
DESIGN OF PROGRAMMING lANGUAGE PROCESSORS-II
SYMPO~UM SUMMARY

CHAIRMAN: B. RANDELL (USA)

THE INTERRELATION BETWEEN
PROGRAMMING LANGUAGES AND

MACHINE ORGANIZATION

R. S. BARTON

General Electric Company

Several processor organizations have been proposed
based on programming languages, notably ALGOL.
Euler, a design based on a generalization of
ALGOL, is. perhaps the best example of such
machines, and is of much interest for its built-in
storage management and subroutine control func-
tions. Language-based processors, however, are not
widely known and understood nor do they seem to
have been properly evaluated in comparison with
more conventional machines.

Increased interest in non-numeric computer ap-
plications and the demands of multi-terminal
time-sharing, have provided new motivation for
giving attention to the subject of storage manage-
ment, which now seems rriore important than lan-
guage characteristics in determining processor or-
ganization. It thus seems appropriate to reconsider
built-in functions for an information processor.

Programming languages describe the structure of
processes and the data upon which they operate.
Such structures can be discussed or abstractly trans-
formed without regard to a particular machine's
characteristics or the manner in which the process
and its data are represented in storage. Tree-like
language syntax leads naturally to the use of push-
down stores but beyond this programming language
developments seem not to have much influenced
machine organization. Of course, one may not
progress far into a realizable machine design with-
out taking internal machine representation into
account.

The format in which information is internally
represented in the storage of a machine is a most
fundamental consideration. A format convention
must exist for a program to be interpretable; though
it is customary in today's machines to make this
quite inflexible with rigid formats for data and
fixed instruction layouts. This practice prohibits
mUch versatility in making one machine imitate
~nother. The elusive measurement of "efficiency"
IS a weighting of storage usage and number of
accesses: and. as every programmer has observed,
minimizing both storage space and number of ac-

cesses are usually conflicting goals. To optimize the
performance of an information processor for a par-
ticular application, some choice of data and pro-
gram formats at machine language level should be
available to the programmer. A general purpose
machine should be able to imitate another machine
effectively by allocating its resources in logic and
storage in such fashion as to favor the most frequent
operations in the machine being imitated. Direct
use of the' format of that machine is clearly
advantageous.

Format is the description of a pattern of fields
specifying lengths, sequence, encodings, and in-
terpretation. Each sequence and storage region has
a format associated with it and this format descrip-
tion might be distributed throughout a program and
data region in storage. The two arguments against
hardware provision for variable format: (I) in-
creased equipment complexity, and (2) loss of speed
stemming frOID restrictions on paralleling, are valid
only if the performance improvements do not justify
the cost.

Few machines have provisions for handling lists
directly and in those that do the instruction set is
merely supplemented by a few instructions of
limited use. Lists, considered apart from list proces-
sors, are a simple and useful storage allocation and
sequencing device with increasing utility in applica-
tions. The microprograms for link manipulation
should be incorporated into the hardware since a
factor of at least 10 in performance is at stake. One
must avoid, however, too rigid a list format.

Paging, which can be looked upon as a form of
indirect addressing, uses indirection with the high
order bits of the address only; and is another map-
ping technique which allows storage to be parti-
tioned into equal units of which any subset can be
made to have contiguous addresses. Paging is a
natural storage management device for time-sharing
and also has a role in mapping information across
storage levels.

Location addressing has been the rule in most
storage devices though it is common to use pro-
grammed symbolic addressing for dealing with mass
storage. While strict hardware symbollically
addressed storage has not proved economically
attractive for computers, the counterpart in addres-
sing logic (hash-addressing to list-structured equiv-
alence classes) might be advantageously incorpor-
ated into hardware so that the approximate mix of
location and symbolic addressing techniques would

6n



618 PROCEEDINGS OF THE IFIP CONGRESS 65

be directly available to the program designer. In-
stances of the application of symbolic addressing are
interpretation during program checkout, in "con-
ventional mode" of communication, storage man-
agement functions, and addressing of secondary
storage.

The coordinated handling of several sequences of
intermixed program and data is a natural provision
in the organization of a time-shared processor.
From this viewpoint sequence counters and index
registers become instances of a more general device.
Present programming languages do not usually have
facility for the expression of multi-sequence control
and multi-terminal time sharing usually envisages
the running of mixes of independent and individu-
ally single-sequence programs. The expressive
power of programming languages would be in-
creased by providing the needed sequencing ad-
juncts; and, the processing options thus enabled
would allow for throughput improvements in time-
shared processors.

The notion of substitution combines the familiar
ideas of assignment statement and procedure
declaration .. A basic machine function distinguishes
between a naine and a datum in a program. The
evaluation of a name combines the ideas of fetch
and procedure call (and, incidentally, a general-
ization of call-by-name).

CONCLUSIONS

The most serious obstacles to a generally ac-
ceptable machine language are (I) the rigid formats
for program and operands, (2) lack of provision for
referencing hierarchical data structures, (J)' limited
choice of mappings, (4) the inability to express
multisequence algorithms conveniently, (5) a too
limited concept of substitution.

If the desirability of variable program and data
format were accepted and design emphasis directed
towards these goals, then some problems of a per-
sistent and annoying nature would be alleviated or
even eliminated. The direction indicated, rather
than language-based processor design, would seem
to offer the best opportunity for major improvement
in information processors.

DYNAMIC STORAGE ALLOCATION

R. L. COOK

Elliott Automation Computers Limited

This paper describes SPAN-a dynamic storage
allocation scheme that has been implemented on
the Elliott 503 Computer. The system is based on
code word technique described for example by
Ililfe. I

Dynamic storage allocation is used here to mean
the allocation of core storage for both data and

program at run time, i.e., during the actual opera.
tion of a program.

The 503 is a medium-sized computer primarih
used for scientific computation. As far as 'thispaps,
is concerned it has four types of storage:

main core store (8k words)
auxiliary core store (up to 132k words)
magnetic disc store
magnetic tape store

The object of the SPAN system is to present t,
the user what appears to be a large single leve
store-the ability for the user not to have to differ
entiate between the two forms of core storage bein
of particular importance. A secondary result of th
system is to permit a program to be operated un
changed on two different storage configurations.

Storage is manipulated in terms of variable block
of consecutive words. Each block's current positio
is completely defined by means of a single cod
word. By creating a block of code words which i
turn is defined by a single code word, a tree c
blocks of any depth can be created. A block, one
created, is moved between the various storage d(
vices either automatically by the SPAN executiv
system or, via specific macro commands issued b
the user. The size of a block is dynamically variabl
in size within the prescribed limits of 5 and 4,09
words. Any block may be fixed, permanently c
temporarily, so that it is not manipulated by th
system.

The system outlined above forms part of th
central executive system of the 503 which is use
whatever programming is in operation. The syster
solves, in an obvious way, the problems of ove:
laying segments of program, of allocating buff
areas for input and output and of allocating storag
for arrays and tables. The three principle progran
ming languages are an assembly language, ALGO
and FORTRAN. In the case of the assembly cod,
program and data segmentation is in the hands (
the programmer but in the case of a high level pn
gramming language it is necessary to build into tt
compiler techniques for determining suitable sel
mentation points. For the ALGOL language d
information contained within the block structuJ

of the program assists in this task. All blocks an
procedure bodies are compiled into distinct pr
gram blocks. As each block is entered, stora!
blocks are found for the compiled program an~ f
each of the associated data declarations contatn
in the block head. If the block had previously b
entered it is possible that the compiled progralll
still in main store and has not been overwritten a
the system can then avoid bringing down the .pr
gram again. On exit from a block, the assOc1at
storage areas are marked as being no IonS
required. f

We can see that this system avoids the use 0 •
conventional dynamic run time stack by the cr.e;
of independent data areas. An interesting 51 e


