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Logical  Reversibility of Computation* 

Abstract: The usual general-purpose computing automaton (e.g.. a Turing  machine) is logically irreversible- its transition  function 
lacks a single-valued inverse. Here i t  is shown that such  machines  may he  made logically reversible at  every  step, while retainillg their 
simplicity and  their ability to  do general computations.  This result is  of great  physical interest because it makes  plausible the  existence 
of thermodynamically  reversible computers which could  perform useful computations  at useful speed while dissipating  considerably 
less  than kT of energy  per logical step. In the first stage of its  computation  the logically reversible  automaton  parallels the  corre- 
sponding  irreversible automaton,  except  that it saves all intermediate  results,  thereby  avoiding the irreversible  operation of erasure. 
The  second  stage  consists of printing out  the  desired  output.  The third stage then  reversibly disposes of all the undesired  intermediate 
results by retracing the  steps of the first stage in backward order  (a  process which is only  possible because  the first stage  has been car- 
ried out  reversibly),  thereby restoring the machine (except for  the  now-written output  tape)  to its original condition. The final machine 
configuration thus  contains the desired  output  and a reconstructed copy o f  the  input, but no  other undesired data.  The foregoing results 
are  demonstrated explicitly using a type of three-tape  Turing machine. The biosynthesis of messenger RNA is discussed as a physical 
example of reversible computation. 

Introduction 
The usual digital computer program  frequently  performs 
operations  that  seem  to throw  away  information about 
the  computer's  history, leaving the machine in a state 
whose immediate predecessor is ambiguous. Such  opera- 
tions  include erasure  or overwriting of data, and  entry 
into  a  portion of the program addressed by several dif- 
ferent transfer  instructions. In other  words,  the typical 
computer is logically irreversible - its  transition  function 
(the partial  function that maps each whole-machine state 
onto its successor, if the  state has a successor) lacks a 
single-valued  inverse. 

Landauer [ I ]  has posed the question of whether logi- 
cal  irreversibility is an unavoidable feature of useful 
computers, arguing that it is, and has  demonstrated  the 
physical  and philosophical importance of this question 
by showing that  whenever a physical computer  throws 
away information about its  previous state it must gener- 
ate a corresponding  amount of entropy.  Therefore, a 
computer must dissipate  at  least  kTln 2 of energy (about 
3 X 10"' joule at  room temperature)  for  each bit of in- 
formation it erases  or  otherwise  throws away. 

An irreversible computer  can always  be made reversi- 
ble by having it save all the information it would other- 
wise throw away.  For  example,  the machine might be 
given an  extra  tape (initially blank)  on which it could 
record each  operation as it was being performed, in 

sufficient detail that  the preceding state would be 
uniquely determined by the  present  state  and  the last 
record on  the tape. However,  as  Landauer pointed out, 
this would merely postpone  the problem of throwing 
away  unwanted  information,  since the  tape would have 
to be erased before it could be reused. It is therefore 
reasonable  to  demand of a useful reversible computer 
that, if it halts, it should have  erased all its  intermediate 
results, leaving behind only the  desired  output and the 
originally furnished  input. (The machine  must be al- 
lowed to  save  its  input-otherwise it could not be  rever- 
sible and still carry out  computations in which the input 
was not  uniquely  determined by the  output.) We will 
show that  general-purpose reversible computers  (Turing 
machines) satisfying these  requirements indeed exist, 
and that  they need not be much more complicated  than 
the irreversible computers  on which they are  patterned. 
Computations  on a  reversible computer  take  about twice 
as many steps  as  on  an  ordinary  one  and may require a 
large amount of temporary storage.  Before  proceeding 
with the formal demonstration,  the argument will be car- 
ried through at  the  present heuristic  level. 
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We begin with the reversible but untidy computer 
mentioned  earlier, which has  produced, and failed to 
erase, a long history of its activity.  Now, a tape full of 
random data  cannot be erased  except by an irreversible 
process: however, the history tape is not random-  there 
exists a subtle mutual redundancy  between it and the 
machine  that  produced  it, which may be exploited to 
erase it reversibly. For  example, if at  the  end of the 
computation  a new stage of computation  were  begun 
using the  inverse of the original transition  function, the 
machine would begin carrying out  the  entire  computa- 
tion backward, eventually  returning the history tape to 
its original blank condition[2]. Since the forward com- 
putation  was  deterministic and reversible, the backward 
stage would be  also. Unfortunately,  the backward  stage 
would transform  the  output back  into the original input, 
rendering the overall computation completely  useless. 
Destruction of the desired output can  be  prevented sim- 
ply by making an  extra  copy of it on a separate  tape, af- 
ter  the forward  stage, but  before the  backward  stage. 
During this  copying operation (which can  be  done re- 
versibly if the  tape used for  the  copy is initially blank), 
the recording of the history tape is suspended.  The back- 
ward stage will then destroy only the original and  not the 
copy.  At  the end of the comiputation, the  computer will 
contain  the  (reconstructed) original input  plus the  intact 
copy of the  output; all other storage will have been  re- 
stored to its original blank condition. Even though no his- 
tory remains, the computation is reversible and  deter- 
ministic, because  each of its  stages has  been so. 

One  disadvantage of the  reversible  machine would 
appear  to be the large amount of temporary  storage 
needed for  the  history-for a v-step first stage, v rec- 
ords of history would have  to be  written. In a later  sec- 
tion it will be argued that by performing a job in many 
stages rather than just  three,  the required amount of 
temporary storage  can  often  be  greatly reduced.  The final 
section discusses  the possibility of reversible  physical 
computers,  capable of dissipating  less  than kT of energy 
per  step, using examples  from  the biochemical apparatus 
of the genetic code. 

Logically reversible Turing machines 
This section formalizes  the  argument of the preceding 
section by showing that, given an  ordinary Turing 
machine S, one  can construczt a  reversible three-tape 
Turing  machine R, which emulates S on any standard 
input,  and which leaves  behind,  at  the end of its  compu- 
tation, only that  input  and  the desired output.  The R 
machine’s computation proceeds by three  stages  as  de- 
scribed above,  the third stage serving to  dispose of the 
history  produced by the first. The remainder of this sec- 
tion may be  skipped by those uninterested in the details 
of the proof. 526 
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The  ordinary  type of one-tape  Turing  machine [3] 
consists of a control unit, a readlwrite  head, and an infi- 
nite tape divided into  squares.  Its  behavior is governed 
by a finite set of transition formulas  (commonly  called 
quintuples) of the read-write-shift  type. The quintuples 
have  the form 

A T  --z T’ cr A ’ ,  (1) 

meaning that if the  control unit is in state A and  the head 
scans  the  tape symbol T ,  the head will first write T’ in 
place of T ;  then it will shift  left one  square, right one 
square,  or remain where it is, according to  the value of 
w(-, +, or 0, respectively); finally the control  unit will 
revert  to  state A ’ .  In  the usual generalization to  n-tape 
machines, T ,   T ’ ,  and (T are all n-tuples within the quin- 
tuple. 

Each quintuple defines a (partial)  one-to-one mapping 
of the  present whole-machine state (Le., tape  contents, 
head  positions,  and  control state)  onto its successor  and, 
as  such, is deterministic  and  reversible. Therefore a Tur- 
ing machine will be  deterministic if and only if its  quintu- 
ples have non-overlapping domains,  and will be  reversi- 
ble if and  only if they have non-overlapping  ranges. The 
former is customarily  guaranteed by requiring that  the 
portion to  the left of the  arrow be  different for  each  quin- 
tuple. On  the  other  hand,  the usual Turing  machine is 
not reversible. 

In making a Turing machine  reversible, we will need 
to add  transitions that closely  resemble the  inverses of 
the transitions it already  has. However,  because  the 
write  and shift operations  do not commute,  the  inverse 
of a read-write-shift quintuple,  though it exists, is of a 
different type; namely,  shift-read-write. In  constructing a 
reversible  machine it is necessary  to include  quintuples 
of both  types,  or  else  to  use a  formalism in which transi- 
tions  and  their  inverses  have  the  same form. Here  the 
latter  approach is taken - the reversible  machine will use 
a simpler type of transition  formula in which,  during  a 
given  transition, each  tape  is subjected to a read-write  or 
to a  shift operation  but  no  tape is subjected to both. 

DeJnition: A quadruple (for  an  n-tape  Turing machine 
having one head per  tape) is an expression of the form 

A [ t , ,   t z , .  . ., t,] -+ [ f l ‘ ,  fZ’, . . ., t , ’ ]A’ ,  (2 1 
where A and A’ are positive  integers  (denoting  internal 
states of the  control unit  before  and after  the transition, 
respectively);  each t ,  may be either a  positive  integer 
denoting a symbol that  must be read  on  the kth tape  or a 
solidus ( / ) , indicating that  the kth tape is not read  during 
the transition; each t,’ is  either a  positive  integer  denoting 
the symbol to be written  on  the  kth  tape  or a member of 
the  set (--, 0, +) denoting a left, null, or right shift of the 
kth tape  head.  For  each  tape k ,  ?,‘E (-, 0, +) if and only if 
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t k = / .  Thus  the machine  writes on a tape if and  only if it 
has  just read  it,  and  shifts a tape only if it has  not just 
read it. 

Like quintuples,  quadruples define mappings of the 
whole-machine state which are one-to-one. Any  read- 
write-shift  quintuple can be  split into a read-write and a 
shift, both expressible as quadruples. For  example,  the 
quintuple (1) is  equivalent  to  the pair of quadruples 

where A“ is a new control-unit state different from A and 
A‘ .  When several quintuples are so split,  a  different  con- 
necting state A” must  be  used for  each,  to avoid  intro- 
ducing  indeterminacy. 

Quadruples  have  the following additional important 
properties, which can  be verified by inspection. Let 

be two n-tape quadruples. 

1 )  a and p are mutually inverse (define inverse map- 
pings of the whole-machine state) if and only if A = 

B‘ and B = A ’  and,  for  every k ,  either ( t ,  = 11, = / 
and t,‘ = - 14, ’ )  or (tk # / and t,’ = 14, and t ,  = u,‘). 
The  inverse of a quadruple, in other  words, is ob- 
tained by interchanging the initial control state with 
the final, the  read  tape  symbols with the  written, and 
changing the signs of all the shifts. 

2 )  The  domains of a and p overlap if and only if A = B 
and,  for  every k, ( t ,  = j or ulC = / or t, = 14,) .  Non- 
overlapping of the domains requires a differing initial 
control  state  or a differing scanned symbol on  some 
tape read by both quadruples. 

3 )  The ranges of a and p overlap if and only if A’ = B’ 
and,  for  every k ,  ( t ,  = I or u, = I or t,‘ = u,’). The 
property is analogous  to  the previous one, but  de- 
pends on the final control state  and  the  written  tape 
symbols. 

A reversible,  deterministic  n-tape  Turing  machine 
may now  be defined as a finite set of n-tape  quadruples, 
no  two of which overlap either in domain or range.  We 
now wish to  show  that  such machines can  be  made  to 
emulate ordinary (irreversible) Turing  machines. It is 
convenient  to  impose on the  machines to be emulated 
certain format-standardization requirements, which, how- 
ever, do not significantly limit their computing power [ 4 ] .  
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Definition: An input or  output is said to  be standard 
when it is on otherwise blank tape and contains  no 
embedded  blanks,  when the  tape head scans  the blank 
square immediately to  the left of it, and when it includes 
only  letters belonging to  the  tape  alphabet of the ma- 
chine scanning  it. 

Definition: A standurd  Turing  muchine is a finite set of 
one-tape quintuples 

AT + T ‘  u A‘ 

satisfying the following requirements: 

1 )  Determinism: No two quintuples agree in both A 

2) Format: If started in control state A ,  on any standard 
input, the machine, if it halts, will halt in control state 
A, (f being the  number of control states), leaving its 
output in standard format. 

3 )  Special  quintuples: The machine  includes the follow- 
ing quintuples 

and T .  

A ,  b -+ h + A ,  

A,, b + b 0 A,, 

and control states A ,  and A, appear in no  other quintuple. 
These  two  are  thus  the first and  last  executed respectively 
in any terminating  computation on a standard input. The 
letter b represents a  blank. 

The  phrase “machine M, given standard input  string I ,  
computes  standard  output  string P” will be abbreviated 
M: I -+ P. For an n-tape  machine  this will become 
M: (Il; I,; . . ‘; I,) -+ ( P , ;  P,; ‘ .  .; P,,), where I, and P, 
are  the  standard input and the  standard  output on the 
kth tape. A blank tape will be abbreviated B .  

The main theorem  can now  be stated: 

Theorem: For every standard  one-tape  Turing machine 
S, there  exists a three-tape reversible,  deterministic Tur- 
ing machine  R such  that if I and P are strings on  the al- 
phabet of S, containing no embedded  blanks,  then S halts 
on I if and only if R halts  on ( I ;  B ;  B ) ,  and S: I -+ P if 
and only ifR: (I; B ;  R )  -+ (I; B ;  P ) .  

Furthermore, if S has f control states, N quintuples 
and a tape  alphabet of z letters, including the  blank, 
R will have 2f+ 2 N  + 4 states, 4 N  + 2z + 3 quadruples 
and tape  alphabets of z ,  N + 1 ,  and z letters, respective- 
ly. Finally, if  in a  particular  computation S requires u 
steps and  uses s squares of tape, producing an  output of 
length A,  then R will require 4v  + 4A + 5 steps,  and  use 
s, u + 1, and A + 2 squares  on its three  tapes,  respec- 
tively. (It  will later  be argued that  where u>> s, the 
total space  requirement  can be  reduced to less than 
2 6 . )  



Proofi To construct  the machine R we begin by  arrang- Each  quintuple is now broken  into a pair of quadruples 
ing the N quintuples of S in some  order with the stan- as  described earlier. The mth quintuple becomes 
dard quintuples  first and last: 

1 )  A , b  + h + A ,  

m )  A j  T - T ’  u A f  

N )  A,,h + b 0 A,. 

A j  T ”-z T‘A,’  

{Ad 4 uA,.  

The newly added  states A,,!‘ are different  from  the old 
states  and  from  each other: each A‘ appears in only one 

(9) pair of quadruples. 

Table 1 Structure and operation of a three-tape reversible Turing machine. The  computation  proceeds in three  stages using different 
sets of quadruples  and control states, linkage  occurring  through states A, and C,,. On  the right the  contents of the tapes  are shown  sym- 
bolically at  the beginning and end of each stage. The  underbar  denotes  the posltlon of the  head.  The initial state is A and,  for a  termi- 
nating computation, C ,  is  the final state. 

Srcrge Quadruples 

Contents o j  tape 

Working History Outp1rt 
tupe tupe tupe 

- INPUT - 
+ [ h  + h]A1’  

- 

A I’ [ I  h /] [+ 1 O]A, 

Retrace 

C,[/ 1 / I  + [ -b  OIC,’ 
C, ’ [b  / b ]  + [b  - b ] C ,  

- INPUT - - OUTPUT 

emulates. 
“The labels 1 )  , . . rn) . . , N )  are not part of the machine. They indicate correspondence to the quintuples of the  original irreversible machine, which  the reversible machine 

528 “In the second stage the small braces indllcate sets of quadruples, with one quadruple for each nonbldnk tape letter x .  
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Two  extra  tapes  are then added,  one  for  the history 
and  one  for  the  duplicate  copy of the  output.  The  ouput 
(third)  tape is left blank and null-shifted for  the  present, 
but the history (second)  tape  is used to  record  the index 
m as  each transition  pair is executed. 

The mth pair of quadruples now has  the  form 

I Aj[T/b l  + [ T ‘  + b]A,‘ 

A,,,’[/ b / I  + [urn OIA, . ( 1 1 )  

Notice  that  the history (second)  tape is out of phase 
with the  other  two - it is written  on while they are being 
shifted and vice versa.  This phasing is necessary  to  as- 
sure reversibility-it serves  to  capture  the information 
that would otherwise  be  thrown  away when the specific 
control  state A,’ passes  to  the  more general state A,. The 
+ shifting of the history tape  assures  that a blank square 
will always  be  ready  to  receive  the  next m value. If the 
computation of S does not halt,  neither will that of R, 
and the machine will continue printing on  the history 
tape indefinitely. On  the  other hand, if (on a standard 
input) S halts, R will eventually execute  the  Nth pair of 
quadruples, finding itself in state A,, with the  output in 
standard  format  on  tape 1. The history  head will be scan- 
ning the number  N which it  has  just  written  at  the ex- 
treme right end of the history on  tape 2.  Control  then 
passes  to  the  second stage of computation, which copies 
the  output  onto  tape 3 (see  Table 1 ) . The control  states 
for this stage  are  denoted by B’s and  are  distinct from all 
the  A-type  control  states.  Notice  that  the copying pro- 
cess  can be done reversibly without writing anything 
more  on  the history tape.  This  shows  that  the generation 
(or erasure) of a duplicate  copy of data  requires  no 
throwing away of information. 

The third stage  undoes  the  work of the first and con- 
sists of the  inverses of all first-stage transitions with C’s 
substituted  for A’s. In  the final state C,, the  history  tape 
is again blank and  the  other  tapes contain the recon- 
structed input and  the desired output. 

As Table 1 shows,  the total number of control  states 
is 2N + 2f+ 4 ,  the number of quadruples 4N + 2z + 3 ,  
and  the  space  and time requirements  are  as  stated  at  the 
beginning of the proof. The non-overlapping of the do- 
mains and ranges of all the  quadruples  assures  determin- 
ism and reversibility of the machine R. In  the first stage, 
the  upper  transitions of each pair do not overlap in their 
domains  because of the postulated determinacy of the 
original Turing machine S, whose quintuples also began 
AjT-+. The  ranges of the  upper  quadruples  (as well as 
the  domains of the  lower)  are  kept from  overlapping  by 
the uniqueness of the  states A,‘. Finally,  the ranges of 
the lower quadruples  are  saved  from overlapping by the 
unique output m on  the history tape.  The  state A, causes 
no  trouble,  even though it occurs in both  stage 1 and 
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stage 2,  because by the definition of the machine S it 
does not occur  on  the left in stage 1 ; similarly for  state 
C,. The non-overlapping of the stage 2 quadruples  can 
be verified by inspection, while the determinism and 
reversibility of stage 3 follow from  those of stage 1. 

Discussion 
The argument  developed above is not limited to three- 
tape Turing  machines,  but can  be applied to any sort of 
deterministic automaton, finite or infinite, provided it 
has sufficient temporary  storage to record  the history. 
One-tape reversible  machines exist, but their  frequent 
shifting between  the working and history  regions on  the 
tape  necessitates  as many as Y2 steps  to  emulate a v- 
step irreversible computation. 

In the  case  that S is a  universal Turing  machine, R 
becomes a  machine for executing  any computer program 
reversibly. For such a  general-purpose  machine it seems 
highly unlikely that  we  can avoid having to include the 
input  as  part of the final output.  However,  there  are 
many calculations in which the  output uniquely deter- 
mines the  input,  and  for  such a problem one might hope 
to build a specific reversible computer  that would simply 
map inputs  onto  outputs, erasing  everything  else. This  is 
indeed  possible,  provided we have  access  to  an ordinary 
Turing machine  which, given an  output,  computes  the 
corresponding  input. Let S, be  the  (irreversible)  Turing 
machine that  computes  the  output from the input and S, 
be  the  one  that  computes  the  input  from  the  output.  The 
reversible computation  proceeds by seven  stages  as 
shown in Table 2, of which the first three employ a re- 
versible form of the S, computer  and,  as in Table I ,  serve 
to map the  input  onto  the  input  and  output.  Stage  four 
interchanges  input and  output.  Stages five and  seven  use 
a reversible  realization of the S, computer;  stage five has 
the sole purpose of producing a history of the S, compu- 
tation (i.e., of the  input  from  the  output) which, after  the 
extra  copy of the input has been erased in stage  six, is 
used in stage  seven  to  destroy itself and  the remaining 
copy of the  input, while  producing  only the desired output. 

We shall now return  to  the  more usual situation, in 
which the  input must be  saved  because it is not a known, 
computable function of the  output. Performing a compu- 
tation reversibly  entails  only a modest increase in com- 
puting time and machine complexity;  the main drawback 
of reversible computers  appears  thus  to be the large 
amount of temporary  storage they require  for  the history 
in any long, compute-bound job (i.e., one  whose number 
of steps, v, greatly exceeds  the  number of squares of 
memory  used, s). Fortunately,  the temporary storage 
requirement  can be cut  down by breaking the  job  into a 
sequence of n segments,  each  one of which would be 
performed and  retraced  (and  the history tape  thereby 
erased and made  ready  for  reuse)  before proceeding to 



Table 2 Reversible  computer for  a specific problem in which the input is a known,  computable  function of the output. 
- 

Stage 

1 .  

2. 

3.  

4. 

5.  

6. 

7. 

Action 
_" ~~ ~~ 

Forward S, computation 

copy output 

Retraced S, computation 

Interchange output with input 

Forward S, computation 

Reversible erasure of extra copy of input 

Retraced S, computation 

the next. Each segment would leave  on  the working tape 
(tape 1 ) a restart  dump that would be  used as  the  input 
of the  next  segment;  but  to  preserve reversibility it 
would also have  to leave (on  tape 3, say) a copy of its 
own input, which would in most cases simply be the 
preceding restart dump.  At the  end of the  computation 
we would have, in addition to  the original input and de- 
sired output, all the n - l intermediate  dumps  (concate- 
nated, e.g., on  tape 3 ). These intermediate results, which 
would not  have been produced had the  job not  been 
segmented, either  can be accepted  as  permanent  (but 
unwanted)  output, in exchange  for  the n-fold reduction 
of the history tape,  or  can  themselves be  reversibly 
erased by first making an  extra  copy of the  desired final 
output (putting  it, say,  on a previously  unused part of 
tape 3 ) ,  then seversing the whole n-segment cornprrtrt- 
tion.  This  reversal is possible because  each  segment  has 
been  performed  reversibly. The  sequence of restart 
dumps thus  functions as a kind of higher-level history, 
and it  is erased by a higher-level application of the  same 
technique used to  erase  the primary  histories. At  the  end 
of the  computation,  the machine will contain only the 
original input  and the desired  nth  segment output,  and 
every  step of the original irreversible computation will 
have been  performed twice  forward  and  twice  backward. 
For a job with v steps and  a restart  dump of size s, the 
total  temporary storage  requirement (minimized by 

530 choosing n = 67.;) is 2 6  squares, half on  the history 

OUTPUT  HISTORY 1 - 

OUTPUT  HISTORY 1 OUTPUT 

INPUT - OUTPUT 

OUTPUT - INPUT 

INPUT  HISTORY 2 INPUT 

INPUT  HISTORY 2 - 

tape  and half on the  dump tape.  A ( tGK)- fo ld  reduc- 
tion in space can thus be bought by a twofold increase in 
time  (ignoring the time  required to write  and  read restart 
dumps) without any unwanted output. By a systematic 
reversal of progressively  larger  nested sequences of 
segments one might hope  to reach an  absolute minimum 
temporary  storage requirement growing only as log v, for 
sufficiently large v, with the time  increasing perhaps  as 
i', because of the linearly increasing number of times 
each  segment would have  to be retraced. 

It  thus  appears  that  every  job of computation  can be 
done in a logically reversible manner, without inordinate 
increases in machine  complexity, number of steps, un- 
wanted output,  or  temporary storage  capacity. 

Physical  reversibility 
The  existence of logically reversible  automata suggests 
that physical computers might be made thermodynami- 
cally reversible, and  hence  capable of dissipating an  ar- 
bitrarily small amount of energy per  step if operated 
sufficiently slowly. A full treatment of physically reversi- 
ble computers is beyond the  scope of the  present  paper 
[ 5 ] ,  but it is worthwhile to give a brief and non-rigorous 
introduction to how they might work. 

An obvious approach  to  the minimizing the energy 
dissipation is to design the  computer so that it can  oper- 
ate  near thermodynamic  equilibrium. All moving parts 
would then,  at any instant,  have near-thermal  velocity, 
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and the desired logical transitions would necessarily be 
accomplished by spontaneous thermally activated mo- 
tion over  free energy barriers not much higher than kT.  
At first sight  this might seem impossible-in  existing 
electronic computers,  for example, even when a  compo- 
nent being switched is itself nondissipative (e.g., a mag- 
netic  core),  the switching  process depends  on  temporari- 
ly applying  a strong external force  to push the compo- 
nent irreversibly over a high free energy  barrier. How- 
ever,  nature provides a beautiful example of a thermally 
activated  “computer” in the biochemical apparatus re- 
sponsible for  the replication. transcription and  translation 
of the genetic code [6]. Each of these  processes in- 
volves a long, deterministic sequence of manipulations 
of coded information, quite analogous to a computation, 
and  yet, so far as is known, each is simply a sequence of 
coupled, thermally  activated  chemical reactions.  In bio- 
chemical systems.  enzymes play the essential role of 
selectively lowering the activation barriers  for  the  de- 
sired  transitions  while leaving high barriers  to  obstruct 
all undesired transitions - those which in a computer 
would correspond  to  errors. Although the environment 
in which enzymes normally function is not at chemical 
equilibrium,  many  enzyme-catalyzed  reactions are freely 
reversible, and one can find a set of equilibrium reactant 
concentrations  at which both forward and  reverse reac- 
tions occur equally  rapidly, while competing  uncatalyzed 
reactions  have negligible rates.  It is thus not unreasona- 
ble to  postulate a  thermally  activated computer in 
which, at equilibrium, every logically allowed transition 
occurs equally  often  forward and  backward, while illogi- 
cal transitions  hardly ever  occur.  In  the following dis- 
cussion chemical  terminology will be used, without 
implying that thermally  activated computers must  be 
chemical systems. 

The chemical  realization of a logically reversible  com- 
putation is a chain of reactions,  each coupled only to  the 
preceding one  and  the following one.  It is helpful to 
think of the computing system  as comprising a major 
reactant  (analogous  to DNA)  that  encodes  the logical 
state, and  minor reactants that  react with the major one 
to  change  the logical state. Only one molecule of the 
major reactant is present, but the minor reactants  are all 
present  at definite concentrations, which may be manip- 
ulated to  drive  the computation  forward or backward. 
If the minor reactants  are in equilibrium, and  the major 
reactant initially corresponds  to  the initial state of a v- 
step  computation,  the  system will begin a random walk 
through the chain of reactions,  and  after  about v2 steps 
will briefly visit the final state.  This  does  not  deserve  to 
be called a computation; it would be legitimate to insist 
that the system proceed through the chain of reactions 
with some positive  drift  velocity and,  after sufficient time, 
have a high probability of being in the final state (if 

the  computation  has  one).  The  former  requirement  can 
be  met by adjusting the chemical  potentials of the minor 
reactants so that each  forward step dissipates a little 
energy E ;  the  latter can be  met by dissipating  a trivial 
extra amount during the  last  step.  (If all steps had equal 
dissipation, E < k T ,  the final state  occupation probabili- 
ty would be  only about elkT. By dissipating an  extra 
kT In (3 k T / e )  of energy  during the  last  step, this  proba- 
bility is  increased  to  about 95 %. ) Given a uniform rate r 
for all forward  reactions,  an energy  dissipation E < kT 
per  step will buy a drift  velocity (i.e., computation 
speed) of Te/kT steps  per second. On  the  other  hand,  for 
E > kT,  backward steps will be effectively suppressed 
and the  computation  speed will approach  the  forward 
reaction rate 1’. The chemical system is thus a  thermo- 
dynamically  reversible computer of the  type we have 
been  seeking. 

If we attempt  to apply the preceding  argument to a 
logically irreversible computer,  we  can  see  that  here  the 
reactions  form a  branching structure, with a main trunk 
corresponding to  the desired computation  path, and  side 
branches  corresponding  to  incorrect  or  “extraneous” 
reverse  computations.  The  states  on  the  side  branches 
are valid predecessors of the final state  but not valid 
successors of the initial state. A  few such  extraneous 
states would pose  no  problem-a small driving force 
would still suffice to push the  system  into  the  desired 
final state.  Temporary backward excursions  onto  the 
side  branches would occur, but would not  lead to  errors, 
contrary  to  what  one might expect.  Since  no  state of a 
deterministic computer  can  have  more  than  one logical 
successor,  the  erroneously reversed operations would be 
corrected  as  soon  as  the  computation  proceeded forward 
again, and  the  desired  path would be  rejoined. The real 
problem comes from the  enormous  number of extra- 
neous  predecessors; typically they outnumber  the  states 
on  the intended  computation  path by hundreds of orders 
of magnitude. This is because, in irreversibly  pro- 
grammed computations,  one  can usually proceed  back- 
ward along an  extraneous  path for many steps, making 
further wrong choices along the way,  before  arriving at a 
state  that  has  no  predecessors. 

If a thermally activated  computer with many extra- 
neous  states is operated  close  to equilibrium, the  system 
will spend only  a  minuscule  fraction of its time on  the 
desired path of computation, let  alone in the desired final 
state.  An acceptable  computation rate  requires I )  that 
finite (but time-consuming)  backward excursions be 
largely suppressed, and 2 )  that infinite ones be com- 
pletely suppressed.  This in turn  means (roughly 
speaking)  that  the dissipation per step must exceed kT 
In m, where m is the mean number of immediate prede- 
cessors 1 )  averaged over  states  near  the intended path, 
or 2) averaged over all accessible  states, whichever is 531 
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greater.  For a  typical  irreversible computer, which 
throws away  about  one bit per logical operation, )n is 
approximately two, and thus kT In 2 is,  as  Landauer has 
argued [ 1 1, an  approximate lower  bound on  the energy 
dissipation of such machines. For a logically reversible 
computer, however, m is exactly one by construction. 

The biosynthesis  and  biodegradation of messenger 
RNA may be viewed as  convenient examples of logical- 
ly reversible  and  irreversible computation, respectively. 
Messenger  RNA, a  linear  polymeric  informational mac- 
romolecule like DNA, carries  the genetic  information 
from one  or  more genes of a DNA molecule,  and serves 
to  direct  the  synthesis of the proteins encoded by those 
genes. Messenger RNA is synthesized by the  enzyme 
RNA polymerase in the  presence of a double-stranded 
DNA molecule and a supply of RNA monomers (the 
four nucleotide pyrophosphates  ATP,  GTP,  CTP,  and 
UTP)  [7]. The  enzyme  attaches  to a specific site on  the 
DNA molecule and  moves along,  sequentially  incorpo- 
rating the  RNA monomers; into a  single-stranded RNA 
molecule whose nucleotide sequence exactly matches 
that of the  DNA.  The  pyrophosphate  groups  are  re- 
leased into  the surrounding  solution as  free  pyrophos- 
phate molecules. The  enzyme may thus be compared  to 
a simple  tape-copying Turing machine that  manufactures 
its output  tape  rather  than merely writing on it. Tape 
copying is a logically reversible  operation,  and RNA 
polymerase is both  thermodynamically and logically 
reversible. In  the cellular environment  the reaction is 
driven in the intended  forward  direction of RNA synthe- 
sis by other  reactions, which maintain a low concentra- 
tion of free  pyrophosphate, relative to  the  concentrations 
of nucleotide pyrophosphates [ 81. A high pyrophosphate 
concentration would drive  the reaction backward, 
and  the  enzyme would carry  out a sequence-spe- 
cific degradation of the  RNA, comparing each nucleo- 
tide with the  corresponding DNA nucleotide  before 
splitting it off. This  process, which may be termed logi- 
cally  reversible erasure of  IRNA, does not  normally  oc- 
cur in biological systems-instead,  RNA is degraded by 
other  enzymes,  such  as p~olynucleotide phosphorylase 
[9], in a logically irreversible manner (i.e., without 
checking  its sequence against DNA) .  Polynucleotide 
phosphorylase  catalyzes  the reaction of RNA with free 
phosphate (maintained at high concentration)  to  form 
nucleotide phosphate monomers.  Like the polymerase 
reaction, this  reaction is thermodynamically reversible; 
however, because of its logical irreversibility,  a  fourfold 
greater  phosphate  concentration is needed to  drive it 
forward  than would be required for a logically reversible 

phosphorolytic  degradation. The  extra driving force is 
necessary  to  suppress  the undesired synthesis of non- 
sense  RNA by random polymerization. 

In biological systems,  apparently,  the  speed and flexi- 
bility of irreversible erasure outweigh  its extra  cost in 
free energy (kT In 4 per nucleotide in this case).  Indeed, 
throughout the genetic apparatus, energy is dissipated  at 
a rate of roughly 5 to 50 kT per  step; while this is ten 
orders of magnitude  lower than in an  electronic  com- 
puter, it is considerably  higher  than  what would theoreti- 
cally be possible if biochemical systems did not  need  to 
run at  speeds  close  to  the kinetic maximum -presum- 
ably to  escape  the harmful effects of radiation, uncata- 
lyzed reactions, and  competition  from other organisms. 
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