
A Laboratory For Teaching 
Object-Oriented Thinking 

Kent Beck, Apple Computer, Inc. 
Ward Cunningham, Wyatt Software Services, Inc. 

It is difficult to introduce both novice and 
experienced procedural programmers to the 
anthropomorphic perspective necessary for 
object-oriented design. We introduce CRC 
cards, which characterize objects by class name, 
responsibilities, and collaborators, as a way of 
giving learners a direct experience of objects. 
We have found this approach successful in 
teaching novice programmers the concepts of 
objects, and in introducing experienced 
programmers to complicated existing designs. 

1. Problem 

The most difficult problem in teaching object- 
oriented programming is getting the learner to 
give up the global knowledge of control that is 
possible with procedural programs, and rely on 
the local knowledge of objects to accomplish 
their tasks. Novice designs are littered with 
regressions to global thinking: gratuitous global 
variables, unnecessary pointers, and 
inappropriate reliance on the implementation of 
other objects. 

Because learning about objects requires such a 
shift in overall approach, teaching objects 

Permission to copy without fee all or part of this material is granted provided 
that the copies are not made or distributed for direct commercial advantage, 
the ACM copyright notice and the title of the publication and its date appear, 
and notice is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, requires a fee 
and/or specific permission. 
0 1989 ACM 089791-333-7/89/0010/ooO1 $1.50 

reduces to teaching the design of objects. We 
focus on design whether we are teaching basic 
concepts to novices or the subtleties of a 
complicated design to experienced object 
programmers. 

Rather than try to make object design as much 
like procedural design as possible, we have found 
that the most effective way of teaching the 
idiomatic way of thinking with objects is to 
immerse the learner in the “object-ness” of the 
material. To do this we must remove as much 
familiar material as possible, expecting that 
details such as syntax and programming 
environment operation will be picked up quickly 
enough once the fundamentals have been 
thoroughly understood. 

It is in this context that we will describe our 
perspective on object design, its concrete 
manifestation, CRC (for Class, Responsibility, 
and Collaboration) cards, and our experience 
using these cards to teach both the fundamentals 
and subtleties of thinking with objects. 

2. Perspective 

Procedural designs can be characterized at an 
abstract level as having processes, data flows, 
and data storestlr, regardless of implementation 
language or operating environment. We wished 
to come up with a similar set of fundamental 

October 1-6, 1989 OOPSLA ‘89 Proceedings 1 



principles for object designs. We settled on three 
dimensions which identify the role of an object in 
a design: class name, responsibilities, and 
collaborators. 

The class name of an object creates a vocabulary 
for discussing a design. Indeed, many people 
have remarked that object design has more in 
common with language design than with 
procedural program design. We urge learners 
(and spend considerable time ourselves while 
designing) to find just the right set of words to 
describe our objects, a set that is internally 
consistent and evocative in the context of the 
larger design environment. 

Responsibilities identify problems to be solved. 
The solutions will exist in many versions and 
refinements. A responsibility serves as a handle 
for discussing potential solutions. The 
responsibilities of an object are expressed by a 
handful of short verb phrases, each containing an 
active verb. The more that can be expressed by 
these phrases, the more powerful and concise the 
design. Again, searching for just the right words 
is a valuable use of time while designing. 

One of the distinguishing features of object 
design is that no object is an island. All objects 
stand in relationship to others, on whom they rely 
for services and control. The last dimension we 
use in characterizing object designs is the 
collaborators of an object. We name as 
collaborators objects which will send or be sent 
messages in the course of satisfying 
responsibilities. Collaboration is not necessarily 
a symmetric relation. For example in Smalltalk- 
80[*1, View and Controller operate as near equals 
(see example below) while Orderedcollection 
offers a service with little regard or even 
awareness of its client. 

Throughout this paper we deliberately blur the 
distinction between classes and instances. This 
informality is not as confusing as it might seem 

because the concreteness of our method 
substitutes for naming of instances. This also 
makes our method for teaching independent of 
whether a class or prototype-based language is 
used. 

3. CRC Cards 

The second author invented CRC cards in 
response to a need to document collaborative 
design decisions. The cards started as a 
HyperCard r31 stack which provided automatic 
indexing to collaborators, but were moved to 
their current form to address problems of 
portability and system independence. 

Like our earlier work in documenting the 
collaboration of objects 141, CRC cards explicitly 
represent multiple objects simultaneously. 
However, rather than simply tracing the details of 
a collaboration in the form of message sending, 
CRC cards place the designer’s focus on the 
motivation for collaboration by representing 
(potentially) many messages as a phrase of 
English text. 

As we currently use them, all the information for 
an object is written on a 4” x 6” index card. 
These have the advantages that they are cheap, 
portable, readily available, and familiar. Figure 1 
shows an idealized card. The class name appears 
underlined in the upper-left hand corner, a bullet- 

ClassName 

Responsibilities 

Collaborators 
. . . 

. . . 

Figure 1. A Class-Responsibility-Collaborator (CRC) 
index card. 

2 OOPSLA ‘89 Proceedings October 1-6, 1989 



View l- Controller 
Render the Model. 

I I 
Model 

Transform coordi- 
nates. Controller 

Interpret user input. 

Distribute control. 

view 

Model 

Mode/ 

Maintain problem 
related info. 

Broadcast change 
notification. 

Figure 2. CRC-cards describing the responsibilities and 
collaborations of Smalltalk’s Model, View and Controller. 

list of responsibilities appears under it in the left 
two-thirds of the card, and the list of 
collaborators appears in the right third. 

Figure 2 shows an example taken from the 
Smalltalk- image, the much-misunderstood 
model-view-controller user interface framework. 
We have deliberately shown only a portion of the 
responsibilities each of these objects assumes for 
clarity of exposition. Note that the cards are 
placed such that View and Controller are 
overlapping (implying close collaboration) and 
placed above Model (implying supervision.) We 
find these and other informal groupings aid in 
comprehending a design. Parts, for example, are 
often arranged below the whole. Likewise, 
refinements of an abstraction can be collected 
and handled as a single pile of cards with the 
most abstract card on top where it can represent 
the rest. 

The ability to quickly organize and spatially 
address index cards proves most valuable when a 
design is incomplete or poorly understood. We 
have watched designers repeatedly refer to a card 
they intended to write by pointing to where they 
will put it when completed. 

Design with the cards tends to progress from 
knowns to unknowns, as opposed to top-down or 
bottom up. We have observed two teams arriving 
at essentially the same design through nearly 
opposite sequences, one starting with device 
drivers, the other with high-level models. The 
problem demanded a certain set of capabilities 
which both teams discovered in the course of 
fulfilling the requirements of the design. 

We suggest driving a design toward completion 
with the aid of execution scenarios. We start 
with only one or two obvious cards and start 
playing “what-if”. If the situation calls for a 
responsibility not already covered by one of the 
objects we either add the responsibility to one of 
the objects, or create a new object to address that 
responsibility. If one of the object becomes too 
cluttered during this process we copy the 
information on its card to a new card, searching 
for more concise and powerful ways of saying 
what the object does. If it is not possible to 
shrink the information further, but the object is 
still too complex, we create a new object to 
assume some of the responsibilities. 

We encourage learners to pick up the card whose 
role they are assuming while “executing” a 
scenario. It is not unusual to see a designer with 
a card in each hand, waving them about, making 
a strong identification with the objects while 
describing their collaboration. 

We stress the importance of creating objects not 
to meet mythical future needs, but only under the 
demands of the moment. This ensures that a 
design contains only as much information as the 
designer has directly experienced, and avoids 
premature complexity. Working in teams helps 
here because a concerned designer can influence 
team members by suggesting scenarios aimed 
specifically at suspected weaknesses or 
omissions. 

October l-6, 1989 OOPSLA ‘89 Proceedings 3 



4. Experience 

One of the contexts in which we have used CRC 
cards is a three-hour class entitled “Thinking 
with Objects,” which is intended for computing 
professionals who have programmed, but whose 
jobs do not necessarily involve programming 
every day. The class proceeds by introducing a 
data flow example (a school, with processes for 
teaching and administration) which is then recast 
in terms of objects with responsibilities and 
collaborators (such as Teacher, Janitor, and 
Principal). The class then pairs off and spends an 
hour designing the objects in an automatic 
banking machine, an exercise chosen because of 
everyone’s familiarity with the application and its 
ready breakdown into objects to control the 
devices, communicate with the central bank 
database, and control the user interface. (See the 
appendix for a sample solution.) The exercise is 
followed by a definition of the terms “class”, 
“instance”, “method”, and “message”, and the 
class concludes with a brief discussion of the 
history and features of a variety of object- 
oriented programming languages. 

In teaching over a hundred students this course 
we have encountered no one who was unable to 
complete the exercise unaided, although one pair 
in each class usually needs a few hints to get 
started. Although we have done no follow-up 
studies, the class is considered a valuable 
resource in the company and is still well attended 
with a long waiting list almost a year after its 
inception. 

We have also asked skilled object programmers 
to try using CRC cards. Our personal experience 
suggests a role for cards in software engineering 
though we cannot yet claim a complete 
methodology (others [51~t61 have more fully 
developed methodologies that can take advantage 
of CRC methods). We know of one case where 
finished cards were delivered to a client as 
(partial) design documentation. Although the 

team that produced the cards was quite happy 
with the design, the recipient was unable to make 
sense of the cards out of context. 

Another experiment illustrates the importance of 
the context established by the handling and 
discussing of cards. We had videotaped 
experienced designers working out a problem 
similar to the bank machine. Our camera 
placement made cards and the designers’ hands 
visible but not the writing on the cards. Viewers 
of the tape had no trouble following the 
development and often asked that the tape be 
stopped so that they could express their opinions. 
The most telling moments came when a viewer’s 
explanation required that he point to a blurry card 
in the frozen image on the screen. 

Finally, we have used CRC cards to advantage in 
explaining complex designs. A few minutes of 
introduction is sufficient to prepare an audience 
for a card based presentation. Cards can be made 
out in advance or written on the spot. The latter 
allows the complexity in a design to be revealed 
slowly, a process related to Dave Thomas’ “lie 
management”. The cards are being used as props 
to aid the telling of a story of computation. The 
cards allow its telling without recourse to 
programming language syntax or idiom. 

5. Conclusion 

Taking our perspective as a base we give novices 
and experienced programmers a learning 
experience which teaches them something 
valuable about objects. CRC cards give the 
learner who has never encountered objects a 
physical understanding of object-ness, and 
prepares them to understand the vocabulary and 
details of particular languages. CRC cards also 
give useful and convincing experience with 
objects to those who has learned the mechanisms 
of objects but do not yet see their value. 

4 OOPSLA ‘89 Proceedings October 1-6, 1989 



Ragu Raghavar?‘] has said that in the switch to 
objects strong programmers become stronger, but 
weaker programmers are left behind. Using the 
cards in group settings we found that even 
weaker programmers, without a deep 
understanding of objects, could contribute to 
object designs. We speculate that because the 
designs are so much more concrete, and the 
logical relationship between objects explicit, it is 
easier to understand, evaluate, and modify a 
design. 

We were surprised at the value of physically 
moving the cards around. When learners pick up 
an object they seem to more readily identify with 
it, and are prepared to deal with the remainder of 
the design from its perspective. It is the value of 
this physical interaction that has led us to resist a 
computerization of the cards. 

It is just this problem-integrating the cards with 
larger design methodologies and with particular 
language environments, that we feel holds the 
most promise for the future. The need to retain 
the value of physical interaction points to the 
need for a new kind of user interface and 
programming environment as far beyond what 
we have today as our current systems are beyond 
the tool-oriented environments of the past. 

References 

[l] DeMarco, T.: Structured Analysis and System 
Specification, Yourdon, 1978. 

[2] Smalltalk- image, Xerox Corp, 1983. 

[3] HyperCard manual, Apple Computer, Inc. 

[4] Cunningham, W. and Beck, K.: “A Diagram 
for Object-Oriented Programs,” in Proceedings 
of OOPSLA-86, October 1986. 

[5] Wirfs-Brock, R. and Wilkerson, B. “Object- 

Oriented Design: a Responsibility-Driven 
Approach,” submitted to OOPSLA ‘89. 

[6] Reenskaug, T.: “A Methodology for the 
Design and Description of Complex, Object- 
Oriented Systems,” technical report, Center for 
Industrial Research, Oslo, Norway, November 
1988. 

[7] Raghavan, R.: “Panel: Experiences with 
Reusability,” in the Proceedings of OOPSLA ‘88, 
October, 1988. 

Appendix 

Here we provide a sample solution to the banking 
machine problem discussed in section 4. 

Account and Transaction provide the banking 
model. Note that Transaction assumes an active 
role while money is being dispensed and a 
passive role thereafter. 

Account 

Keeps balance 
and traffic. 

Transaction 

RemoteDB 

-I 

Transaction I CardReader 
Validate & perform 

money transfer 
Dispenser 

RemoteDB 
Keep audit info. Action 

Account 

Transactions meet their responsibilities with the 
aid of several objects that serve as device drivers. 
The Dispenser object, for example, ultimately 
operates the dispensing device. 

The CardReader object reads and decodes the 
information on the bank cards magnetic strip. A 
common mistake would be to itemize all of the 

October 1-6, 1989 OOPSLA ‘89 Proceedings 5 



information stored on the bank card. Card 
encoding formats must certainly be well thought 
out and documented. However, for the purpose 
of designing the objects, we need only identify 
where that knowledge will be placed in the 
program. 

CardReader 

Decodes strip. 

Signals insertion. 

I 

Event 

Transaction 

I 

Event 

Transaction 
L 

RemoteDataBase 

Retrieves Accounts. 

Records Trans- 
C9diOlYS. 

Signals corn status. 

Event 

Transaction 

Account 

The RemoteDataBase drives the communication 
lines and interprets data transmitted across them. 
It creates Account objects and consumes 
Transaction objects. 

The device drivers signal exceptional or 
asynchronous events by adding Event objects to a 
shared queue. 

Event 
I Screen 

Queues Signals. 
I CardReader 

Isolates H/w from Dispenser 
user-interface. RemoteDt3 

Events drive the human interface by triggering 
Actions that sequence through Screens. The 
actual format and sequence of screens will be 
determined by the user-interface design and will 
probably vary from bank to bank. We offer 
objects from which state-machine like interfaces 
can be built. 

Screen objects correspond to the states and 
Action objects correspond to the transitions. 
Screens may vary in how they dispatch Actions. 
Actions themselves will vary in how they process 
events. Actions ultimately construct Trans- 
actions to which they delegate the further 
operating of the bank machine. 

I Disoatches Events 1 
tb Actions. 

screen 

Displays prompts. 
Event 

Action 

L Action 

Sequence Screens. 

Assemble Trans- 
actions. 

Transaction 

Screen 

6 OOPSLA ‘89 Proceedings October 1-6, 1989 


