and ends with 
it in one of several states depending on the initial state of the 
system being measured, meanwhile having produced no 
change either in the environment or in the system being 
measured. Figure 2, for example, shows a classical billiard-
ball mechanism based on the ideas of Fredkin that uses one 
billiard ball (dark) to test the presence of another (light) 
without disturbing the dynamical state of the latter. The 
apparatus consists of a number of fixed mirrors (dark 
rectangles) which reflect the billiard balls. First assume that 
the dark ball is absent. Then a light ball injected into the 
apparatus at X will follow the closed diamond-shaped 
trajectory ABCDEFA forever, representing the value 1; 
conversely, the absence of the light ball (i.e., no balls in the 
apparatus at all) represents the value 0. The goal of the 
measurement is to inject another ball (dark color) into the 
apparatus in such a way that it tests whether the light ball is 
present without altering the light ball's state. By injecting the 
dark ball at Y at the appropriate time, the light ball (if 
present) is diverted from, but then returned to, its original 
path (following BGD instead of BCD), while the dark ball 
leaves the apparatus at M if the light ball was present and at 
A'̂  if it was absent. 

One can design analogous mechanisms [7, 8] for reversibly 
measuring which side of Szilard's engine the molecule is on 
without otherwise disturbing the thermodynamic state of the 
engine or the environment. Such reversible nondemolition 
measurement schemes in general exist for classical systems, 
and for quantum systems in which the goal of the 
measurement is to distinguish among orthogonal states of 
the system, since these states may in principle be made 
eigenstates of an appropriate observable. Of course a 
quantum measurement cannot avoid disturbing a system 
which is presented to it in a superposition of eigenstates the 

m c m 

Reversible measurement in the billiard-ball model of computation. 

measuring apparatus is designed to measure. The relation of 
irreversibility to quantum measurement has been considered 
by many authors (cf. the concise discussion in [27] and 
references therein). 

An active research area recently has been the theory of 
quantum reversible computation. Chemical Brownian 
computers such as RNA polymerase are of course quantum 
systems, but because of the high temperature and short 
thermal de Broglie wavelength, quantum effects are subtle 
and quantitative (e.g., zero-point and tunneling corrections 
to reaction rates) rather than qualitative. 

More distinctively quantum models have been considered 
by a number of authors [28-35]. These models are 
somewhat abstract by comparison with classical models, 
consisting typically of an array of two-state spins (each 
representing one bit) and a time evolution operator or 
Hamiltonian designed to make the spins pass through a 
sequence of states corresponding to the desired computation. 
The computationally relevant states are generally a subset of 21 
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a set of orthonormal "basis states," in which each spin is 
either up or down. 

One of the earliest quantum models, by Benioff [28], used 
a Hamillonian such that a basis state corresponding to the 
initial logical state of a reversible Turing machine would be 
transformed, at integer times, to basis states corresponding to 
successive logical successors. In other words, the 
Hamiltonian H was chosen so that the unitary operator U, 
representing evolution under the Hamiltonian for unit time, 
mapped each computationally relevant basis state onto its 
logical successor. Casting the logical time evolution of a 
Turing machine into the form of a unitary operator requires 
that all basis states have successors. Thus there can be no 
halt states, and all computations must be either infinite or 
cyclic. Since the Hamihonian represents, albeit in an 
abstract form, the actual interactions among parts of the 
quantum computer that the designer is able to choose and 
control, Benioff considered it important for the Hamiltonian 
to be simple, and in particular not to depend explicitly on 
the global structure of the computation being performed. In 
order to achieve this, he found it necessary to make H time-
dependent, in effect using a three-phase clock (two phases 
would also have sufficed) to turn on three Hamiltonians one 
after another, and making f/the product of three non-
commuting unitary operatore U= U^UjU,. In each of the 
clock pha^s, some of the spins (bits) in the computer flip 
conditionally on the state of others. 

Feynman [29] found a way to define a simple, time-
independent Hamiltonian for quantum computations: 
Instead of incorporating the direction of the computation 
(forward as opposed to backward) in the Hamiltonian, he 
incorporated it into the initial condition, which was now not 
a single basis state but rather a wave-packet-Uke 
superposition of basis states. The Feynman Hamiltonian 
for a given unitary transition operator U is of the form 
1-1= U + U*, analogous to the Hamiltonian for a one-
dimensional crystal in which spin waves can propagate either 
forward or backward according to their initial momentum. 
Feynman also noted that quantum computers can exhibit 
behavior intermediate between Brownian and ballistic: 
Thermal fluctuations in the Hamiltonian scatter the 
propagating computation wave like phonons in a crystal, so 
that under appropriate conditions the mean free path 
between scattering events is finite but much larger than one 
computation step. The computation then proceeds with net 
velocity proportional to the driving force, as in a Brownian 
computer, but with a proportionality constant that varies 
inversely with the mean free path, like electrical 
conductivity. 

Zurek [30] compares the dynamical stability of quantum 
and classical ballistic computers with respect to errors in the 
initial condition ("software") and the Hamiltonian 
("hardware"). In the billiard-ball model either type of error 
produces an exponentially growing error in the trajectory. 

whereas for quantum computers hardware-induced errors 
increase only quadratically with time and software errors do 
not increase at all. 

Mai^olus [33] and Benioff [34] considered the problem of 
finding a universal quantum computer (with infinite 
memory) whose Feynman-type Hamiltonian nevertheless 
would have a finite range of interaction. For a serial 
computer such as a Turing machine, in which only one part 
is active at a time, this is not difficult; but when an 
analogous construction is attempted for a parallel machine 
such as a cellular automaton, Maigolus found, on the one 
hand, that the finite range of interaction forbade 
synchronous updating of all the sites, and, on the other 
hand, that with asynchronous updating the computation no 
longer proceeded ballistically. 

Deutsch [32] considered a more general kind of quantum 
computer that could be programmed to perform distinctively 
quantum operations such as generating two bits in an 
Einstein-Podolsky-Rosen superposition state. With 
Eteutsch's computer it is possible to split a computation into 
two (or more) subtasks, perform the subtasks simultaneously 
in different Everett worlds, and then allow the results of the 
subtasks to interfere. An appropriate measurement on the 
final superposed state of the computer produces a 
probabilistic behavior of the output, which sometimes yields 
the desired answer (e.g., the exclusive-or, or some other 
linear function of the results of the two subtasks), and 
sometimes yields a "failure," an eigenstate of the output 
operator which says nothing about the results of the 
subtasks. Because of the probability of failure, quantum 
parallelization does not reduce the average time required to 
complete a parallelizable computation. 

Landauer [35] has reviewed several quantum computation 
models in more detail than given here, pointing out some of 
the unphysical idealizations in existing models and the 
importance of specifying a quantum computer more 
concretely than by merely inventing a Hamiltonian. 
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