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I. INTRODUCTION
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ABSTRACT

We extend a previously developed formulation of QED

based on self-energy to include the effect of perfectly

conducting boundaries on spontaneous emission. The method

is quite general and applicable to any quantum system and

many boundary geometries. In particular, we compute the .

spontaneous emission rate of an atom near a conducting plate,

inside a spherical cavity and between parallel plates, we

give general formulas and predict both enhanced and inhibited

rates, in agreement with recent experiments.
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Recent experiments have demonstrated that there is a change in the

spontaneous emission from Rydberg atoms in the vicinity of conducting walls.

Both inhibited emission and enhanced decay rates have been observed -

the latter when the cavity is tuned to a transition frequency between two

neighbouring fiydberg states. Inhibited decay was also seen in the case of

cyclotron radiation by an electron in a Penning trap , in fluorescent decay

rates , and in the suppression of black-body absorption' by Rydberg atoms in

*a parallel-plate cavity

Theoretical predictions of this effect seem to go back to Purcell

(see also Ref.8). There have been a number of theoretical discussions of
4) 9)-14)this and related phenomena in the case of plates . However all

of these calculations were carried out in the context of the second

quantization of the electromagnetic field and its associated vacuum

fluctuations. We show in this paper that the effect can equally well be

computed in the framework of the self-energy formulation of QED '•16Ji

where there is no field quantization and the vacuum Is empty and static.

It is well known that Dirac in 1927 was able to derive the Einstein

A coefficient of spontaneous emission from second quantization; seen as the

first major success of the theory. It Is perhaps less known that Fermi 18)

in that same year was also able to arrive at the A coefficient, simply by

adding a nonlinear radiation-reaction term to the Schrbdinger equation.
19)The connection runs deeper. In 1951 Callen and Welton , in their famous

paper on the fluctuation dissipation theorem, demonstrated that there is

indeed an intimate relation between zero-point fluctuations of the electro-

magnetic field and the phenomenon of radiation reaction. In 1973 Ackerhalt

et al. 20\ Senitzky 21^ and Milonni et al,. 22^ - working within standard

QED - were able to demonstrate that the decay of an excited state can be

interpreted as being caused by the electron's perturbation by the vacuum

electric field fluctuations, or by the radiation reaction of the electron

to its self field --or in fact any linear combination of these two effects.

In view of this situation one may ask if one can reformulate QED

totally in the self-energy picture, as a complement to the more conventional

picture of second quantization. One approach in this direction was taken by

Jaynes and his collaborators with their "neo-classical" theory; an

elaboration of Fermi's original idea of modifying the Hamiltonian with a

radiation-reaction term. More recently, a different, general theory has been

advanced by Barut and Kraus , and Barut and van Huele . This

formulation of QED is based entirely on self-energy without second

quantization, and is developed in its full relativistic version in the first
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paper. The second paper contains a non-relativistic specialization of

the theory which is used to obtain both the Einstein A coefficient and the

Bethe Lamb shift for an atom in free space; all without vacuum field

fluctuations.

In this account of QED the self-part of the electromagnetic four-

vector potential A is eliminated from the Maxuell-Dirac equations

through the use of a Green function - and so the emission from an atom

depends naturally on the Green function of its environment. In the

present paper we show how this idea can be used to account for the effects

of nearby conducting boundaries. For simple geometries it is expedient to

use the method of images, which we apply to an infinite conducting plane,

a conducting spherical shell and a pair of parallel planes.

II. THE METHOD

Barut and van Kuele have shown that for an isolated system in

free-space the Einstein A coefficient to first order in a, is twice the

imaginary part of a complex energy shift. For the n excited state

(where n stands for all the quantum numbers of the state) of the system

they give 1 6 ) (n = c = 1)

= ̂  E

mrt is the electron mass, a the fine-structure constant, bj
0 . nm E -E

n m
where

an energy-level difference and the k. components of a unit vector in the

direction k (summation implied over i,j). The T's are electron wave

function form factors, given by

= S (2)

with the tp forming a complete set of wave functions for an atom, harmonic

oscillator, electron in cyclotron motion, etc. Notice that in the dipole approximation

'& ~*
e « 1 and T = p , the matrix elements for the electron momentum,

n m nm

Eq.(l) was obtained from coupled Maxwell and Dirac equations, with the

Maxwell equations written as

tmif

(«) (3)

-3-

self
A being the electron self-field, A

.external
the total

j the four-vector for the electron's probability currentfield and

density. Eq.(3) is solved formally with a Green function D

..If

where in free-space with the Coulomb gauge we have, as usual

(4)

(5)

Now in the presence of boundaries we have to use some appropriate

Green's function D It is well known that the electrostatic method of

images , in its capacity as a technique for constructing Green's

functions, generalizes to the full electromagnetic field * '

The cavity function D will be then a linear combination of the free-

space D and some additional image function(s). The new form factors

III. ATOM NEAR A CONDUCTING PLATE

An infinite, conducting plate is positioned normal to the z axis

at z » 0. If a unit test charge is placed on the z axis at zQ > 0 the

plate may be replaced with a negative unit charge at -z Q (see Fig.l).

If in addition the real test charge has momentum pec » then in our co-

ordinates the image has momentum p1 "Z v' - i d x

both of these effects at once, Eq.(2) transforms as follows:

-ii-lt _i ;t .1. „

h.7Z'-fci- Including

(6)

where z_ [O.O.ZQ!. The form factor product in (1) becomes

(7)

where factors of the form T'T' have been deleted and those of IT' multiplied

by an extra i , due to artifacts of the imaging procedure . In addition
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we have used symmetry in dummy sum and integration variables to combine

two terms. We now make the replacement (7) in Eq-(l) and carry out

the angular integration. As in the previous papers, we assume that TT

andT T' are functions of |£| . (From general considerations these

products are at most a linear combination of function of |kj and a term

proportional to a -k\ where a is some constant vector. Then a secondr run nm

application of symmetry with respect to dummy variables shows that the latter

always vanishes.) The exact result for the modified Einstein A

coefficient near a wall is then

%\*[ o-o —^

(8)

Here L I T Z| 2/|
'n m1 '

is introduced to display the asymmetry of the

system with respect to the z co-ordinate, | T j is a function of w n

U = 2z_|u'Tim 0'
scales as the distance of the atom from the plate.

•0' nm1

If the use of the dipole approximation (DA) is justified (i.e. if

the atom's dimensions are small when compared to the transition wave-

lengths A contributing to the sum in (8)) then the A coefficient

becomes

(9)

r* is a matrix element of the electron's co-ordinate operator, related to
n o •+ - 3 2 )
those of the momentum by p ~ i u> m^ r .

Also we have the

simplification C = \z Ir nm ' nra'
/ir I and thus for one-electron atoms C
' nm • nra

can be computed directly . We shall be most interested in Rydberg

transitions prepared such that ( = 0 or 1 —or an ensemble of randomly
nm i

oriented atoms for which on the average t can be taken to be T . Notice
nm Jthat as zn "* ™ w e recover the free-space formula, namely

(10)
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III. ATOM IN A SPHERICAL CAVITY

We consider a grounded,conducting spherical shell of radius a

whose center coincides with the origin. If a unit charge is placed on

the z-axis at zQ, |zQ| < a, the correct Green's function is obtained

by replacing the sphere with an image of charge -z /a = n. , which is located
' 2 3 3 )

at z = zQ = A /z Q . (see Fig.2). The directions of the momenta of

ths two charges are related as in the single-plate case, which we again

notate with p and p1 . The form factor substitutions become

- t (11)

£S-O (12)

with the same conventions as used before. We can now modify Eq.(l), and

straightforward manipulations yield

At -
*<

(13)

with v = a(q - —) In:
nm n nm

and

DA one simply replaces
, nm „

as before. To obtain A in the

T I + u ait I r 1 ,
in1 nra 0 ' no1

As a check, we notice that if we transform the sphere into a plane

by letting a + •» , while keeping 3~^Q fixed, the single-plate result of

Eq.(8) is recovered.

IV. ATOM BETWEEN PARALLEL PLATES

Two infinite, parallel conducting plates are placed normal to the

z = + L/2, I, being the plate separation. For a unit charge on

z = zQ, |z Q| < L/2, the plates may be replaced by an infinite

z axis at

the axis at

series of image charges —located on the z axis at z = pL + (-1)^ zn,

p = +1, +2, +3,... and each with a charge of (-l)p (see Fig.3). The image

momenta directions flip-flop, which we account for by defining
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jrn (k) c f

and in which there are no fluctuations in the vacuum radiation field. This

is in sharp contrast to the above-mentioned derivations, all of which rely

heavily on those two concepts.

With this notation the form factor of (2) becomes [£__ = (0.0,z_)]

f C-i)f
- L W •

(15)

6 is the usual unit step function which we are using to take into account

retardation. (The atom at z does not "see" the image at 2 until tin-e

t = \iQ-i |/c.) For L << c/in = c A R (tn being the lifetime of the state n)

we may set 8 = 1 .

- 34)
sense

We need the Poisson summation formula, as used in the distribution

Using this we can now carry out the form-factor product

(16)

Inserting this into expression (1), and being careful with the integration,

we find

V. COMPARISON TO EXPERIMENT

In their experiment Hulet, Hilfer abnd Kleppner (HMK) find both

enhanced and inhibited spontaneous emission for Rydberg atoms between

parallel plates . Cesium atoms are prepared in a single-electron

(Rydberg) circular state with principle quantum number n = 22 and az-imuthal

quantum number |m) = n-I = 21. The decay mode of this state is a single

dipole transition, important to the experiment, since a state with several

decay modes would have to have all possible transitions enhanced or

suppressed in order to observe the effect on spontaneous emission. In

terms of our formula (18) this means only one term will contribute to the

outermost sun (n = him and m = n ' l V ) . The observed transition is

ntm (22,21,21) -+ n'l'm1 (21,20,20) with wavelength XQ - 0.4S nm. Our z

axis becomes a quantization axis due to an electric field directed normal

to the plates; the selection rule A|m) = 1 then guarantees that the

emitted radiation is polarized parallel to the plates. Thus the matrix

element z and hence the parameter C are in this ease zero,
nm nm

The plate spacing L is tuned to L « X J 2 , with a variability

of 4L/L = 0.04. This means that in (18), o ^ = o ~ 1 and [[o]] = 0,1.

For 0 <• 1 and a 2 1 .respectively, and so we also have only one or zero

terms in the innermost sum. The atoms sample all values of ZQ in the

range |z | < L/2, and so we average formula (18) over this domain. Including

all these observations, we have

I A°Lx- -b- (19)

valid, as noted before, for L << cA . Here r is as before,
n Hnm

0 = L|u> \/f and {[kll is the greatest integer less than k.

Milonni and Knight 1 2 >, Philpott 2 6 ) and Barton 10^ - in the

framework of standard QED - have previously arrived at similar formulas.

We emphasize again that what is new here is that (18) was computed, to our

knowledge for the first time, from a theory which is not second-quantized
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where A is the free-space coefficient, 0 = L|QJQ|/TI = L/y- and 9 a

step function. As we vary L in the range 0 < L < 3*Q/4 (recall, the

formula is only good for L << cA ) or, equivalently, 0 < o < 'ill; we

see that the spontaneous emission rate is zero unil o = 1 (L = * Q / 2 )

where it jumps to ^ A^ = j A > a n a then decays back towards A as

the plate separation increases (see Fig.4). In fact Fig.4 looks very much

like the experimental plot given in HHK. In particular, their analysis

indicates that a predicted enhancement to j A at L = ^Q/2 agrees with

the data to within 5Z.



If one does not average (18) over 2. , but rather localizes the

atom at z « 0 instead (cf. the Penning trap experiments), then (18),

under all the sane conditions as stated above, still predicts an enhance-

ment of ~ A 0 .

Formula (13) for an atom inside a sphere also lends itself to

such an averaging procedure as used for the plates. If we average (13)

over |z | < a we get

(20)

i.e. the free space value —regardless of the value of t .or of the

presence of a quantization axis. This difference between the parallel-
~ 0

plate case arises because A-A is an odd function of zQ for the

sphere formula, but even for that of the two plates. So a uniformly

distributed ensemble of atoms inside a sphere should not show a change in

their emission rates. Of course a localized atom will experience a change

in its emission rate as per the unaveraged (13); for example, at exactly

the centre of the sphere z« = 0,(13) predicts again A = A . (The atom

would have to be slightly off center fora non-null effect to appear.)

It is the azimuthal symmetry and the existence of a characteristic

wavelength in the parallel-plate case which causes its effects to be

much more pronounced than the sphere.

VI. CONCLUSIONS

In the Dirac picture of quantum electrodynamics, the spontaneous

emission rate of an excited atom can be changed by a nearby boundary

through their mutual coupling to the quantized vacuum field. In the

present picture no such coupling occurs, as the vacuum is truly empty.

Rather here the structure of the eletron's self-field depends on the

presence of the boundary, and 'thus the radiation-reaction force - the

cause of spontaneous emission in this view - is modified.

Our further program is to see how far we can go in under-

standing radiative processes from the point of view of self-energy,

without second quantization. Work has been completed on Lamb shifts

and the related Casimir-Polder, long-range van der Waals forces near

boundaries . Work is in progress to include the general Casimir as

well as Casimir-Polder forces, the Unruh effect and apparatus contributions

-9-

to the measured g-2 value for electrons in Penning traps. In the case
3),36)

of g-2, considering the recent, extremely accurate experiments

and the current theoretical controversy it would be advantageous

to have a totally new approach to the problem.
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FIGURE CAPTIONS

Fig.l A unit charge (q = 1) in front of an infinite, conducting plane,

and the appropriate image charge. p and p' are the momenta

of the charges.

Fig.2 A unit change inside a conducting spherical shell, and its associated

image.

Fig.3 A unit charge between parallel plates, and the resultant series of

image charges.

P >: image

(q-D

i
ii

i
charge

Fig.4 The change of the spontaneous emission rate A, as a function of

the plate spacing L averaged for an ensemble of prepared Rydberg

atoms between parallel plates. A is the free-space emission

rate and X_ the wavelength of the emitted photon.
Fig.l

image

Fig.2
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