
PHYSICAL REVIEW A VOLUME 41, NUMBER 5 1 MARCH 1990

Self-field quantum electrodynamics: The two-level atom
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We use a self-field approach to quantum electrodynamics (QED) to show how one may obtain

spontaneous emission and the Lamb shift in a two-level atom without second quantization of the ra-

diation field. In addition, we compare the self-field formalism to that of the neoclassical theory of
electrodynamics advanced by Crisp and Jaynes [Phys. Rev. 179, 1253 (1969)]. We show that the

neoclassical model can be obtained from the self-field approach used here, but that the two are not

equivalent. In particular, the self-field approach appears to give a more complete description of ra-

diative processes. Finally, we show that the neoclassical theory s prediction of a nonexponential

"chirruped" decay is most likely a mathematical artifact of the improper application of the superpo-
sition principle in a nonlinear model where such a principle does not hold. A correct treatment

with self-field QED yields the usual exponential decay dynamics.

I. INTRODUCTION

In classical electrodynamics one realizes that the
Lorentz equation of motion for a charge in an elec-
tromagnetic (EM) field is incomplete, inasmuch as it does
not include radiation reaction. Considerations such as
this have led to the Abraham-Dirac-Lorentz (ADL) equa-
tion of motion which, in covariant form, can be written
as'

mi =F'"'i + (i +if )','
3

where z =z„ is the coordinate of the charge q =e, the
dots denote differentiation with respect to the propertime
r, and a=e /4m. . (We use throughout this paper the
convention c =irt= l. ) A covariant external force F=F„
is allowed for also. In order to arrive at this equation (1),
it is necessary that the entire problem be treated covari-
antly from the outset, with nonrelativistic approxima-
tions possible after the formula given above has been
specified.

A very interesting derivation of Eq. (1) was given by
Wheeler and Feynman using their action at a distance
formulation of classical electrodynamics. The idea goes
back to a paper by Tetrode, , which shows that all of
classical electrodynamics —Maxwell's equations and the
ADL equation of motion —can be derived from a single
unified action principle, if one demands that an accelerat-
ing charge produces a field which is symmetric in the re-
tarded and advanced solutions to Maxwell's equations.
In such a theory, the contributions of radiation reaction
to the Lorentz equation of motion arise very naturally. It
is well known that Wheeler and Feynman never produced
a quantum version of this theory, although Sussman has
presented a second quantized version. The self-field ap-
proach to quantum electrodynamics (QED), as proposed
by Barut and his co-workers, falls in between these two

extremes. We replace the classical particle trajectory z„
with either the scalar Schrodinger wave function lb, the
Pauli two component spinor i)1, or finally the Dirac four-
component spinor %. With the Dirac spinor version the
theory is fully covariant and may now be studied as a
candidate for a complete theory of QED. At no point do
we second quantize either the matter or the radiation
field. Sussman, who does second quantize the fields in his
quantum version of the Wheeler-Feynman approach, ar-
rives at a correct explanation of spontaneous emission
with the right Einstein A coefficient. This, we shall see,
is also possible even at the atomic level where the particle
is treated nonrelativistically as being described by a
Schrodinger wave function, and nothing is second quan-
tized. This result is understandable if we think of spon-
taneous emission as the quantum analog of the classical
radiation reaction line broadening of an oscillating
charge. Since the Wheeler-Feynman action accounts for
radiation reaction naturally, spontaneous emission is a
logical consequence of this approach, even if the EM field
is not quantized. Notice that in our method there can be
no EM vacuum field Auctuations since the field is not
quantized. This precludes the notion of zero-point Auc-
tuations as the physical cause of spontaneous emission in
our picture. If a semiclassical theory is defined as a
theory which is not second quantized, then self-field QED
has been quite a successful semiclassical theory (at least
to order a) in accounting for quite an array of phenome-
na thought to require at least the second quantization of
the radiation field for their explanation. Both relativistic
and nonrelativistic accounts of spontaneous emission, the
Lamb shift, and g —2 have been given. Nonrelativistic
calculations of cavity-induced changes to these effects
have been carried out also, as well as a calculation of the
Unruh eff'ect (whereby an accelerating detector senses a
bath of thermal radiation). In the present paper we
show how the theory can be used to treat the decay dy-
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namics of a two-level atom, and that the self-field theory
in some sense contains —but is not equivalent to—the
neoclassical theory of Crisp and Jaynes.

The paper is organized as follows. First, we present a
review of self-field QED, emphasizing the point that the
theory is a quantum generalization of the action at a dis-

tance approach to classical electrodynamics of Fokker,
Schwarzshild, Tetrode, Wheeler, and Feynman.
(Equivalently, it is a quantum theory of radiation reac-
tion. ) Second, we reduce the theory to that of a two-level

atom and obtain the correct exponential spontaneous-
emission decay law, as well as the Lamb shift contribu-
tion to the energy levels. Third, we indicate how in seIf-
field QED we can arrive at the same erroneous decay law

as that of the neoclassical theory if we assume that the
superposition principle holds —which it does not in our
nonlinear theory, Fourth, we review the neoclassical ap-
proach of Jaynes and show that it can lead to the same
incorrect, chirruped exponential decay law. The con-
clusion is then that the same illegal use of superposition
in the neoclassical theory —which is similarly nonlinear
in the wave function i'—leads to the wrong decay law.
We will detail how the correct exponential decay can be
recovered by avoiding recourse to the superposition prin-
ciple in the neoclassical theory. We shall finally also indi-
cate why we believe that the self-field approach to QED
offers a more complete description of radiative correc-
tions than does the neoclassical theory.

II. ACTION AT A DISTANCE
ELECTRODYNAMICS

The action at a distance formulation of classical elec-
trodynarnics, as presented by Wheeler and Feynman,
presupposes an action principle used by Fokker,
Schwarzschild and Tetrode. ' Consider a number of
charges e, of mass m,. interacting by means of an action
integral 8', defined as

W=g fdrm;z;

+ g pe;e f fdvdvi, (r) i./(v)D(z; —z/), (2)

where v and U are proper times, z;=z,~ is the four-
position of the ith particle, and integration is over all
space-time. (We are using standard four-vector notation:
z:—z„, z —=z„z"=z z, etc.) The D (x —y ) is an elec-
tromagnetic Green's function. In order for the variation-
al problem to have a solution, the Green's function D(x )

must be symmetric under particle interchange i~j and
also in past and future. These requirements lead to the
two equations

D —t
(D advanced +D retarded

)2 7

D(z; —z/)=D(z —z;) .

(3a)

(3b)

We note that the usual Feynman propagator of QED
satisfies both of these conditions. When we extend the
theory to the quantum domain, the choice of a symmetric
Feynman boundary condition of the form of (3a) will be
required in order for the variational problem to have a

solution. Hence the choice of such a propagator will not
be ad hoc, but will arise as a natural requirement of the
theory. ' With certain further assumptions concerning
boundary conditions, it is well known that the variation
of the action (2) with respect to z„yields, for the Euler-
Lagrange equations of motion, the ADL equation (I).
Hence we have a classical action principle which yields
radiation reaction. If one considers the classical motion
of a harmonically bound charge with radiation reaction
included, one finds that there arises a level shift and a line
broadening to the energy of the oscillator. ' We shall see
that these classical phenomena have as their natural
quantum analog the Lamb shift and spontaneous emis-
sion. From the self-field point of view, all quantum elec-
trodynamic, radiation reaction effects are viewed as the
quantum extensions of such classical effects. The prob-
lem now is to pose an action principle such as Eq. (2) in a
quantum-mechanical setting. To see how to proceed, let
us relate the action principle of (2) to one which resem-
bles that of the usual classical field theory. The elec-
tromagnetic four-potential A„"(x) of the ith particle at
the point x =x„ is given by

A„(x)=efdrD(x —z(r))i„(r), (4)

where the subscript i has now been suppressed. Such a
potential gives rise to a field tensor F„„,which is sym-
metric in retarded and advanced fields; so long as the
Green's function satisfies expression (3a).' The field ten-
sor also obeys Maxwell's equations, provided we take the
current density of the i th particle as

j„(x)=efdpi„5(x —z(r)) . (5)

If we insert expression (4) into expression (2) for the ac-
tion 8, we obtain

W= g fdr m, i;+ g g f dr e, z, (r) A/(z, (r)),

which, by inspection of the current j of Eq. (5), we see is
the usual classical field theoretical action with a j A type
interaction term. This procedure now give us a clue as to
how to go about constructing quantum versions of the ac-
tion principle embodied in expression (2).

(i) Write down the usual action for either the
Schrodinger, Pauli, Or Dirae equation, with the j A in-
teraction.

(ii) Separate the EM potential according to
+ A„"', ~h~r~ A„'"' is some field arising from

charges assumed to be at infinity and A „"' is the self-field
of the charges in a localized interaction region.

(iii) Eliminate A „"' entirely from the total action by use
of the Feynman Green's function D(x ) via the prescrip-
tion

A„' (x) =e f dx D„(x—y )j (y ),

which is a generalization of Eq. (4).
Here the j„are quantum electron density currents ap-

propriate to the wave functions g, t}t, or tIt. When these
steps are carried out, one is left with an action principle
in which the self-Geld potential A„"' has been entirely el-
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iminated. The external field A„'"' still remains; however,
it too could be eliminated if we took our interaction re-

gion to be the entire universe. In this case we would have
a pure, quantum, action at a distance theory; in particu-
lar, it would be a generalization of the Wheeler-Feynman
approach contained in Eq. (2). We would hope that the
quantum versions of the theory now account for radia-
tion reaction automatically, just as the classical version
does so. We shall see, furthermore, that the classical ra-
diation effects of line broadening and level shift have, as
their expression in the quantum versions of the theory,
spontaneous emission and the Lamb shift. This might be
expected from correspondence principle grounds. We
now formalize these motivational comments and remarks
into a presentation of the self-field theory of quantum
electrodynamics.

III. SELF-FIELD QUANTUM
KI,KCTRODYNAMICS

Maxwell's equations and the quantum-mechanical
(QM) equations of motion —including radiative or radia-
tion reaction effects—arise from a single action principle,
if we use a Feynman Green's function to relate the elec-
tromagnetic potential to the current that produces it, via
Eq. (7). It is postulated that there are no EM fields in-
dependent of the sources that produce them, and hence
no possibility of vacuum field fluctuations. It is assumed
that the field surrounding a charge can be split as
A„=A„'"'+A„"', where the external field has as its
source charges at infinity, while the self-field is the field
produced by a localized charge in some interaction re-
gion. With this ansatz the nonhomogeneous Maxwell
equation

w=w +eA'"'j"+—A"' j"e
2

=w +—A"' j"e
2

w ext +w self (12}

5W
5

5W y+Fss~
5 A selt Is 5 A sejf J self, P

V V, P

(13)

which is the inhomogeneous Maxwell equation, provided
we have identified

58' = —ej"
gA self

P

(14)

This development has thus far been independent of the
choice of the action density wo. We now summarize the
action densities and their corresponding currents for the
most important cases.

(i) Classical action density and current:

w; =mi —eA„i",2

j"=fd r ez "5(x—z(r) ) .

(ii) Schro'dinger action density and current:

(15a)

(15b)

1 . aw;=f (V+ie A} (V ie A)+—eAO i-
2m at

The interpretation is that w'"' is responsible for the usual
electronic motion in an external field, while w"' contains
radiation reaction effects or radiative corrections such as
the Lamb shift and spontaneous emission, corresponding
to level shifts and line broadening in the classical theory.
With the definition (10), we find that the variation of W
with respect to A „' yields, for the Euler Lagrange equa-
tions of motion,

F"'„=ej

has the general solution

A„(x)=A„'"'+ef dy D„,(x —y)j "(y),

(8)

(9)

1 ej"=g' 1, . V ——A
2m' m

(iii) Pauli action density and current:

1
w =sI}' [(V+ie A) sr]

2m

(16a)

(16b)

where D„,(x —
y ) must be symmetric in retarded and ad-

vanced Green's functions. Its precise form will depend
on the gauge, and also the overall boundary conditions on
the EM field. The total action 8'may be written as the
four-dimensional integral of an action density w,

8'= dx w x;,A„ (10)

X [a.(V ie A)]+—eA i-
a~

1 1 ej"=P' 1, V+ (VXo —o XV)——A'
2mi 2m m

(17a)

The action density w wi11 have the general form

w(x ) = wo(x )+e A „j"+,'F„,F"", —

where the specific form of wo(x }, the matter action, will
depend on the extent to which a charge is treated non-
classically. If one uses integration by parts, the homo-
geneous Maxwell's equation, and the assumption that
A „"' is su%ciently localized, one obtains

(17b)

(iv) Dirac action density and current:

w; =4'[y"(is)„—e A „)—m ]sP,

j~=%y~% .

(18a)

(18b)

Variation of W with respect to z„, g, p, or sp yields,
respectively, the ADL, Schrodinger, Pauli, or Dirac
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equations of motion. It must be emphasized that the A„
which appear in the equations above are not just the
external field A „'"' alone, but rather the sum of
A„'"'+A„', as given in Eq. (9). So, unlike the usual
semiclassical theory, the action densities listed above con-
tain nonlinear and nonlocal terms of the general form

2

dz dy jP z D z —y j+y (19}

which are responsible for radiative corrections. [Note
the similarity between this expression and the Wheeler-
Feynman double integral of Eq. (2} for the classical ac-
tion, in the self-interaction case where i =j.] In particu-
lar, we should notice that because the equations of
motion are nonlinear the superposition principle does not
hold. It is not possible to expand the exact solutions of
the exact nonlinear equation as a superposition of solu-
tions to the approximate, linear equation which does not
contain W'"'. In addition, the terms of the form (19),
which now appear in the action integral 8', are not per-
turbations which can be turned on or off at will. They
are an integral part of the entire action and their in-
clusion is always required in order to have a complete
equation of motion which includes radiation reaction, in
analogy to the classical ADL equation (1). For example,
if A„'"' =( —Z, /r, 0), the static Coulomb potential, then
the usual hydrogenic wave functions t(t„i with eigenval-
ues E„are not -ven in principle —solutions to the com-
plete Schrodinger action, which contains now the non-
linear term W"' given in Eq. (19). The conclusion is that
the hydrogen atom has no precisely defined sharp energy
levels, other than the ground state. The excited states
cannot be stable, according to the self-field picture, due to
radiation reaction. Hence they are never precise levels-
but they always have a nonzero linewidth which mani-
fests itself as spontaneous emission. Mathematically, the

form a complete set of states, and in the usual per-

turbation theory the solution to the perturbed eigenvalue
problem can be expanded as a linear superposition of this
complete set. Such an approach would not be correct
here, since the principle of linear superposition does not
hold for our equations of motion —they contain nonlinear
current interaction terms of the form (19). One must be
wary of blindly applying the machinery of QM to a prob-
lem without regard for the hypotheses upon which such
an application is based. (We should point out that even
in the standard approach to QED the radiative correc-
tions are not really perturbations either. If one adheres
to the notion that radiative effects have their origin in the
vacuum field fluctuations, then such corrections form a
necessary part of the problem, since the vacuum Auctua-
tions can not be turned off—even in principle. Hence in
standard QED the hydrogen atom cannot have exact
eigenstates. All of the states, except for the ground state,
will have a spread to them which cannot, under any cir-
cumstances, be eliminated. )

IV. SELF-FIELD QKD FOR A TWO-LEVEL
ATOM

We shall now derive the spontaneous-emission rate and
Lamb shift for a two-level atom, and attribute them to be
physical consequences of the covariant inclusion of the
electron's self-field. The interpretation is that spontane-
ous emission and the Lamb shift are triggered by the
electron's radiation reaction field —in complete analogy
to the classical account of the line broadening and level
shift of the energy of a harmonically bound charge.

It is sulcient for a two-level atom to consider a
Schrodinger action principle. The total Schrodinger ac-
tion can be obtained by inserting the expressions (16) into
the action density (12) and then by integrating over all of
space-time as per the definition given by Eq. (10). The re-
sult is

2 2
pr —f dx qe(x ) p2 i + Aext. p+ Aself pl+ ( A.

ext)2+ Aext. Aself
2m Bt m 2m 2m 2%i

+eA'"'+ —A"' + V A'"'+ V A ' g(x)
2 2m 4m

(20)

where dx—:d x. If we were to take A"' =0 in this ex-
P

pression, we would recover precisely what is usually
called semiclassical electrodynamics. However, we can
not set the self-field to zero and maintain a complete
theory of electronic motion which includes radiative
effects. This was first pointed out by Schrodinger. '

Even formally A„"' can never be zero, for it is always
given by Eq. (9), which makes it proportional to the
current. The only way A„"' can be zero at all points in
space-time is if the electron four-current is zero at all
points in space-time —in which case we have no electron.

Variation of (20) with respect to g" will yield the usual

Schrodinger equation, augmented by new, nonlinear
terms which contain A„"'. Using a few techniques from
S-matrix theory, we can work directly with the total ac-
tion (20) and extract radiative corrections to the usual
Coulomb energies. Notice that A„"' depends on j„,via

Eq. (9), but that j„also depends on A„"' via equation
(16b). Hence we have a "feedback loop" in the equations,
with each cycle of the loop contributing corrections of
successively higher orders in the fine-structure constant
a. (In this work we keep only corrections to first order in
a. ) To this order the A'"' A"' term of Eq. (20) is negli-
gible. For weak external fields ( A'"') is also negligible.
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In fact, since we are interested in hydrogenic atoms, we

may set A'"'=0 and 3 0"' = —Ze /r. Finally, a choice of
the Coulomb or radiation gauge will eliminate both
V A'"' and V. A"'. With these observations the action
8'can be written

8'= f dx Q*(HO+H, +H2)f

1
—ik(x —y)

D;, (x —y)= f dk (5;, +k, k, ),(2~) k +ie
1

—ik(x —y)
Doo(x —y)= f dk

(27T} A, +t6
D;0(x —y ) =Do, (x —y ) =0,

(23a)

(23b)

(23c)

where

= W0+ W) + W2,

H, = A"'.V
2m

1H = — V' +ed'"' —i—,

(21)

(22a)

(22b)

where A,
—= lkl, k =—k "k„,and the +i e in the denomina-

tor insures that the correct symmetry between retarded
and advanced solutions to Maxwell's equations is ob-
tained. With this choice of Green s function the equation
(9) for the self-field can be written as

—ik(x —y)A""=—,f f dydk
(2m ) k +i@

H= —'W ".
2 2 0 (22c) X[j(y)—k(k j(y))] (24a)

It turns out that H0 is responsible for the usual Coulom-
bic motion, H

&
gives rise to spontaneous emission and the

Lamb shift, and finally, H2 corresponds to a mass renor-
malization analogous to that which appears in the classi-
cal theory of radiation reaction. '

As we mentioned above, we are using the Coulomb
gauge V A=O. In this gauge the components of the
Green's function D„„(x—y ) become

—ik(x —y)
A',"'(x)= ', f f dydk'

2 p(y),
(2m ) +l E'

(24b)

where p and j are the time and space coxnponents of the
current j„as given in Eq. (16b). In our notation above

we use dy—:d y, dk—:d k, and k—:k/lk l.
If we now insert Eq. (16b) into the above expressions

(24) and put these into the total action given in (21), we
obtain

r

~0 =f dx g*(x ) — V' +e A 0"' i —g(—x ), (25a)

—ik(x —y)f f f dx dy dk [p'(x)V„&(x)] [1('(y)[V —k(k V )]g(y)I
—ik(x —y)

, f f f dx dy dk, p(x )p(y ),
(2m ) A, +i@

(25b)

(25c)

where a=e /4w.
The 1t which appears in these equations (25) is assumed

to be the function which minimizes the total action
W= W0+ W&+ W2. Equivalently, they are solutions to
the augmented, integro-differential Schrodinger equation
one obtains from the Euler Lagrange equations of motion
when W is varied with respect to 1(t". The point is that
the g(x) are as of yet unknown functions of the space-
time coordinate x=x„=(t,x). Now, without the self-
field contributions of W, and W2, the action integral W0
alone is minimized by the usual Coulombic wave func-
tions, which we shall denote tg (where n—:nlm contains
all three hydrogenic quantum numbers). Physically, we
should expect that there are true solutions f„ithwener-
gies E„ that minimize the complete nonlinear action W
and that these functions are in some sense close to the
Coulombic functions f„, with eigenenergies E„, which
minimize the linear action W0 alone.

It is usual in perturbation theory to assume that since
the Coulombic wave functions 1(j„ form a complete set,

any solution g to the perturbed equation of motion can
be expanded as a linear superposition given by

1((x,t)= g C„(t}lt'„(x) . (26)

Q(x, t)= g C„(t)e

where the C„(t) are presupposed to vary only slowly in
time when compared to the exponential factors. The E„
are the eigenenergies of the P„. Conservation of charge
requires the normalization condition

fd'xi&(x, t)l'= g lc„(t)l'=1. (28}

As a further ansatz, one can assume that the rapid oscil-
lations proportional to exp(iE„t) can be separated from
the more slowly changing time behavior. Hence in atom-
ic physics —especially in the two-level atom model —one
writes expression (26) in the form
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This entire mathematical apparatus requires that the per-
turbation to the Schrodinger equation be linear, and thus
that the principle of linear superposition holds. In self-

field QED the nonlinear expression (19) is not a perturba-
tion, but rather a required part of the equation of motion
for a complete theory —it cannot be turned off. If one did

try to treat this as a perturbation, using Eqs. (26) or (27),
one could not trust the result because (19) is nonlinear in

g and hence the superposition principle needed for ex-

pansions (26) or (27) does not hold. We shall see later in
this paper that the erroneous consequence of making
such an attack on the problem is the chirruped exponen-
tial decay predicted by neoclassical theory. Clearly a
different approach is needed here.

In the eigenfunction expansion (26) we physically are
making the ansatz that the spatial behavior is described
by the known functions i)'j„(x), and then we use this
knowledge to obtain information about the time behavior
of the unknown C„(t ). We propose now to reverse this
procedure by making instead the Fourier expansion

4a p
5(~nm+~pq )

dA, A,

nmpq COpq A, + l E

x(nIVIm)(pIVIq),

where we have used the dipole approximation (DA), i.e.,
exp[i(x y—)]=1. The kets In ) are still exact solutions
which we assume minimize the total action 8'. The 5
function is satisfied by either of the two conditions

n=m, p=q
n=q, m =p

(32a)

(32b)

but one can show that condition (32a) causes W, to van-

ish identically from parity considerations. This is be-
cause matrix elements of the form ( n I%In ) vanish for
even azimuthal quantum numbers, and terms with oppo-
site azimuthal quantum numbers will cancel in the sum-
mation in Eq. (31). Hence only the choice of (32b) gives
any contribution to the total action. This then leaves us
with the expression

g(x, t ) = g P„(x)e (29)
co'„ Ix„

Wi= g fdAA,
n, m nm

(33)

in which we assume that the time behavior is known, and
of the form exp( iE„t). I—t is now information about the
unknown wave functions g„and the corresponding ener-

gies E„ that we are looking for. Physically we would ex-
pect that the 1(„and the energies E„are approximately
equal to the Coulombic wave functions g„with energies
E„. The g„ in addition would have a complex phase fac-
tor exp(iP„), which would make the Fourier expansion
(29) convergent. However, in a two-level atom, we can to
first order of iteration replace 1(„with p„, since
n F I 1,2I, and then solve for E„,assuming that it has the

En =En +~En '

Let us now insert the Fourier expansion (29) for the ac-
tion integral W= Wo+ W, + Wz found in Eq. (25). For
8'o we find

~nm —1
COnm A,

(34)

where the equality sign is understood to hold under the
double summation g„~. The —1 in Eq. (34) corre-
sponds to an energy shift proportional to V', and hence
to a change in the electron mass. This term may be elim-
inated by renormalizing the electron mass, leaving only
the first term on the right-hand side of Eq. (34). The im-

plied contour integration embodied in the +is in the
denominator of (33) may be carried out by the usual
prescription of writing the integrand as a principal part P
plus a residue, as per

'I

where we have used the relation (n IVIm ) —=7„
= —m,~„m„x„.Using the symmetry in the dummy in-

dices n and m, we may write a partial fraction expansion

Wo= f f d x dt g 1t„'(x)HO/ (x)e
n, m

= g f dr(n IH, Im &e'""

n, m

=2m g ( n IHOIm )5(ei„),
n, m

(30)

1 =P
~nm

which gives

—in 5(co„—A, ),

Ix„ I' f"

(35)

where cu„=En —E
If the g„were Coulombic wave functions, this expres-

sion would be zero. The P„minimize Wo alone. Howev-
er, now the entire action 8', of which 8'o is only one
term, must be minimized as a whole. For our two-level
atom discussion n, m C I 1,2 I, but the general treatment
holds for an atom with a complete set of levels. '

We now discuss the piece of the action S', , which con-
tains the Lamb shift and spontaneous emission. Inserting
the expansion (29) into W, of (25b) we obtain, after carry-
ing out the xo =t and yo=—u time integrations,

i g a)'„ Ix„
n, m

(36)

Wf, =2rr5(Ef —E;)e, (37)

where the 5 function of (35) contributes only if m (n.
We now extract the contribution to level n alone, and
convert to units of energy, via an 5-matrix prescription. "
For a bound-state problem, the total action 8' is related
to the total invariant energy 8 of the system via
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and so the contribution from (36) to the total energy of
level n is given by

pr( n)

g(n)
2~

—IEpt —IEPr
g(x, t ) =C, (t )f&(x)e ' + Cz(t )gz(x)e

lc, (t)l'+ lc,(t)l'=1.

(41a)

(41b)

2(x ~
l

lP
dA,

m ~nm

Following the usual development of the two-level atom
model, we assume a Hamiltonian of the form

lx„
n, m

m (n

5E„—i A—„. (38)

H =Ho+H',

where

(42)

The real part of the energy shift Re[ 6I"') is the nonrela-
tivistic result for the Lamb shift, first obtained by
Bethe. ' For a two-level atom the sum runs over m =1,2.
If we define co„=co2]=coo as usual, we have and

H Q„=E„(n=1,2) (43)

A] =0,
2A

A z = A too I xq t I

3

(39a)

(39b)

p= & ply& = lc, I'+ Ic, I'=I,

with

(44)

This shows us that the ground state P~ is stable, but that
the excited state Pz decays with a time characterized by
r= 1/A, where A is the usual Einstein coefficient of
spontaneous emission. If we could prepare the two-level
system in level two at time t =0, Eq. (29) would become

—i(EP+5E )t —At
P(x, t ) = blitz(x)e (40)

V. SELF-FIELD QED
ASSUMING SUPERPOSITION

Let us now see what would have happened had we used
the usual, but inadmissable, expansion (27), together with
the conservation of electronic charge condition (28), all
instead of the Fourier expansion (29). [Recall that an ex-
pansion such as (27) in terms of a superposition of known
eigenstates is not valid because the solutions of the com-
plete nonlinear Schrodinger equation are not known-
and because there is no superposition principle for a non-
linear equation. ] For a two-level atom the expansion (27)
and condition (28) become

where a factor of 2 should now be included in the
definition (39b) of A to account for the two polarization
degrees of freedom of the photon. Equation (40) contains
the usual exponential decay dynamics for a two-level
atom, as found in standard QED. We now see that, self-
field QED, if treated correctly, does not predict any non-
standard dynamics, such as the chirruped decay profile
predicted by the neoclassical theory of Jaynes.

It can be shown that the corrections to the total action
coming from H2 give rise to a static shift which is the
same for all levels and hence unobservable, and also a
small level shift contribution which, in the relativistic
version of the theory, corresponds to the vacuum polar-
ization term of Wichmann and Kroll. This effect is negli-
gible in our two-level model, when compared to the dom-
inant contribution arising from the real part of Eq. (38),
and we will not consider it further in this paper.

H.'. —= &nlH'l~ & . (45)

I CtJpf

iC] =C]H']] +C2H ]2e '—:M]]+M]2, (46a)

I Cg)pl

iC2 =C]H2]e +C2H22 =—M2] +H22 . (46b)

So far we have done nothing but summarize the theory of
a dynamic two-level atom with a perturbation. In free
space, however, the only possible candidate for a pertur-
bation is the radiation reaction response of the atom to
the electronic self-field. At a simple level it can be
showed that the results of self-field QED arise as a self-
induced Stark and Zeeman effect which arises when the
electron cloud responds to its own electric field and mag-
netic fields. The Stark level shifts then are those of the
usual Lamb shift.

We now take H' =H]+H2 as our perturbation, where
H

&
and Hz are given in Eq. (22). (The self-field contribu-

tion from H' are not perturbations, we recall, and already
at this stage we should not expect this procedure to yield
correct results. ) From parity considerations it is easy to
show that'

H' =H'" =0ll 22

H",,' =H"'*,
21

H' '=H' '=0
12 21

(47a)

(47b)

(47c)

To calculate the nonzero matrix elements, we begin with
H& in Eq. (22). Into this expression we insert the EM
vector potential A"' from (24a) with the current j taken
from (16b). This yields the result

We define as before coo=E2 E] ~ The equations of
motion become, in all generality for two levels, '
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$2 ) d)]

HI]: e I I I dA dudee
e e V&e'[C](u)C, (u)Ve~e ' +C , ("u)Ce(u)V~ee ' ]

3m td] )](. + ] 6
(48)

toolxz] I I(o) I Cz I Ci3' (49a)

where u is a dummy time integration variable. (We have
used the dipole approximation. } Since the C;(t} are as-
sumed to vary only slowly with time, we may replace
C;(u )=C;(t) in the integrand, allowing us to carry out
the u integration. In the rotating-wave approximation we
neglect the terms of expression (48), which contain the
exponential exp[i(co+too)] and then the matrix elements
Mt" of Eq. (46), arising from the perturbation H], be-
come

aA 2a
lCz = Cz cool xz] I

3m

X —ln +i@too'IC]l Cz .
COp

(53b)

Now take Eq. (53a} and multiply it by C;; then take the
complex conjugate of (53a) and multiply through by Ci.
Add the resultant equations together, and make use of
the charge conservation condition (44). The final equa-
tions that remain after these operations are

Mzl o]olxz] I I (o]o) I C] I Cz
3m'

where we have defined

(49b)

—Ic, I'=2A(1 —Ic, I')Ic, I',

—Ic, I'= ——Ic, I',
dt 2 dt

(54a)

(54b)

A,
2

I(t]]o)=—J dA,
C(]o )(, +le

(50)
where A is the usual Einstein A coefficient for spontane-
ous emission, defined as

which is identical to the integral which appears in 8'&.
Hence we expect I(too) to contribute a level shift and a
line broadening as before. Similarly, as in Eq. (34), in
I(too) we can renormalize away a linearly divergent mass
term as Bethe does, ' leaving a logarithmically divergent
contribution to the Lamb shift, and a complex residue
which mediates the decay of the atom, i.e.,

A =— ci)ol xz] I

2a
(55}

Notice how the terms containing the cutoff A have
dropped out. These terms correspond to level shifts, and
do not affect the dynamics of the spontaneous decay of
level two into level one. If we define X—= IC, I

and
Y =—

I Cz I, Eqs. (54) may be integrated to give

I(too) o]oln
CO0

l 7TCOp, (51)
X(t)= 1

Ee "'+ 1
(56a)

22 (52)

where A is the same photon cutoff parameter used in (51).
This divergent energy shift is level independent, and
hence unobservable. (It is the same for all levels, and
hence can be subtracted off by rescaling the energy axis.
This divergence is an artifact of the dipole approxima-
tion. ) Combining the results of (49) and (52), we have for
the time evolution equations (46)

aA 2aic, = c, — o]'Ix1 1 3 0 21

X —ln
A

COp
ivrtoo fczl c]—, (53a)

where the cutoff A is usually taken as A =m.
We now calculate the matrix elements M 1

', which
come from the perturbation H2. Using the definition of
Hz from Eq. (22c), the charge density j =—p from (16b),
and the charge conservation condition (44); we obtain in
the dipole approximation

Y(t)= 1

Le+ "'+1 (56b)

which are the chirruped hyperbolic decay profiles pre-
dicted by the neoclassical theory of Jaynes. (The K and L
are constants of integration, with K = 1/L. )

Now, how is it possible that we have lost the purely ex-
ponential decay profile of Eq. (40}? The physical input to
the theory has not changed —only the mathematical
analysis leading to the final result given above in Eq. (56).
Although the decay constant ~= 1/A is correct, the func-
tional form is not. It is our contention that the chirruped
decay arises not from incorrect physics, but rather from
the incorrect use of the superposition principle, as it ap-
pears in the form of Eq. (4la). The perturbation 0' is
nonlinear in g and hence the total wave function that
solves the perturbed, nonlinear, equation of motion is not
necessarily expandable as a linear combination of g] and
gz. Such a procedure can yield at most an approximately
correct solution. And indeed we see that the solutions
(56) decay with the correct time constant A, and exhibit
the correct exponential decay asymptotically as t~ oc.
The decay, however, is not correct for short times.
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VI. REVIEW OF NEOCLASSICAL
ELECTRODYNAMICS

(57a)

H =Ho+H', (57b)

The neoclassical theory of Crisp and Jaynes is essen-
tially equivalent to an idea of Schrodinger' and Fermi
to include some quantum analog of classical radiation re-
action effects in the Schrodinger equation to account for
spontaneous emission. In this sense the neoclassical
theory is in the same spirit as self-field QED. Fermi s de-
velopment is essentially the same as that of Crisp and
Jaynes, and so we present primarily his methodology
here. We will restrict ourselves to a two-level atom dis-
cussion, to maintain consistency with the previous pre-
sentation.

Consider a solution P(x, t ) to Schrodinger's equation

V'(x, t)= g (x x„)to„e " C„"C
n, m

(61)

where co„=E„Ea—nd x„=(n ~x~m ), as before. If
we insert Eq. (61) into (57), along with expansion (41),
and then operate on the result expression with

fd xgk(x) and sum both sides, we arrive at the follow-

ing time evolution equation:

sical theory, one next assumes that the full solution of the
perturbed equation (57a} can be expanded as a linear su-
perposition of the eigenstates of the unperturbed equation.
As we saw previously in the context of self-field QED,
such an assumption is not correct due to the nonlinearity
inherent in the perturbed Schrodinger equation (57a).
This, we believe, is the erroneous step in neoclassical
theory which gives the unphysical chirruped decay
profile. To see that this is indeed so, we assume a linear
superposition such as in Eq. (41). With this expansion,
the potential V' becomes

Ho =—— 7 + Vo(x),
2m

H' = V'(x, t ),

(57c)

(57d) I, n, m

where V' is supposed to correspond to a radiation reac-
tion potential of some sort. We suppose that the electron
charge density is given as usual by ef'l1, and conserva-
tion of charge requires that f d xp= 1. The electric di-

pole moment can be written as

2

Ck X Ck ~ CI ~ ~kl ~ xkl ~

I=1
(63)

where n, m, l, k E I 1,2j. Conservation of energy requires
co„+cokI=0, which can be satisfied by k =m and l =m.
Hence expression (62) reduces to

p= J d xxp(x}, (58) or

which is equal to the classical expression. The solutions
lI'l„(x, t ) to the unperturbed equation H =Ho can be writ-
ten

C, =+ WC, [C, /',

C, = —~C, [C, J',
(64a)

(64b)

—IE'f
g„(x,t)=P„(x)e " (n =1,2) (59)

where the g„(x) are solutions to the stationary equation

HO/„=E„Q„, and are normalized as usual as
(n ~m ) =5„.

In order to get the neoclassical theory of spontaneous
emission we make the following ansatz for the form of the
potential V'(x, t ):

2 eV'(x, t)=—
3 2' xP, (60}

which is taken directly from classical electrodynamics. '

Expression (60) does not arise naturally in the theory of
neoclassical EM, but is inserted in a rather ad hoc fashion
in order to make the neoclassical theory. Notice that
with the inclusion of (60) in the Hamiltonian, the resul-
tant Schrodinger equation is nonlinear and nonlocal since
V' depends on the three-dimensional space integral of
xP'g. The situation is very similar to what was obtained
in the self-field theory in Eq. (21), except that the neo-
classical Schrodinger equation is not as complete. In ad-
dition to being a rather arbitrary prescription, as it stands
it can account only for spontaneous emission and not the
Lamb shift, vacuum polarization, g —2, etc.

To continue with the analysis in the context of neoclas-

V'(x, t)= g (x x„)a)„e
3 .. (65)

Notice the absence of the C, (t ) here, as compared to Eq.
(61). Ideally, the matrix elements x„are taken with
respect to the exact solutions P„ to the entire nonlinear

where we have defined A as before in Eq. (55). Multiply-
ing (64a) through by C', , and the complex conjugate of
(64a) by C& and adding these results give precisely the
same nonlinear equation found in (54a). A similar calcu-
lation using C2 gives (54b). Hence the ~C;~ obey the
same time evolution equations (56) as before, exhibiting
the chirruped hyperbolic profile, which is the trademark
of the neoclassical account of the dynamics of spontane-
ous emission. This decay is not physical, but rather a re-
sult of the invalid application of the superposition princi-
ple that is assumed in expansion (41).

We now recalculate the spontaneous-emission decay
rate in a different fashion, still within the context of neoc-
lassical theory, and show that the theory does admit a
correct exponential decay, so long as the expansion (41) is
not used. Let us begin with the perturbed, time depen-
dent Schrodinger equation (57). Instead of using the ex-
pansion (41), now we use the Fourier expansion (29).
With this decomposition of the wave function, the per-
turbing radiation reaction potential V' of (57) becomes
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equation (57). However, we may as before substitute the
approximate Coulombic solutions g„so as to iterate the
first-order energy correction to E„. Suppose we have
prepared a state g„ that is an exact solution which mini-
mizes the entire exact nonlinear action 8'. Let us assume
that this state can be written g„=g„+5/ with energy
E„=E„+5$. Then the Schrodinger equation

nHg„=i =E„g„

can be written as

i~'In &
= 5E„—ln &e (67)

—IEof
where we have used the separation A(I„(x, t ) =g„(x)e
We have neglected 5$„, and here ~n &:—P„(x). Inserting
expansion (65) for V', operating from the left with (k ~,

and performing an additional sum on both sides with
respect to a dummy summation index, we arrive at

2l CK i(~„+saki )t
5Ek — g Cd„(xkI 'x„)e

I, n, m

Now we may integrate both sides over all time t, and then
divide by 2~ to extract an energy shift of the kth level, as
per the method of (37), to be

5Ek g ~nm(Xkl Xnm )5(nm +~kl )
2l cz

l, n, m

(69)

The 5 function expresses a conservation of energy condi-
tion, which can be satisfied by the choice k = IrI and I =n
[See Eqs. (32).] This finally yields an imaginary energy
shift given

5Ek X Ik ~xlk ~

2lG

I

which can be rewritten as

(70)

21 cx
5E~ — coo~x2I( = I A (71a)

5E2= —
coII~x2I~ =+i A,

3

which, when inserted back into Eq. (66), gives

(71b)

f, (x, t)=g, (x)e
—iE t —At0

$2(x, t ) =gz(x)e

(72a)

(72b)

Hence the excited level shows the correct. exponential de-

(Ho+ H' )( g„+5$„)= ( E„+5E„)(g„+5$„), (66)

which reduces to

cay, but the ground state exhibits a clearly nonphysical
exponential growth. Intuitively, this is because, at the
somewhat primitive level of neoclassical theory, the radi-
ation reaction perturbation V' is just as likely to perturb
the ground state as it is the excited state. It is tempting
to compare (72b) with the so-called runaway solutions of
classical radiation reaction theory. This problem of the
decay of the ground state did not arise in the complete
self-field treatment given earlier. In the self-field expres-
sion (36) spontaneous emission emerges as the residue of
a contour integral. For the ground state there is no pole
enclosed by the contour, and hence the residue is zero,
and the ground state is stable.

VII. CONCLUSION

In this paper we discussed the self-field approach to
QED, emphasizing the theory's origin in the action at a
distance theory of classical electrodynamics of Wheeler
and Feynman. We showed how the theory could be used
to give a nonrelativistic account of spontaneous emission
and the Lamb shift in a two-level atom, with the usual ex-
ponential decay profile found in the standard approach.

We then showed how misuse of the superposition prin-
ciple could lead to an incorrect prediction of a chirruped
decay profile, as predicted in the neoclassical theory of
Crisp and Jaynes. Reviewing the neoclassical theory, we
showed that the chirruped decay could be eliminated by
avoiding the use of the superposition principle, and that
an excited two-level atom decays in the proper exponen-
tial fashion. The neoclassical theory appears to predict a
runaway solution for a gound-state electron. We believe
that this is due to the rather ad hoc fashion in which the
neoclassical theory accounts for the radiation reaction
field.

The self-Geld approach apparently contains elements of
the neoclassical theory, but is more comprehensive in
scope. The covariant elimination of the self-field A „"' of
the electron through use of an EM Green's function takes
into consideration the electron's radiation reaction field
in a compelling and natural manner. In addition, self-
field QED can make predictions about the Lamb shift,
vacuum polarization, g —2, etc.—all of which seem to be
beyond the scope of the original neoclassical theory. The
theory of the general covariant self-field QED is given
elsewhere. '
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