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ABSTRACT

We derive a formula for the relativistic decay rates in atoms in a formula-
tion of Quantum Electrodynamics based upon the electron's self energy. Relativis-
tic Coulomb wavefunctions are used, the full spin calculation is carried out and the
dipole approximation is not employed. The formula has the correct nonreiativistic
limit and is used here for calculating the decay rates in Hydrogen and Muonium
for the transitions IP —^ lS i and 2Si —* l S i . The results for Hydrogen are:
T(2P -> 15A) = 6.2649 x 108a~l and T{2Si. -• lSi) = 2.4946 x lO"6*"1 . Our
result for the 2P —* lSi transition rate is in perfect agreement with the best non-
reiativistic calculations as well as with the results obtained from the best known
radiative decay lifetime measurements. As for the Hydrogen 2S^ —> IS^ decay rate,
the result obtained here is also in good agreement with the best known magnetic
dipole calculations. For Muonium we get: T{2P -> IS^) = 6.2382 x lO8^"1 and

15^) = 2.3997 x lO"6*"1 .
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I. INTRODUCTION

At present, the rate of spontaneous emission (or partial decay life-times)

in atoms is not among the list of precision tests of Quantum Electrodynamics. The

2~i~ and 37- decay rates of the lS0 — and ^S^— states of positronium, respectively

are part of that list. In positronium one tests the annihilation rates of the e+e~ pair,

albeit in a bound state. Whereas in Hydrogen or Muonium there is no annihilation

and we are talking about the rates of atomic transitions in, say, H* —> H + -7.

The reason for excluding the rates of spontaneous emission from the list

of precision tests of QED is partly due to the absence of very accurate theoretical

calculations , because the decay rates are usually calculated in the dipole approx-

imation and using nonrelativistic wavefunctions. Also, the accurate experiments

may not be easy to perform. But with the new techniques of trapped and cooled

atoms it may now be possible to make accurate life-time observations in Hydrogen

and Muonium if correspondingly accurate theoretical numbers would exist.

With this goal in mind , we have calculated all spontaneous decay rates

in the relativistic Coulomb problem using full Dirac-Coulomb wavefunctions and

without making the dipole approximation. The results are thus to all orders in Za.

The full spin calculation is rather cumbersome and to our knowledge has not been

carried out before.

In section II we give a new derivation of a general spontaneous emis-

sion formula in which the decay rate, [Ynj2)l appears as the imaginary part of

a complex energy shift AEn, the real part being the Lamb-shift and the vacuum

polarization'1"3!. Section III contains the full spin and angular integrations as well

as the radial integrations with some of the details collected in the Appendices. Fi-

nally , in section IV we present a number of numerical results and compare them

with the available nonrelativistic data.

II. RELATIVISTIC THEORY OF SPONTANEOUS EMISSION

A general formula for spontaneous emission from an electron in an arbi-

trary external field .A™* can be derived in a very simple way directly from the action

of QED (ft. = c = 1, and dx ~

U)
where: J* = -£¥7*** is the electron current and A^ is the total electromagnetic

field: An — A'^ + A'^, with the superscripts e and s standing for external and self,

respectively. Here A£ is treated as a given nondynamical function. On the other

hand, F,ui = A'v|(l - A'^ satisfies the Maxwell equations F^v = J" which can be

used to put equation (l), after a single integration by parts has been performed on

the last term , into the following form:

W = (2)

Next, we complete the elimination of A'^ from the action by inserting into (2) the

solution of the wave equation'1-3I:

namely:

Here •D(J,,(x — y) is the causal Green's function in the covariant gauge J4"I(J = 0 ,

which we take as :

d*k (-<*•<*-»
(3)

Thus equation (2) now becomes :

W
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idp - eAl) - m]*(x)
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2 y
= Wo +
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When the Fourier expansion of the matter field * in the time variable, namely:

*(*) = EV>n(x)«-<a—, (5)

where the Fourier coefficients are yet to be determined, is substituted into (3) and

after the time integrations over /fcn>!/o> and XQ have been performed, in this order

for convenience, we get:

- TP (6a)

and:

/ '

6(Er -E,- k)\ 1

Here P stands for the principal value integral and J ] implies a sum over the

discrete part and an integration over the continuum part of the system's spectrum.

In carrying out the kQ -integration, the contour is closed in the upper half plane for

y0 > x0 where it encloses the simple pole at k0 = — k , (k = \k\] , and in the tower

half plane for the case ya < x0 where it encloses the pole at k0 = +k. ^-functions

are used in order to distinguish between the two cases. The y0-integrations turn out

to be simply Fourier transforms of the C-functions which give rise to the principal

value integrals and the 6- functions in (6b).

Now , the (^-function, 6{En - Em + Er - E,), can be satisfied by the two

choices I21;

(1) n — m and simultaneously t = s.

(2) n — a and simultaneously r = m.

With this, Wi becomes:

' /

^w-fM*) J
-\S{E, - £„ f k) l 6(E. - En -

1
[E,-ETi-k : l > - (7)

Notice that the term proportional to i(k) + 6{--k) — 26{k) docs not contribute

because of the integration over k. From here, one could proceed to the derivation of

the equations of motion by minimizing the total action and subsequently solving the

coupled Hartree-type equations thus obtained for the energies and wavefunctions.

Instead of following this path though, we can avoid the nonlinear equations and use

the following approach. If we find the equations of motion and insert them back

into the action, it will assume its minimum value, which is W -- 0. In other words,

an exact solution to our problem would be to find that set of wavefunctions {ipn[x}}

which would make Wo + Wi — 0. Now, in the absence of the nonlinear self-energy

part IV!, which is proportional to t2,Wa vanishes precisely for the solutions of the

Dirac equation of an electron in the external nondynamical field A^.

If we, therefore, take for {^T1(x)} the complete set of solutions of Dirac's

equation in such a field, {^°(x)}, with their corresponding energies {/?£} and set

En = E^ + AE,,, then as a first iteration of the action, H'n will contribute a term

2jrX3tl A£ r, and Wi is evaluated with the functions {V'iiM}' Thus we get from the

vanishing of the action in the first iteration:

W\l> ^ - 2 (8)

where the superscript on W[ is added to indicate that we are considering a first

iteration of the action. In particular, for our problem A'^ is a Coulomb field and



{V£M} a n d {E"J a r c therefore the sets of Dirac-Coulomb wavefunctions and

eigenenergies, respectively. From (7) and (8) we immediately identify the shift

in the nth energy level as a sum of three terms having the following physical inter-

pretations. (From here on we shall drop the superscript c on ipn).

(l) Vacuum Polarization:

e<M«-y)
.(y)

(9)

(2) Spontaneous Emission and Absorption:

d3k
r« ' " t r r 6{E. -En- k)\) (10)

(3) The Lamb-Shift:

/ ^ 2Jt lE,-En -k £ . - £ „ • (11)

The vacuum polarization term has been treated elsewhere™ and so has the

Lamb-shift term'4!. We therefore do not discuss them here any further. The spon-

taneous emission term is evaluated in detail in section III and numerical examples

are presented in section IV.

III. RELATIVISTIC DECAY RATES

The focus of our attention in this work is equation (10) of the previous

section. The first thing to notice is that the first ^-function, 6[E, — En + fc),

implies that En > Et, and hence corresponds to the decay of the state n to a set

of lower states s. On the other hand, the second 6-function, by the same argument

corresponds to the absorption of radiation by the atom in the state n causing it to

be elevated to a higher state s. We choose the second ^-function for treating the

phenomenon of photoexcitationM. The fact that both of these terms come out in
a single equation is one of the advantages of using an action approach.

We make two remarks at this point. First , it should be emphasized that

the choice of ^-function we have just made is in no way arbitrary as it may sound

at first sight. In fact, it is dictated by the remaining fc-integration over the interval

(0,oo) and choosing one of the two functions automatically precludes the other. If

it is an emission process that we study, then En > E, and, since it is positive, only

the function 6{E. - En + k) contributes and not S[E. - En - k). Conversely , in

the case of absorption, the other ^-function will contribute.

The second remark concerns the relation of AEft
B to the decay rate of

the nth level. When the atomic state of some system of energy t decays in time,

the time dependence of its wavefunction is written as'5': e"*'1'"1^)' = e~ic'te~$t,

where P is the decay rate of the state or twice its inverse mean life-time. In other

words:

r = -2Im(e) (12)

So, taking the right ^-function in (10) and using (12), we get the following general

formula for the decay rate of the nth level:

The total decay rate of a state n is an incoherent sum of rates of decay

to all states s whose energy is less than En. It follows that only the ground state

is stable. All other states ^°(x), ( which are not true eigenstates of the total

Hamiltonian) acquire shifts and are unstable.

At this point it is instructive to make a tittle digression and try to recover

the decay rate in the dipole approximation familiar from old-fashioned perturbation

theory. In this approximation :



and hence (13) becomes:

r~ = - ^ ^ £ / JxMxWt.lx) J<i3yi>.[yhMy) f HE. - /s» +

Carrying out the integration over k and using 7'*7(i ~ ~jfs - 7.7, we get:

where u n i — /?„ — £ , . Also, ^ f ° — \jj and 1̂ 7 — t/jia . These, together with the

orthogonality of the wavefunctions yield:

l . |
2dfi t , (v -•= ca , c -

On the other hand, the Heisenberg equations of motion give:

Thus:

If we finally introduce the photon polarization via the two polarization vectors
e i i i . (A — 1,2), orthogonal to the propagation vector k, we get:

Finally, after carrying out the angular integration, we arrive at:

Still, relativistic wavefunctions are to be used in the evaluation of the matrix element

r,,,|. The squared matrix element \r,L,\2 thus has, implicit in it, a spin dependence

contributing ultimately the factor:

Hence, the famous factor | in the electric dipole formula is automatically restored.

Now we go back to our general formula (13) and evaluate it exactly. In

the next step, the expression for T is simplified by expanding e*k•lx~y' in terms of

partial waves and subsequently carrying out the integrations over k (see Appendix

A). When this is done, P takes the following form (e2 = 47ra):

where the indices I and m have been temporarily suppressed in ^

which, in turn, are form factors defined by:

(14)

jf a n d t TT['

riT'a' = J y ^ J (15a)

(156)

and where ui —. uin, — En — E, and x — (r,$, 0). From (15) it can easily be shown

that , 7;,0 ^ nT° and that ,T,, = nT\, which together simplify (M) into:

= -4-xo. (16)

With relativistic Coulomb wavefmictions (see Appendix B), TST" and ,,T,

can be put into the following forms:

0 = A2Jn

4TT

F(2JB+1)(2J,

where:

(17a)

(176)



(18a)

[do = sin8dOd4>), and:

[= T }l(^)g^{r)9,{rydr,
Jo

| = / " J>(wr)/;(r)/,(r)r2dr,
./o

(186)

With the help of equations (17), equation (16) becomes:

r = -*

2} (19)

In equation (19) there is a sum over Mn and M, (these are the total magnetic quan-

tum numbers of the initial and final states, respectively) which we have suppressed

all along. Moreover, since the electron has probability -*- of being in any one of the

magnetic sublevels \nJnMn >, where gn is the degeneracy given by:

gn = 2tn + 1, (20)

we have to multiply the total decay rate of level n by this probability. With the

above considerations taken into account, the decay rate of the nth atomic level

finally becomes:

(21)

10

In the remainder of this section, we elaborate upon the various terms ap-

pearing in equation (21). We shall refer to the W's and K's by tht angular matrix

dements and to the R's by the radial matrix elements. In their calculation, the angu-

lar matrix elements involve a number of 3j- and 6j-symbols. This calculation is quite

lengthy and most of its details can be found in Appendix C. Only the main results

are given here. The first W- matrix element is given by:

M, m) \t.

The range of t in this expression is restricted to the values given by:

\tn- t,\ < I < ln + I. such that tn + I + I, =an even integer.

(22)

(23)

W%fc, can readily be found from (22) by merely letting £„ -+ t'n and (., ~> l't. The

same transformation, of course, applied to the condition (23), yields the values of I

that go with W%™,. For the K-matrix elements we find:

where:

x {{at - c

-Mn m + L - M . - ±

(24)

f. + i m)

-± -M. i . - i m)

b =
J* I

11



2 " t + ± -M. - ± ) \ - M » - ± Af. + i m)
(25)

)
(25)

with the range of I denned by:

\tn - t!t | < I < tn + t't such that ln + I + t't = an even integer (26)

Here, too, the expression for K^T," as well as the defining equation of I that goes with

it can trivially be written down from (25) and (26), respectively, by letting £„ —» t'n

a n d ^ ->t,.

On the other hand, all the radiai matrix elements can be calculated exactly

with the help of the substitution'13!:

The final results are:

i = [ ( l - —)(1 " —)\>UnU,{lf + I:

where:

/f - A + 4 - (27)

(2-7,, + l)p{2i. +

- Kn)(N. - K . ) (2AM

; .=0 ,;=0

12

T.-f

and:

(An

2

p^

(1 +

(28)

- £ - 2

The definitions of the remaining parameters in equations (27) and (28) are collected

in Appendix B (equations B3).

So we have now expressions for all of the matrix elements needed for the

calculation of retativistic decay rates using equation (21). Owing to the restrictions

imposed upon the values of the index £, equations (23) and (26), the sums over the

indices I and rh are no longer infinite. In fact equations (23) and (26) can be regarded

as the selection rules of the theory. The first part of (26) ; namely | £ r i - ^ | < i < tn+t't

is similar to the selection rule familiar from the electric field multipole expansionIT1,

because we can effectively interpret I as the carrier of the photon angular momentum,

although we did not use the concept of photon as such. In this respect , equation

(26) is an expression of the law of conservation of angular momentum. In the next

section we apply equation (21) to the calculation of some decay rates in Hydrogen

and Muonium. Notice that the dependence of the decay rate, F, upon the atomic

number, Z , is solely in the radial matrix elements, It',i = 1,...,<J.

IV. EXAMPLES

In this section, we apply our equation to some of the radiative decay pro-

cesses of some of the low-lying excited states in Hydrogen and Muonium. Our aim

in presenting these examples is to demonstrate the correctness of the approach as it

stands in comparison with the standard well understood theory.

As has been explained in the previous section, when it comes to a specific

calculation of the decay rate using equation (21) the sums over the indices I and m

13



are finite. In fact, for each allowed value of the index I. , the remaining sums over

m,Mn and M, can easily be carried out explicitly without the need to evaluate the

3j- and 6j'-symbols in most eases, as will be shown shortly. The general procedure

for calculating a decay rate is outlined as follows:

(a) Identify the quantum numbers n,in , and Jn of the initial and final states

and calculate the derived ones, namely: t'n,Kn and nr (see Appendix A and

Table (1)).

(b) Use equation (23} and similar ones to calculate the allowed values of the

index t for each of the angular matrix elements. The results of doing so for

the examples we study are collected in Table (2).

(c) Use the results of (a) and {b) in order to write out equation (21) with the

sum over I carried out explicitly. Only the sums over rh,Mn and M, remain

to be carried out in the remaining steps.

(d) Calculate the numbers £ r i , M m M , |W£"|2, £,;LMnM. I*CM2. -etc, utilizing

the symmetry properties of the 3j- and 6j-symbols and by quoting their

tabulated values'8! if necessary. In the case of the K'.s, the scalar products

are obviously carried out first , i.e:

and:

K.K' l + a2a'2)

(29)

b2b[ + b2b'2} (30)

Notice that in the process of calculation some angular matrix elements whose

i index is allowed by equations (23) and (26) may vanish due to the vanishing

of some 3j- or 6j-symbol that enters into their definitions. An example of

this is the vanishing of W%), in the decay rate T(2J3i -> lSi).

(e) Use equations (27) and (28) in order to calculate ail the radial matrix ele-

ments. This process is also quite tedious In the examples we present here,

the radial matrix elements as well as the decay rates as given by equations

(32)-(35) below, were calculated to double precision using a simple Fortran

14

program. In the program a series representation of the Hypergeometric func-

tion in equation (28) was employed whereby'0!;

In our examples, z = — x2 < 0{a2) and a and b are extremely close to

negative integers , which justifies the use of equation (31). Of course, equa-

tions (32) - (35) are used for calculating the decay rates of both Hydrogen

and Muonium , the only difference being in the reduced massl10' , m. We

follow the procedure outlined above in calculating the following decay rates

for both Hydrogen and Muonium. Everywhere in the examples below Yi

stands for sums over the indices m,Mtl and M, , which we don't show for

convenience.

(1) The 25^ transition:

Similarly:

= 3

+

?.. = l and

+

= 0.

a!,2

IS

b? + b?}



= 3

1 1 1 ] 1 J

Thus:

2(R°)(R°2) -

(32)

6', + b2b'2 + b^+b2b\}

6^1 + 6 ^12V3

+ ) + +

(2) The 2S^ -» 2P^ transition:

2K°0,, • K^iJ«
(3) The 2P^ -> IS^ transition:

• 9(* 3°)
2

(33)

r = - 5 e

( +

+ + 0) + +

E l^f!2 = E i^.'M2 - 1 ; w.ly'w,:?:'- - i, and E I^-'M3 = o.

27 J!7 54 54 54

J 2 IKS?. | = 3

^ - ^ (108 + 108 ~ 27J + 108 + T08' ^ ^216 + 210 oi^ + 216 + 216

16 17



: V 3 0 E W a l f l i

JWM l l \ • 1 1 1 1
6\/30i

-4(J22)0 \2

(34)

(4) The 2Pi -> lS i transition:

08 108 27 ; 108 108 ;

+ +

18

E xfOQ K 0 0 _
ÎU' ' V . - -

12i/3 12\/3

O I 2 = 6 £{2(a2 + 4 + bLb2) + b\

(35)

We collect the results of our calculations in Table(3). In the next section we

discuss these results and compare them with the available data.

V. DISCUSSION AND CONCLUSIONS

In this work, we have derived a general formula for the relativistic decay rates

in atoms for transitions from any state n to al! lower states s (s < n). In applying our

general formula to the specific examples presented in section IV we obtained equations

(32-35) which, in fact, are applicable to a whole host of transitions besides the ones

we considered. For example, equations (34) and (35) can be used for calculating

F(nP —* n'S), for any n and n', where n' < n. Equations (32) and (33) can be

generalized in a similar fashion.

For the IP —> lSx transition our result is in perfect agreement with the most

recent and most accurate calculations. We quote here, for the sake of comparison, the

result tabulated in reference [11] of T(2P -* l£j) = 6.265 x 10a*-x. According to this

reference, this figure has an accuracy of better than 1%. Moreover, our result gives

the radiative mean lifetime of T2r = 1.5962 x 10~fls. In 1968 Chupp and coworkers'12'

X9



obtained experimentally the result r2P = (1.60 ± 0.01) x 10 °s using the technique

of beam-foil excitation.

The calculation involving the 2S^ Sevel, on the other hand, requires some

discussion. In the nonrelativistic calculations , based upon the dipole approximation,

the transitions from this level are forbidden by the selection rules involving parity

for the electric dipole and the total angular momentum for the electric quadrupole

transitions, respectively. Also, since this is an S-state (I — 0), the magnetic dipole

moment is a purely spin quantity and its matrix element, therefore, vanishes between

nonrelativistic wavefunctions. However, if relativistic wavefunctions'13! are used in-

stead, one gets the small transition probability of 2.4959X 10~G.s~'. Of course, there

is no reason why two or more photons should not be simultaneously emitted as long

as they share the total transition energy in conformity with the conservation of energy

principle. With this in mind, and with the interest in this transition in connection

with interstellar Hydrogen (it contributes to the observed continuum in planetary

nebulae)!1*', Breit and Tellert'sl showed that a double-photon electric dipole transi-

tion has a probability that can be bracketed by 6.55"1 < T(2S^ —• 15^) < 8.75~'.

More accurate calculations followed leading to the most accepted relativistic result'13'

of r(2Si -» \Sx) = (8.2291 ±0.0001)*"'. There is also the other calculation in-

volving the transition to the Lamb-shifted level 2Pi- We quote here the result of

T(2S^ -> 2F^) = 8 x lO"1"* '1 from reference [17], according to which it has been

calculated as an electric dipole transition. Shapiro and Breit'10' also gave a rough

estimate of the decay rate for this process (« 2 x 10~1 0 j" ' ) . In our calculation of

T(2S^ —> 2Pi.) we have used the Lamb-shift frequency!18) w = (0.4l)ma°, in obtain-

ing the statistically weighted rate shown in Table (3).

As far as Hydrogen is concerned, no experimental measurement of the life

time of the 2Si level has come to our knowledge, but observation of the same process

of decay in Helium and other members of the Hydrogen isoeiectronic sequence strongly

supports the two-photon theory I20'.

In deciding the significant digits in our results, we were guided by a calcula-

tion of the corrections to the decay rates due to the hyperfine splitting (of order ro<*4)

and the Lamb-shift (of order ma5). These radiative corrections propagate their effect

20

upon the decay rate through the latter's dependence upon the transition frequency

lit. We calculate the corrections 6T to the decay rates from the equation:

aw

In Table(4) we show the values of | | J | for all of the transitions except the 2Si —•

2.Pi, where the transition frequency has been taken as the Lamb-shift frequency

(which is already at least two orders of magnitude smaller than the correction due

to Hfs).

We have shown in this work that a simple formulation of the radiative

processes that makes no use of the second quantized electromagnetic field and which

involves only the first quantized matter field is possible and does produce results

for the radiative decay lifetimes of the low lying excited states in Hydrogen that are

in excellent agreement with all previous calculations as well as with the results of

the experiments performed so far.

APPENDIX A

The k-integration

/ = . f fh.S(k - w)e-k^-

Here we have taken x = (r,0,0),y = (r\0',4>') and k = (k,9k,4>k). The angular

integrations yield 6^,6^™', while the radial one, by virtue of the ^-function, gives

^Jl[i^r)jf(u}r'}. Therefore:

21



APPENDIX B

The Dirac-CouJomb Wave/unctions

(51)

The subscripts n and n' stand collectively for the principal quantum number n as

well as the angular momentum quantum numbers JnAn and Mn. In other words,

n. s (n, Jn,^,Mn) and n' = (n,Jn,£'n,Mn). Also, t'n = 2J» - £n = «„ ± 1. The

radial parts, the gn{r) and /„(>") involve confluent hypergeometric functions with

negative integral first arguments (only true of the wavefunctions of the discrete

spectrum! !OI with \En\ < m). This property permits a confluent hypergeometric

function to be written as a polynomial.

where:

"

An[r) = nr

Bn{r) = [N - Kn)F(~nr,2ln

(B2)

(B3)

nr = n - !«:„!

22

_
if J,. =

The angular parts are defined by'7':

and fln- is gotten from fln by letting £„

two-component Pauli spinor.

t'tL a n d m f t —> m'n

x , . (B4)

is the usual

APPENDIX C

Spinorial Algebra.

With the help of the definition of a spherical spinor, equation (£4), the

first of equations (18) becomes :

™; L X)

Now, xt.Xr. = ^»^. .

Thus, putting fin — fi, = ft and using (Cl), the expression for W*™ becomes:

^ £j

f-l)

(C2)

23



Next we employ the symmetry properties of the 3j-symbols under the permutation

of their columns and under the change of the signs of the entries in the second

row'22! in order to put the sum in equation (C2) into the following form :

*-*' •*-" \—Mn mn fj.J \—m, M, — n) \m, —mn m

Also, since the spin index n can take only the values ±^ , the sum will be invariant

under the replacement of \i everywhere by — (i.

J" e" -m, Mt ft m, ~mn m

(C3)

From the properties of the 3j-symbols, we get that Mn = mn — fi and M, = m, — n,

which together permit the phase factor of W,'™ to be written as:

(Ci)

Inserting (C3) and (CM) into (C2), we get :

" '

{ m. M.

( L' tn I \ (CS)

With a little hindsight, the series in equation (C5) can be summed using the fol-

lowing formulal23!;

m2 m3

h

x li lz h \
lii -pi m3 J

24

We finally get :

^ 1

Notice at this point that [ ™ * 1 = 0 , unless:

(a-) fn + «̂ + ^ = an even integer, and:

(b) {£„,£,, 1} satisfy the triangular conditions:

(1) tn + l . - i > 0 which implies I < tn + £,,

(2) f« - t, + £ > 0 implying that I > -(£„ - £,),

(3) - / „ + <, + f > 0 or l > t n - l , .

The above-mentioned conditions, taken together, require that I should satisfy the

following inequalities:

\t*-l.\<i<tn + l. such that £„ + i + 4, =an even integer. (C7)

This completes the derivation of equations (23) and (25). Next we do the vector

angular matrix elements.

where:

Using = ^i»,-*i, a n ( l (Cl), this becomes:
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~n -M.

t» t'. t \
m7i m's m J

(C8)

We finally utilize the property that, for a 3j-symbol not to vanish, the sum of the

entries that make up its second row should be zero, in order to eliminate the sums

over the indices mrl and rn'a. If we then carry out the remaining sum over the index

li —- ±5 explicitly and play around with the indices in the phase factor, we get:

-M.

J,
-M.

\){2f. (C9)

Following the exact same procedure that led to (C9), we can derive ex-

pressions for the remaining two components of K^"', the only difference being in

the Pauli spin products, namely;

and:

— — 1 I J

Also, by manipulating the 'Aj- symbol in a way similar to what has been done in

deriving equation (C7), we get the restrictive conditions (26). Notice that, since

the angular matrix elements occur in the linal formula for the relativisttc decay rate

2C

either squared or multiplied by each other, the phase factor in each can be dropped.

This is because for, example [-l)2 M»-L = is owing to the fact that:

where t is some integer.
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Table Captions:

(1) Quantum numbrs of the states under investigation.

(2) Values assumed by the index t for each of the angular matrix elements.

(3) Decay rates (s~L) in Hydrogen and Muonium as calculated from equations

(32)-(35). Notice that T{2P -» l i ' i ) = T[2P± -* ISi) + T(2JP| -> lS j ) .

(4) Corrections to the transition rates in Hydrogen due to the Hfs.

- J O -

TABLES

Level

I S ,

i

2P,

n

1

2

2

2

0

0

1

1

I
2

1
2

1
2

3
2

f

1

1

0

2

- 1 0

-1 1

I 1

- 2 0

Table (1)

Transition

2Si — l 5 i

an - 1 ^
2P, - 15,

0

1

1

J

0,2

1

I

1,3

1

0

0,2

0,2

i

0,2

0

2



Transition Hydrogen, Muontum.

25^ -f 1S.J 2.4946 x 10"° 2.3997 x 10 G

2Si -» 2Pi 5.194 x 10~ i 0 5.172 x 10~10

2Pv -* lSi 2.0883 x 10s 2.0794 x 10a

2Pi -> lSi 4.1766 x 10s 4.1587 x 10a

2P -» lS i 6.2649 x 108 6.2382 x 10s

Table(3)

Transition

2Si -» 15^ 4.037 x l

2P^ -* 1S | 1.2581 x

2P^ -> 1S± 1.3476 X

Table(4)






