ANALYTICAL MODELS

Ordinary Differential Equations	Difference Equations	Partial Differential Equations	Variational Principles	
linear differential equations	discrete time equations	hyperbolic equations / waves	variational calculus	
$\frac{d^2u}{dx^2} - x\frac{du}{dx} + u = 0.$	$d_{n+2} - d_{n+1} - d_n = 0$	$\nabla^2 \varphi = \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}$	$\mathcal{I} = \int_{x_1}^{x_2} f[y(x), \dot{y}(x), x] dx$ $y(x, \alpha) = y(x) + \alpha \eta(x)$	
systems of differential equations	z-transforms	parabolic equations / diffusion		
$R_1(C_1 + C_C)\frac{dV_1}{dt} + V_1 = R_1C_C\frac{dV_2}{dt} + V_{DD}$ $R_2(C_2 + C_C)\frac{dV_2}{dt} + V_2 = R_2C_C\frac{dV_1}{dt}$	$\begin{split} X(z) &= \mathcal{Z}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n} \\ \\ H(z) &= \frac{k_f^2}{1 - (2 - k_f (k_f + k_q)) z^{-1} + (1 - k_f k_q) z^{-2}} \end{split}$	$\nabla^2 \varphi = \frac{1}{D} \frac{\partial \varphi}{\partial t}$ elliptic equations / boundary values	euler's equation $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial \dot{y}} \right) = 0$	
laplace transforms $F(s) = \int_0^\infty e^{-st} f(t) dt$	I	$ abla^2 \varphi = ho$	constraints and lagrange multipliers	
$F(s) = \int_0^\infty e^{-st} f(t) dt$ $H(s) = \frac{1}{(s+\alpha)(s+\beta)}.$		separation of variables $u(r, t) = A(r)T(t)$	$\int_{x_1}^{x_2} g[y(x), \dot{y}(x), x] dx = C$	
perturbation expansions $\frac{d^2u}{du}$		$u(\mathbf{r}, t) = A(\mathbf{r})T(t).$ $A(r, \theta) = R(r)\Theta(\theta),$	$h = f + \lambda g$	

$$\frac{d^2y}{d\tau^2} = -\varepsilon \frac{dy}{d\tau} - 1,$$

 $y(\tau) = y_0(\tau) + \varepsilon y_1(\tau) + \varepsilon^2 y_2(\tau) + O(\varepsilon^3)$

- NUMERICAL MODELS

Finite **Elements**

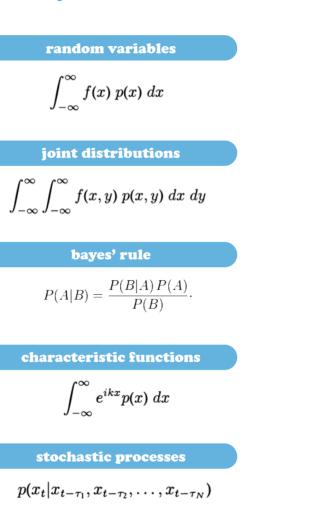
Finite Differences Finite Differences ODEs PDEs

leapfrog method	expansion in basis functions
$u_{j}^{n+1} = u_{j}^{n-1} - \frac{v\Delta t}{\Delta x} \left(u_{j+1}^{n} - u_{j-1}^{n} \right)$	$u(ec{x},t)pprox \sum_i a_i(t) arphi_i(ec{x})$
crank-nicholson method	weighted residuals
$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{D}{2(\Delta x)^2} [(u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}) + (u_{j+1}^n - 2u_j^n + u_{j-1}^n)]$	$R(\vec{x}, t) = D[\tilde{u}(\vec{x}, t)] - f(\vec{x}, t)$ $\int R(\vec{x})w_i(\vec{x}) d\vec{x} = 0$
jacobi's method $u_{j,k}^{n+1} = u_{j,k}^{n} + \frac{\Delta t}{(\Delta x)^2} (u_{j+1,k}^n + u_{j-1,k}^n + u_{j,k+1}^n + u_{j,k-1}^n - 4u_{j,k}^n) - \Delta t \rho_{j,k}$	rayleigh-ritz variational methods $\delta \mathcal{I} = \delta \int F[u(\vec{x}, t)] d\vec{x} = 0$ $\frac{\partial \mathcal{I}}{\partial a_i} = 0$
successive over-relaxation	Oa_i
$u_{j,k}^{n+1} = (1 - \alpha)u_{j,k}^{n} + \frac{\alpha}{4}(u_{j+1,k}^{n} + u_{j-1,k}^{n+1} + u_{j,k+1}^{n} + u_{j,k-1}^{n}) - \frac{\alpha(\Delta x)^{2}}{4}\rho_{j,k}$	

euler's method	
y(x+h) = y(x) + hf(x, y(x))	
runga-kutta methods	
$k_1 = hf(x, y(x))$ $k_2 = hf\left(x + \frac{h}{2}, y(x) + \frac{k_1}{2}\right)$	
$k_{3} = hf\left(x + \frac{h}{2}, y(x) + \frac{k_{2}}{2}\right)$ $k_{4} = hf(x + h, y(x) + k_{3})$	
$y(x+h) = y(x) + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} + \mathcal{O}(h^5)$	
predictor-corrector methods	
$y_p(x+h) = y(x) + \frac{h}{24} \{55f[x, y(x)] - 59f[x-h, y(x-h)]$	

 $y_p(x +$ $+ 37f[x - 2h, y(x - 2h)] - 9f[x - 3h, y(x - 3h)]\}$ $y_c(x+h) = y(x) + \frac{h}{24} \{9f[x+h, y_p(x+h)] + 19f[x, y(x)] - 5f[x-h, y(x-h)] + f[x-2h, y(x-2h)]\} .$

Random **Systems**



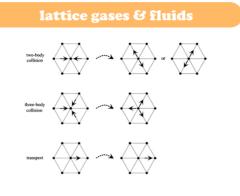
random number generators

 $x_{n+1} = ax_n + b \pmod{c}$ $x_n = x_{n-1} + x_{n-4} + x_{n-6} + x_{n-12}$

OBSERVATIONAL MODELS

L	Function Fitting	Architectures	Transforms	
	bayes' rule	polynomials	orthogonal transforms	
	$\max_{\varphi} p(\varphi d,m) = \max_{\varphi} \frac{p(d \varphi,m) p(\varphi m)}{p(d m)}$ $= \max_{\varphi} \frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$	$y(x) = \sum_{n=0}^{N} a_n x^n$	$\mathbf{M}^T \cdot \mathbf{M} = \mathbf{I}$	
	7 Undened	padé approximants	discrete fourier transform	
	maximum likelihood	$\sum_{n=1}^{N} a_n x^n$	$X_f = \frac{1}{\sqrt{N}} \sum_{n=1}^{N-1} e^{2\pi i f n/N} x_n$	
	$\max_{\varphi} p(\varphi d) = \max_{\varphi} p(d \varphi)$	$y(x) = \frac{\sum_{n=1}^{N} a_n x^n}{1 + \sum_{m=1}^{M} b_m x^m}$	$\sqrt{N} n=0$	
			discrete wavelet transform	
	least squares	splines	~	
	$\min_{arphi}\sum_{n=1}^{N}[y_n-y(x_n,arphi)]^2$	$ \vec{x}_i(t) = \vec{c}_{i-3}\varphi_{i-3}(t) + \vec{c}_{i-2}\varphi_{i-2}(t) + \vec{c}_{i-1}\varphi_{i-1}(t) + \vec{c}_i\varphi_i(t) (t_i \le t < t_{i+1}) $	$y_{\text{low}}[n] = \sum_{\substack{k=-\infty\\\infty}}^{\infty} x[k]h[2n-k]$	
	$\varphi \frac{1}{n=1}$	$+c_{i-1}\varphi_{i-1}(l)+c_i\varphi_i(l) (l_i \leq l < l_{i+1})$	$y_{ ext{high}}[n] = \sum_{k=-\infty}^{\infty} x[k]g[2n-k]$	
	gradient descent		principal component analysis	
	$\chi^2(\vec{a}) = \sum_{n=1}^N \left(\frac{y_n - y(x_n, \vec{a})}{\sigma_n} \right)^2$	orthogonal functions		
	<i>n</i> -1	$y(\vec{x}) = \sum_{i=1}^{M} a_i f_i(\vec{x})$	$\mathbf{C}_y = \mathbf{M} \cdot \mathbf{C}_x \cdot \mathbf{M}^T$	
	$\vec{a}_{new} = \vec{a}_{old} - \alpha \nabla \chi^2 (\vec{a}_{old})$	$\int_{-\infty}^{\infty} f_i(\vec{x}) f_j(\vec{x}) \ d\vec{x} = \delta_{ij}$		
	levenberg-marquardt method			
	$M_{ii} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_i^2} (1 + \lambda)$	radial basis functions M		
		$y = \sum_{i=1}^M a_i f(\vec{x} - \vec{c}_i)$		
	$M_{ij} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_i \partial a_j} (i \neq j)$			
	$\delta \vec{a} = -\mathbf{M}^{-1} \cdot \nabla \chi^2$	neural networks		
		$X_{j} = g(\sum_{k} w_{jk} x_{k})$ $Y_{i} = g(\sum_{j} W_{ij} X_{j})$		
		$Y_i = g(\sum_j W_{ij}X_j)$		

Cellular Automata & Lattice Gases



llular automata & computati

0	D	0	1	1	1	1	D

& Search

Optimization Clustering & Filtering & Density Estimation State Estimation

Nonlinear **Time Series**

