
BUS ENCODING TO PREVENT CROSSTALK DELAY

by

Bret Victor

Masters Thesis: The Director’s Cut

May, 2001

College of Engineering

University of California, Berkeley

94720

Acknowledgments

A number of people contributed directly to the making of this project, and to them

I am very grateful. I owe thanks to my advisor Professor Keutzer for supporting this

work, as well as his lecture on the crosstalk problem which originally sparked the whole

idea; Professor Brayton for reading and commenting on this report, as well as getting

me interested in CAD in the first place; Professor Effros at Caltech for teaching me

all I know (and much I’ve forgotten) about information theory and coding; and Brian

Limketkai for his TEX template and advice, without which I would still be cursing

loudly and ineffectually at the Microsoft Equation Editor.

I have noticed that many people use the Acknowledgements section as a general

forum to name those who have played a meaningful role in their lives, if not the

project specifically. A “shout-out to the homies”, if you will. I originally resisted this

idea, because I do not consider this project to be one of my more significant creations,

certainly not worthy of dedication. However, I realized that although this may be a

minor work, it represents a major event in my life—the end of my schooling, at least

for now. I felt I shouldn’t pass up this given opportunity to formally thank those who

have helped me reach this juncture.

I owe thanks to Andy for good times, music and pie, and the constant willingness

to indulge even the strangest of ideas; André for selflessness, always being aware of

what the truly important things are, and the bits of wisdom that occasionally hit

their mark; Brian for always being there to talk or just blather nonsensically; Pete

for friendship while giving me a chance to feel like a mentor; and the Shumpound

gang (Donna, Chris, Shumway, John, Albert, and Michele) for their tolerance.

Foremost and above all, I would like to thank my parents and Joanne for their

love and support throughout the years. You have made me who I am.

v

Contents

List of Theorems ix
List of Figures xi
List of Tables xiii

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 MOTIVATION 5

2.1 Introduction 5
2.2 Interconnect Delay 6
2.3 Crosstalk Analysis 9
2.4 Combating Crosstalk 17

CHAPTER 3 SELF-SHIELDING CODES 21

3.1 Introduction 21
3.2 Modeling the Communication Chain 22
3.3 The Fundamental Rule 22
3.4 Coding Terminology 24

CHAPTER 4 UNPRUNED CODE WITH MEMORY 27

4.1 Introduction 27
4.2 Degree of Class 1 Codewords 29
4.3 Degree of General Codewords 32
4.4 Class Properties 36
4.5 Results 40

CHAPTER 5 PRUNED CODE WITH MEMORY 43

5.1 Introduction 43
5.2 Optimal Pruning 44
5.3 Class Pruning 47
5.4 Derivation of the Class Distribution Polynomial 51
5.5 Properties of the Class Distribution Polynomial 65
5.6 Limiting Codewords with Class Pruning 74
5.7 Results 85

CHAPTER 6 MEMORYLESS CODE 87

6.1 Introduction 87
6.2 Analysis of the Memoryless Code 88
6.3 Results 93

CHAPTER 7 IMPLEMENTATION 95

7.1 Introduction 95
7.2 Encoder and Decoder Models 95
7.3 Partial Coding 98
7.4 Design Example 101

vii

viii Contents

CHAPTER 8 CONCLUSION 105

8.1 Summary 105
8.2 Future Work 106

APPENDIX A PRUNING CURVES 107

APPENDIX B TABLE OF PN(X) 113

APPENDIX C TABLE OF MN(X) AND PRODUCTS 115

References 117

Colophon 119

Theorems and Lemons

Theorem 4.1 dn = Fn+2 29
Theorem 4.2 Independent Boundary Theorem 32
Theorem 4.3 d{n1,n2,...,nc} =

∏c
i=1 dni 33

Theorem 4.4 Class 1 Inferiority 34
Theorem 4.5 Minimum Degree in Class 36
Theorem 4.6 Maximum Degree in Class 37
Theorem 4.7 Size of Class 39
Theorem 5.1 Optimality of the Optimal Pruning Algorithm 44
Theorem 5.2 Qn(x) = xPn−1(x) 52
Theorem 5.3 Rn(x) = x2Pn−2(x) 53
Theorem 5.4 Pn(x) is an even polynomial 53
Theorem 5.5 Pn(x) = Pn−1(x) + x2Pn−2(x) 54
Theorem 5.6 Coefficients of Pn(x) 55
Theorem 5.7 Multiplication of Class Distribution Polynomials 58
Theorem 5.8 Mn(x) Theorem 60
Theorem 5.9 Class Distribution Polynomial Theorem 62
Lemma 5.1 Distributive Property of o Operator 65
Lemma 5.2 oMn 66
Lemma 5.3 Flipping oM Horizontally 67
Lemma 5.4 Flipping oM Vertically 68
Lemma 5.5 o

(
Mk

)
68

Lemma 5.6 oT M1 S 68
Theorem 5.10 Lowest Term of DW (x) 69
Theorem 5.11 Codeword Rotation Theorem 71

Conjecture 5.1 Limiting Codewords After Pruning 75
Lemma 5.7 Distributive Property of � Operator 76
Lemma 5.8 �Mn 77
Lemma 5.9 �Mk

1 78
Lemma 5.10 �Mk

2 78
Lemma 5.11 d2k/3k is Monotonic Decreasing 80

Theorem 5.12 dp{2}j+k+2 ≤ dp{2}j{3}{2}k{1} 81
Theorem 5.13 dp{2}i+j+k+3 < dp{2}i{a}{2}j{3}{2}k{1} 83
Theorem 6.1 Class 1 Clique Theorem 88
Lemma 6.1 Boundary Types in Prime Cliques 90

Theorem 6.2 Class 1 Clique is Largest 91

ix

Figures

Figure 2.1 Illustration of Dimensions of Modern Global Interconnect 8
Figure 2.2 Electric Field Lines Between Cross-Coupled Wires 10
Figure 2.3 Digital Circuit with Crosstalk 11
Figure 2.4 Linearized Model of Circuit with Crosstalk 12
Figure 2.5 CC = C 16
Figure 2.6 CC = 3C 16
Figure 2.7 t1/ts1 versus CC/C 17
Figure 2.8 Vs2(t) for CC = 2C 17
Figure 2.9 Illustration of Shielding 19
Figure 3.1 Model of Communication Chain 22
Figure 3.2 Shielding Viewed As A Code 23
Figure 3.3 Timing Diagram of the Undesired Event 23
Figure 3.4 Examples of Valid and Invalid Transitions 24
Figure 3.5 Illustration of Coding Terminology 25
Figure 3.6 Connection Graph for n = 3 26
Figure 4.1 Example of Codebooks and Memory 28
Figure 4.2 Example of Recursion of dn 30
Figure 4.3 Independent Boundaries 33
Figure 4.4 Example of Calculation of dW 34
Figure 4.5 Illustration of dx+y versus dx dy 34
Figure 4.6 Performance of Unpruned Code 41
Figure 5.1 Pruning Curves 46
Figure 5.2 Pruning Curves With Class Designation Line 48
Figure 5.3 Optimal (solid) and Class (dotted) Pruning Curves 49
Figure 5.4 Examples of Pn(x), Qn(x), Rn(x) 52
Figure 5.5 Expressing Qn(x) and Rn(x) in Terms of Pn(x) 53
Figure 5.6 Recursion of Pn(x) 54
Figure 5.7 Illustration of Theorem 5.7 58
Figure 5.8 Illustration for Second Corollary of Theorem 5.7 59
Figure 5.9 Polynomial Multiplication Versus Vector Convolution 65
Figure 5.10 Example of Theorem 5.10 70
Figure 5.11 Example of Theorem 5.11 72
Figure 5.12 d2n/3n 81
Figure 5.13 Performance of Pruned Code 86
Figure 6.1 Example of Lemma 6.1 90
Figure 6.2 Performance of Codes 94
Figure 7.1 Unpipelined Circuit Model For Code With Memory 96
Figure 7.2 Pipelined Circuit Model For Code With Memory 97
Figure 7.3 Unpipelined Circuit Model For Memoryless Code 98
Figure 7.4 Pipelined Circuit Model For Memoryless Code 98
Figure 7.5 Breaking Bus and Channel into Sub-Buses and Sub-Channels 99
Figure 7.6 Wires Required for Partial Coding a 32-bit Bus 100
Figure 7.7 Encoder 102
Figure 7.8 Decoder 102

xi

Tables

Table 2.1 Variation of Device Parameters with Scaling (from [2]) 6
Table 2.2 Variation of Wire Parameters with Scaling (from [2]) 8
Table 4.1 Degrees of Some Class 1 Codewords 31
Table 4.2 Range of Degrees in Each Class 39
Table 4.3 Performance of Unpruned Code 41
Table 5.1 Maximum Performance After Optimal Pruning 47
Table 5.2 Comparison of Optimal and Class Pruning 50
Table 5.3 Pn(x) 57
Table 5.4 Mn(x) 64
Table 5.5 Limting Codewords In Class Pruning 75
Table 5.6 Performance of Pruned Code 86
Table 6.1 Performance of Codes 94
Table 7.1 Sub-Bus Width Combinations and Wire Usage for b = 32 101
Table 7.2 Data Word to Codeword Mapping for Design Example 102

xiii

Chapter
1

Introduction

In 1948, Claude Shannon published a paper that changed the world.

“A Mathematical Theory of Communication” is generally considered to have cre-

ated the field of information theory. Shannon stunned the communication theory

community with his proofs about compression and channel capacity, many of which

were in contrast to generally accepted engineering principles. Almost all modern

communication and information-processing systems, from computer hard drives to

telephone networks to medical imaging machines, are based upon Shannon’s ideas.

Without Shannon, there would be no internet. Every step of an internet link, from

the physical data transmission layer to the software that draws an image on your

screen, owes its existence to Shannon’s 1948 paper.

But, an actual examination of this paper reveals something interesting. The paper

does not describe how to build a modem, or set up a wireless communication network.

It does not explain how to compress an image or correct errors in data transmission.

It does not even describe a method for generating a code that applies its concepts.

In fact, it could be said that Shannon’s paper does not say how to do anything at all.

1

2 Chapter 1 Introduction

How is this possible? How can one of the greatest papers ever written, one that

revolutionized its field and so many others, not contain any practical information?

Shannon developed a theory. He invented some new concepts, such as entropy

and channel capacity, and derived a mathematical framework around them. He added

rigor and mathematical formalism to his subject in a way which nobody had ever

considered. And he derived fundamental limits. Instead of just designing another

communication system, he found the laws which all communication systems obey. In

doing so, he told the engineers of the time that they could build things which they

hadn’t even thought were possible. Shannon changed the way people thought.

I am not Shannon, and the document that you are holding right now cannot claim

nearly the scope nor import of Shannon’s 1948 opus. Nevertheless, I like to think that

it draws some inspiration from Shannon’s philosophy. This philosophy can be stated

as: “The key to understanding a new subject is developing a rigorous mathematical

framework.” Or, more simply: “Prove your theorems before you build your circuits.”

This paper, like Shannon’s, is about fundamental limits. Although there is a

small amount of practical information, such as an actual design example, the primary

thrust of this work is theoretical. This work represents, to the best of my knowledge,

the exploration of a novel concept, and I feel that it is vital to have a solid theoretical

grounding before attempting a practical design. Otherwise, you are designing blindly,

never knowing if what you are doing is optimal or even possible.

With that said, it should be mentioned that I’ve always hated proofs. Through-

out my education, I have loathed (to the point of occasionally skipping) homework

problems whose first word was the dreaded imperative: “Prove”. My natural ten-

dency has always been to take a few data points, find a pattern, and throw my faith

in the simplicity of nature. But, for the reasons stated above, I felt that this topic

deserved special treatment, so I made an effort to revive my well-atrophied senses of

rigor and formality.*

As with any description of new concepts to the uninitiated, if the material herein

* Perhaps, after this disclosure, the reader will forgive any apparent hand-waving in the proofs
to come.

Introduction 3

seems at all simple or obvious, it means only that I have succeeded in explaining it

well. The process of discovery was long and uncertain, and how to get from one step

to the next, or even figure out what the next step was, often was unclear. The road

ahead was always foggy. Pages of mathematical derivations would lead nowhere;

computer experiments would spit out data that had no apparent form or pattern

whatsoever. But, all in all, the work was enormously enjoyable. There may have

been dark and uncertain times, but the breakthroughs were epiphanous. They made

it all worthwhile.

It is my hope that I can share some of this excitement with the reader. Although

I certainly don’t expect you to tear around the house screaming “It’s Fibonacci!”

as I may have allegedly done,* I do hope to impart some of the pleasure of finding

mathematical beauty and order in the most unexpected places.

The remainder of this report is laid out as follows. Chapter 2 discusses why the

topic is relevant, and provides an analysis of the physical behavior that is responsible

for it. It also describes some of the other techniques that are currently being used.

Once the background information and motivation have been established, it’s on to the

fun stuff! Chapter 3 provides an overview of the coding process and sets the scene for

the theory that follows. Chapters 4, 5, and 6 develop the theory behind self-shielding

codes. These chapters are named after the type of code discussed therein (“Unpruned

Code with Memory”, “Pruned Code with Memory”, “Memoryless Code”), but the

reader will notice that each of these types of codes requires the development of a

distinct branch of the theory. Perhaps the chapter subtitles (“Counting the Neigh-

bors”, “Inspecting the Neighbors”, “Connecting the Neighbors”) give a better hint

as to the true content of the chapters. Chapter 7 focuses on practical aspects of the

coding process, discussing issues related to implementation. An example design is

also presented. Finally, concluding thoughts and ideas for future work are given in

Chapter 8.

* I wasn’t really screaming.

Chapter
2

Motivation

2.1 Introduction

There was a time, not long ago, when IC designers didn’t worry about interconnect

delay. They focused on the speed of their transistors, and gates made out of those

transistors, and logic blocks made out of those gates. The delay through these active

components was calculated carefully and closely scrutinized. The metal that con-

nected the components, on the other hand, was considered to be as ideal as the wire

on the schematic diagram, and its effects were neglected. At the time, this attitude

was acceptable, because in comparison to the delay through logic, interconnect delay

was indeed negligible.

In modern semiconductor processes, sadly, this is no longer the case. For reasons

that will be discussed, interconnect now plays a significant and sometimes prominent

role in determining the speed of a circuit. Furthermore, this trend will only continue.

If technology continues developing at its current rapid pace, techniques for analyzing

interconnect delay and dealing with it will become not just attractive, but vital.

5

6 Chapter 2 Motivation

Parameter Relation Scaling

W , L, tox 1/S

VDD,VT 1/U

Cox 1/tox S

Cgate CoxWL 1/S

kn,kp µCoxW/L S

Isat CoxWV 1/U

Ron V/Isat 1

intrinsic delay RonCgate 1/S

power IsatV 1/U2

power density P/WL S2/U2

Table 2.1 Variation of Device Parameters with Scaling (from [2]).

2.2 Interconnect Delay

This section will provide a brief and largely qualitative analysis of the issues respon-

sible for the increasing significance of interconnect delay. This material is basically a

summary of the excellent and thorough analysis presented in [2]; the interested reader

is encouraged to look there (or [3], if necessary) for the complete treatment.

It is well recognized that technology, as quantified by the integration density and

computational complexity of digital circuit designs, is improving at an extremely rapid

pace. The much-touted Moore’s Law predicts that these metrics double every eighteen

months. There are two primary factors responsible for this technology growth—the

scaling of device geometries and the increase in die size. Scaling refers to the shrinking

of transistors with every process generation. Having smaller devices implies being able

to fit more devices onto a chip, and thus more complex designs are realizable. But

scaling results in a number of other effects related to speed and power consumption,

as we will see momentarily. Die size refers to the physical area of the chip, and this

number has been growing throughout the years. Bigger chips also lead directly to an

increase in the amount of devices available and thus the design complexity.

Interconnect Delay 7

Table 2.1 shows how some important device parameters vary with scaling. The

data in the table is derived for short-channel CMOS devices, which constitute the

majority of devices on a modern chip. We assume that all device dimensions are

scaled down by the same factor S, and the supply voltage is scaled down by a factor

U . Voltage scaling must be considered as a separate parameter, because not scaling

the voltage leads to a dramatic rise in power consumption, whereas scaling the voltage

at the same rate as the geometry results in generations of incompatible systems, as

well as dangerously low threshold voltages and other circuit problems. The most

important entry of the table for our purposes is the “intrinsic delay”, which represents

the time needed for a transistor to charge the gate capacitance of a fanout transistor.

Overall circuit delay is roughly proportional to this number, and we see that it scales

as 1/S. This very effect is largely responsible for the massive increase in circuit speeds

over the last ten years.

However, this only considers the speed of the active devices. The problem is

that scaling affects interconnect delay in quite a different manner. Central to this

problem is the existence of two different types of interconnect. Wires used inside a

block of logic are called local interconnect, and their dimensions scale with everything

else in the block. On the other hand, the wires that connect blocks on a chip are

referred to as global interconnect, and their length does not scale. The reason for

this is that on-chip blocks, while becoming more dense, are not necessarily moving

closer together. In fact, with increasing die size, there may be blocks that need to

communicate that are even further apart than was previously possible. Thus, the

lengths of global interconnect wires are actually getting longer.

The effects of this phenomenon are shown in Table 2.2. S is again the geometry

scaling factor, and SL is the scaling factor for the length of the global wires, which

is less than one because these lengths are growing, not shrinking. We see that the

delay of a wire, which can be represented to first order by an RC time constant, is

constant for local wires and actually increasing for global wires! [2] gives values of

S = 1.15 and SL = 0.94, which predict a 50% increase in global wire delay per year.

8 Chapter 2 Motivation

Parameter Relation Local Wire Global Wire

W , H , t 1/S 1/S

L 1/S 1/SL

C LW/t 1/S 1/SL

R L/WH S S2/SL

RC L2/Ht 1 S2/S2
L

Table 2.2 Variation of Wire Parameters with Scaling (from [2]).

W

L

H

Figure 2.1 Illustration of Dimensions of Modern Global Interconnect.

This is in stark contrast to the decreasing delay trends followed by active devices,

and explains why scaling and increasing die size are bringing the role of interconnect

in circuit delay into the forefront.

This scaling approach clearly can lead to unacceptable results. Therefore, global

wires are often scaled differently from the rest of the geometry. The width is generally

scaled more slowly than S, and the thickness, or height, of the higher metal layers

where global interconnect is typically routed is also scaled slowly or sometimes not at

all. This reduced scaling attempts to preserve the cross-sectional area of the wires,

and therefore prevent the detrimental increase in resistance responsible for the results

in Table 2.2.

Crosstalk Analysis 9

However, the reduced and non-uniform scaling of global wires causes two very

important negative effects. The first is scarcity. Designs are becoming increasingly

more complex, but if the pitch of global wires is not scaled, there is no increasing

supply of interconnect to ship around the increasing amount of data. Thus, global

routing resources are at a premium, and these wires cannot be wasted. The second

effect is that, with scaling of wire thickness halted, the wires begin to take on a

strange shape, as shown in Figure 2.1. Many modern designs have global wires which

are taller than they are wide. Placing two of these wires near each other results in

a structure which bears an uncomfortable resemblance to a parallel-plate capacitor.

Capacitance between signal wires leads to crosstalk.

2.3 Crosstalk Analysis

Crosstalk is the term used to refer to a signal affecting another signal from which it

should be isolated. Such unintentional coupling of signals can occur though a number

of means. Current loops can create magnetic fields or even radiation that can be

picked up inductively by remote wire loops. The finite resistance and inductance of

the power supply wires can lead to signals coupling through the supply rails. But the

most common source of crosstalk is capacitively coupled wires.

Every piece of metal in a circuit, unless it is completely enclosed in a grounded

metal box, has a capacitive connection to every other piece of metal in the circuit. The

specific value of the capacitance is dependent on a number of factors. Capacitance

is inversely proportional to distance, so pieces that are further away have a smaller

capacitance. If a grounded piece of metal is inserted between two pieces, most of the

electric field lines from the two pieces will terminate on the grounded piece, and the

capacitance will be greatly reduced.* A complete analysis of the capacitance between

every wire in a circuit is simply intractable, even for almost trivially small circuits.

* On the other hand, if the piece inserted in the middle is not grounded, but floating, the ca-
pacitance between the two pieces will actually increase slightly, because the electric field lines can
take a small shortcut and travel through the metal (dielectric constant effectively infinite) instead
of through air (dielectric constant of one) or whatever the surrounding medium is. This effect has
surprised many an engineer who did not study physics hard enough.

10 Chapter 2 Motivation

fringing field

parallel-plate field

Figure 2.2 Electric Field Lines Between Cross-Coupled Wires.

Therefore, analysis of cross-coupled capacitances usually only considers neighboring

wires.

Figure 2.2 shows two wires and their cross-coupling electric field lines. Notice

that there are two main components to the field. The lines that go straight across,

from the side of one wire to the other, are called the parallel plate field, and the lines

that curve around from non-facing sides are called the fringing field. The parallel

plate capacitance is typically easy to calculate:

C =
εrε0A

d
(2.1)

where A is the area of the plates, d is the distance between them, ε0 is the permitivity

of free space, and εr is the dielectric constant, or relative permitivity, of the material

between the plates. On the other hand, the fringing capacitance is strongly dependent

on the geometry of the wires and is usually only approximated, or even neglected when

possible. The important thing to notice for the subject at hand is that traditionally-

sized flat wires are mostly restricted to coupling through fringing capacitance, but the

oddly-scaled global wires, as described above, can couple strongly through parallel-

plate capacitance.

Now that the source of crosstalk has been discussed, we will take a look at its

effects. The consequences of crosstalk are different for each circuit style. In analog

circuit design, crosstalk can be modeled as a noise source. The circuit must be

designed robust enough to meet the specifications even in the presence of this noise.

Crosstalk Analysis 11

Figure 2.3 Digital Circuit with Crosstalk.

In the digital realm, crosstalk can lead to malfunctioning systems in design styles that

are sensitive to spurious glitches on wires, such as asynchronous logic and precharge

or “domino” logic. For standard CMOS synchronous digital designs, which is the

focus in this work, crosstalk manifests itself as a delay.

The clearest way to see this is to plunge right into some circuit analysis. The

circuit shown in Figure 2.3 represents the type of situation that we are concerned

with. Two digital gates drive two other digital gates, with a cross-coupled capacitance

present between the two wires. We can linearize this circuit by replacing the driving

gates with their Thévenin equivalent voltage sources and series resistances, and the

fanout gates by their load capacitance. Characterizing the fanout with a capacitance

is quite accurate, but linearizing the driver is more approximate, since transistors

are not linear devices. However, it is a fairly good approximation, especially for the

first half of a transition. ([2] discusses the validity of the “Ron transistor model”.)

The most serious simplification is ignoring the distributed-rc nature of the wires

and using lumped resistors and capacitors. However, any model that takes this into

account almost certainly cannot be subjected to hand analysis. We must use a small

number of lumped elements in order to keep the analysis tractable.

Figure 2.4 shows the circuit that we will analyze. We will first consider the

behavior when one wire makes a low-to-high transition and the other wire makes a

high-to-low transition. This is expressed by the following initial conditions:

V1(0) = 0, V1(∞) = VDD

V2(0) = VDD, V2(∞) = 0 (2.2)

12 Chapter 2 Motivation

VDD
tfor > 0

tfor > 0

CC

2

C

C

R

0

1

R2

V

V2

1

1

Figure 2.4 Linearized Model of Circuit with Crosstalk.

Defining I1 to be the current traveling from left to right across R1, and defining I2

similarly for the current across R2, we can write:

I1 =
VDD − V1

R1
= C1

dV1

dt
+ CC

d(V1 − V2)

dt
(2.3)

I2 =
−V2

R2

= C2
dV2

dt
+ CC

d(V2 − V1)

dt
(2.4)

We can rewrite the above equations as

R1(C1 + CC)
dV1

dt
+ V1 =R1CC

dV2

dt
+ VDD (2.5)

R2(C2 + CC)
dV2

dt
+ V2 =R2CC

dV1

dt
(2.6)

There are a number of methods for solving a system of differential equations such as

this one. But probably the easiest method is to simply guess at a general form of the

solution, plug it in, and try to evaluate coefficients.* Every electrical engineer knows

that a simple RC circuit, such as what we would have in Figure 2.4 if we removed

CC , has a solution of the form

V (t) = kc + ke
−t/RC (2.7)

We might guess that our solution has a similar form, but with an additional time

constant because of the coupling capacitor. Furthermore, the way the two equations

* This tends to be the easiest method only if you are a good guesser.

Crosstalk Analysis 13

are related suggests that the pair of time constants must be the same for both V1(t)

and V2(t). Thus, we will try:

V1(t) = kc1 + k1e
−t/a + k1be

−t/b (2.8)

V2(t) = kc2 + k2e
−t/a + k2be

−t/b (2.9)

The first step is to eliminate some of the coefficients by applying the initial conditions

in (2.2). Evaluating the above expressions at t = 0 and t = ∞ and equating to the

proper initial conditions gives us:

kc1 = VDD, kc1 + k1 + k1b = 0

kc2 = 0, kc2 + k2 + k2b = VDD (2.10)

We can therefore rewrite (2.8) and (2.9) as

V1(t) = VDD + k1e
−t/a − (k1 + VDD)e

−t/b (2.11)

V2(t) = k2e
−t/a − (k2 − VDD)e−t/b (2.12)

We now plug these guesses for V1(t) and V2(t) into (2.5) and (2.6). The resulting

mess is not shown, but the astute reader will notice that, after cancelling out some

constant terms, all terms in the result will be proportional to either e−t/a or e−t/b.

Therefore, each differential equation produces two equations relating our coefficients,

one from equating the e−t/a terms and one from equating the e−t/b terms. After some

algebraic manipulation, these equations can be written as follows:

from e−t/a terms in (2.5): a = R1

(
C1 +

(
1− k2

k1

)
CC

)

from e−t/a terms in (2.6): a = R2

(
C2 +

(
1− k1

k2

)
CC

)

from e−t/b terms in (2.5): b = R1

(
C1 +

(
1− k2 − VDD

k1 + VDD

)
CC

)

from e−t/b terms in (2.6): b = R2

(
C2 +

(
1− k1 + VDD

k2 − VDD

)
CC

)
(2.13)

We now have four equations and four unknowns (a, b, k1, and k2), so this system

possibly has a solution. Equating the two equations for a, equating the two equations

14 Chapter 2 Motivation

for b, and then combining the results gives us the following relation between k1 and

k2:

k1 = k2
R2(C2 + CC)−R1(C1 + 3CC)

R2(C2 + 3CC)−R1(C1 + CC)
−VDDR2(C2 + 2CC)− R1(C1 + 2CC)

R2(C2 + 3CC)− R1(C1 + CC)
(2.14)

After this point, it gets ugly. The system can indeed be solved, but the result is

a dense mass of parameters and square roots which is entirely too complex for our

purposes.*

In an attempt to make the result manageable, we will make an assumption. Look-

ing at Figure 2.3, we might imagine that most of the time, the two driving gates will

be about equal in strength, and the two fanout gates will provide about the same

loading capacitance. In terms of our circuit model, these assumptions translate to:

R =R1 = R2 (2.15)

C = C1 = C2 (2.16)

These assumptions clean up the equations enormously. Looking back at (2.14), we

see that it immediately collapses to

k1 = −k2 (2.17)

Plugging this information into (2.13), we find a surprising result:

a =RC + 2RCC

b =RC + 2RCC (2.18)

When we set the resistances and capacitances equal, a and b are the same, and there

is only one time constant. Therefore, our final solution is

V1(t) = VDD
(
1− e−t /RC+2RCC

)
(2.19)

V2(t) = VDD e
−t /RC+2RCC (2.20)

* Not complex in the mathematical sense. As long as the resistances and capacitances are non-
negative, this circuit will not oscillate.

Crosstalk Analysis 15

Before we examine this result, we will solve another case so we have something to

compare with. The preceding equations describe the situation when one wire makes

a low-to-high transition and the other makes a high-to-low transition. Now, we will

derive the result for when the first wire makes a low-to-high transition and the other

attempts to stay at a constant voltage. The voltages that are being solved for will be

renamed Vs1 and Vs2 in order to keep them distinct from the previous results. The

differential equations (2.5) and (2.6) still apply, but we now have slightly different

initial conditions:

Vs1(0) = 0, Vs1(∞) = VDD

Vs2(0) = 0, Vs2(∞) = 0 (2.21)

Evaluating our guesses in (2.8) and (2.9) with these conditions gives us the following:

Vs1(t) = VDD + k1e
−t/a − (VDD + k1)e

−t/b (2.22)

Vs2(t) = k2e
−t/a − k2e

−t/b (2.23)

Notice that (2.23) is subtly different from (2.12). We plug these equations into (2.5)

and (2.6), and after a similar procedure as above, including making the same assump-

tion, we come out with a solution for the coefficients:

a =RC

b =RC + 2RCC

k1 = k2 =
1

2
VDD (2.24)

Now, there are indeed two different time constants, and we no longer have to feel

quite so silly for our guesses in (2.8) and (2.9). The final result is:

Vs1(t) = VDD

(
1− 1

2
e−t/RC+2RCC − 1

2
e−t/RC

)
(2.25)

Vs2(t) =
VDD
2

(
e−t/RC+2RCC − e−t/RC) (2.26)

We now have solutions for a wire transitioning next to an oppositely transitioning

wire and transitioning next to a steady signal. These two solutions, V1(t) and Vs1(t),

16 Chapter 2 Motivation

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time, normalized to RC

vo
lta

ge
, n

or
m

al
iz

ed
 to

 V
dd

Vs1(t)

V1(t)

Figure 2.5 CC = C.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time, normalized to RC

vo
lta

ge
, n

or
m

al
iz

ed
 to

 V
dd

Vs1(t)

V1(t)

Figure 2.6 CC = 3C.

are plotted in Figures 2.5 and 2.6 for two values of CC . Clearly, the activity on the

other wire is significantly affecting the rise time of the signal. In order to quantify

this, we can attempt to calculate the time at which each signal crosses the halfway

point VDD/2. We denote this time as t1 and ts1 for the two signals respectively. That

is,

V1(t1) = Vs1(ts1) =
1

2
VDD (2.27)

Because V1(t) has only one time constant, the calculation is easy:

t1 = ln(2) (RC + 2RCC) (2.28)

Unfortunately, there is no closed-form solution for ts1. However, in this age of

powerful computers, that does not stop us from calculating it numerically and making

a plot. Figure 2.7 plots t1/ts1 versus CC/C, or the ratio of the delays versus the

relative value of the coupling capacitance, and is probably the most important plot

in the chapter. We see that the delay ratio goes almost linearly with the relative

coupling capacitance. The qualitative conclusion that we can draw from all of this

is that when the coupling capacitance becomes comparable to the load capacitance,

two wires that attempt to transition in opposite directions receive a stiff penalty in

delay time. We call this penalty the crosstalk delay, and the next 100 pages will be

dedicated to finding a design approach to prevent it.

Combating Crosstalk 17

0 0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

coupling capacitance, normalized to load capacitance

t1
 /

ts
1

Figure 2.7 t1/ts1 versus CC/C.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time, normalized to RC

vo
lta

ge
, n

or
m

al
iz

ed
 to

 V
dd

Vs2(t)

Figure 2.8 Vs2(t) for CC = 2C.

Before we move on, it is interesting to take a look at Vs2(t), which describes the

behavior of the so-called steady wire. Examining Figure 2.8, we see that this voltage

is clearly affected by the transition on the other wire. However, this phenomenon

usually creates no problems in a digital circuit, unless the height of the pulse rises

above the digital switching threshold. In our model, Vs2 can never reach VDD/2 for

any value of CC , although it’s possible that it could with a more complicated model.

2.4 Combating Crosstalk

In a synchronous circuit, the clock speed is limited by the slowest block of logic

between sequential elements, which is known as the critical path. If crosstalk delay

occurs on this critical path, the clock speed must be lowered in order to accommodate

it, and therefore the entire circuit slows down. The recent years have seen an increase

in the value of CC/C for reasons explained in Section 2.2, and thus there is currently

considerable interest in methods for preventing or dealing with crosstalk.

In the literature there are a number of techniques designed for combating cross-

talk. Many of them are designed for minimizing crosstalk delay within a datapath

or logic block. With the appropriate models and approximations, it is possible to

incorporate crosstalk analysis into static timing analysis, and devise a routing scheme

that uses this information to minimize the critical path with crosstalk considered.

18 Chapter 2 Motivation

Such schemes are given in [4], [5], and [6].

However, as we saw in Section 2.2, the primary source of interconnect delay

problems is not local wires, but global wires. Creative routing schemes within a logic

block will not solve the problem of crosstalk on a long cross-chip bus. As scaling

continues and the delay across global wires increases, it is increasingly likely that the

critical path will lie on a long bus.

[7] and [8] give some techniques for avoiding crosstalk delay on a long bus. One

technique is skewing the timing of signals on the bus. This involves introducing an in-

tentional delay into the drivers on every other wire. The result is that wires are active

only when their neighbors are quiet. The problem with this approach, other than the

intrinsic delay of the skewing, is that it requires careful technology-dependent circuit

design, and brings up timing issues that are susceptible to process variation. It would

be preferable to consider a method that fits better into a synchronous framework.

One such technique is bus interleaving. Two buses are routed such that each wire

on a bus is adjacent only to wires on the other bus. If the two buses are mutually

exclusive, perhaps a read and a write port for example, crosstalk delay will never

occur. This is an excellent technique, but it requires mutually exclusive buses. For

a bus that can transition on any and every clock cycle, this can’t be used.

Another technique that is mentioned is precharging. On one phase of the clock, all

of the wires on the bus are driven to a high value. On the next phase, the appropriate

wires are driven low. This avoids crosstalk delay, but wastes an enormous amount of

energy. The capacitance on a long bus is large enough that precharging it on every

clock cycle may incur detrimental costs in power consumption. It is usually not an

option.

Probably the most common technique is simply using large repeaters to drive the

crosstalk capacitance through brute force [9]. This is somewhat equivalent to reducing

the value of R in the previous section’s analysis, and does result in a reduction in

the delay. The problem with this method is that it is also power-hungry, and every

repeater requires the bus to make its way from the high metal layers down to the

Combating Crosstalk 19

0a2 aa1

Figure 2.9 Illustration of Shielding.

active layer and back through stacks of vias. It also requires technology-dependent

tuning, is susceptible to process variation, and is a rather inelegant solution.

The simplest and most effective technique for preventing crosstalk delay is shield-

ing. This involves putting a power supply wire, either ground or VDD, between every

wire on the bus, as shown in Figure 2.9. These constant-voltage wires act as electro-

magnetic shields, and prevent activity on one signal wire from significantly coupling

over to another signal wire. The only problem with shielding is that it wastes wires.

When the wires in question are the scarce, unscaled wires reserved for global inter-

connect, it can be difficult to justify doubling the channel width. Nevertheless, this

technique has been used in some high-speed designs where crosstalk delay on the bus

would have limited the clock speed.

The next six chapters will discuss a novel alternative to these techniques. This new

method is based on the observation that, although interconnect delay is increasing,

logic delay is still decreasing rapidly. As processing power becomes cheaper, both in

terms of area and speed, it makes more and more sense to solve problems with logic

instead of circuit tricks. Instead of trying to creatively route the wires, or play with

timing, or overpower the crosstalk, we can actually consider changing the data itself.

If we change the data in the right way, we can eliminate crosstalk delay by design.

This is called encoding.

Chapter
3

Self-Shielding Codes

3.1 Introduction

Coding is the art of making the data fit the channel. A data compression code, for

instance, is used when the channel is assumed to be slow or costly. Data compression

works by finding and removing redundancy in the data, condensing it into the smallest

representation that still contains enough of the original information. This minimizes

channel use when the data is transmitted. An error correcting code, on the other hand,

is used when the channel is assumed to be noisy. It introduces intentional redundancy

into the data, so that the original information can be recovered even if there are

errors in transmission. On the surface, it appears that these two types of codes, one

designed to remove redundancy, the other to add it, are performing opposite tasks.

However, both codes are both working toward the same goal—packaging information

so it meets the constraints of the channel. The type of code that we explore here will

be no different.

21

22 Chapter 3 Self-Shielding Codes

Sender
 b bits

Encoder Receiver
 b bits

channel
Decoder

 n wires

Figure 3.1 Model of Communication Chain.

3.2 Modeling the Communication Chain

At the highest level, coding simply isolates data from the communication medium.

In much the same manner as a snacker uses two slices of bread to avoid eating gobs of

peanut butter by hand, the encoder and decoder form a channel sandwich, preventing

raw data from being sent over the channel.

This is illustrated in Figure 3.1. The block diagram can be interpreted as follows:

The sender presents the encoder with a b-bit data word. The encoder then drives the

channel, which consists of an array of n wires. The decoder reads the channel and

presents the receiver with the same b-bit data word that was given by the sender.

We must put some additional stipulations on this model before we develop our

codes. Because we are modeling a generic bus, we assume that the sender can send

a different data word on each clock cycle, and all of the 2b possible words are valid.

The model specifies nothing about the latencies of the encoder and decoder, as long

as the throughput is one data word per clock cycle. However, it is implied that the

propagation delay across the channel is long or even critical, and this is why we are

encoding it in the first place.

3.3 The Fundamental Rule

Consider the simplest anti-crosstalk technique discussed in Chapter 2—shielding.

This merely consists of placing a grounded “shield” wire between every data wire

in order to electromagnetically isolate the signals. But we can, in fact, think of

shielding as a code, and represent it with our model in Figure 3.1. The channel width

n is 2b− 1. The encoder encodes a 0 bit in the data word with a {0 0} signal on two

channel wires, and a 1 bit with a {10} signal. The decoder performs the reverse map-

ping, which is effectively the same as examining every other wire. This is illustrated

in Figure 3.2.

The Fundamental Rule 23

000
001
010
011
100
101
110
111

00000
00001
00100
00101
10000
10001
10100
10101

data

"Encoder"

codeword

0

1

1

0

0

1

0

1

Figure 3.2 Shielding Viewed As A Code.

falling bit transition

clock:

channel wire:

channel wire:

rising bit transition

Figure 3.3 Timing Diagram of the Undesired Event.

This is a code, and according to Section 3.1, every code exists in order to meet a

channel constraint. What is the channel constraint in this case? In Section 2.3, we

learned that “crosstalk delay”, which could potentially limit the clock speed, arises

when signals on two adjacent wires simultaneously transition in opposite directions.

This situation is depicted in Figure 3.3. Studying the shielding code, we see that

such an event is forbidden by design. By eliminating the possibility of any transition

whatsoever on every other wire, there can never be a rising transition next to a falling

one, and thus crosstalk delay cannot occur.

Shielding is a “code” to overcome this channel constraint, but it is not necessarily

a good one. In Section 2.2, we learned that wires at higher-level metal layers, where

such a bus would normally be routed, are scarce. Each wire in the channel consumes

expensive routing resources. Therefore, it makes sense to take channel width to be

24 Chapter 3 Self-Shielding Codes

codeword at time 1: 0010 0000 0100 0100 0010

↓ ↓ ↓ ↓ ↓
codeword at time 2: 0110 1111 0001 0010 0100

valid valid valid invalid invalid

Figure 3.4 Examples of Valid and Invalid Transitions.

our cost metric. Doing so, we find that this code performs rather poorly—it requires

almost twice as many wires as data bits. One might guess that better encodings exist,

codes that meet the same channel constraint, but require fewer wires. One would be

right.

We call such codes “self-shielding” or “crosstalk-immune”. These are codes that

fit the communication model described in Section 3.2, plus abide by the following

Fundamental Rule. The Fundamental Rule represents our channel constraint, and

this simple statement is responsible for every theorem and derivation in this work.

Fundamental Rule of Self-Shielding Codes: For any two codewords W1 and

W2, W2 may not be placed on the channel immediately followingW1 if doing so would

cause a rising bit transition adjacent to a falling bit transition.

By design, a properly implemented self-shielding code can never cause crosstalk

delay on the channel. Figure 3.4 gives some examples of valid and invalid transitions.

3.4 Coding Terminology

Consider again the block diagram of the communication chain in Figure 3.1. We say

that the data words provided by the sender are represented by symbols. The use of

the word symbol emphasizes that the specific values of the data words are irrelevant

to the code. In our case, the only property of the data words that we care about

is their quantity, because this determines the size of the symbol set.* Representing

data words with symbols frees us from having to consider specific data values during

* Other encoding schemes, such as those used for data compression, may care about the statistical
properties of the symbol set as well.

Coding Terminology 25

00
01
10
11

α
β
γ
δ

Symbol Data

000
001
011
111

α
β
γ

codeword

δ

Symbol Codeword

Memory

symboldata word

Data/Symbol Mapping Current Codebook

Channel

previous codeword

Figure 3.5 Illustration of Coding Terminology.

analysis. As long as we are able to express any symbol at any time, we know we have

a valid code. The mapping between symbols and actual data words occurs in the

implementation phase, and may determine the efficiency of the implementation but

not the overall properties of the code.

We say that the values placed on the channel are called codewords. The mapping

between symbols and codewords is called a codebook. Although we can abstract

the data words with symbols, we must consider the specific values of the codewords,

because the sequence of codewords placed on the channel must obey the channel

constraint. It is possible that the codebook, and thus the active set of codewords,

changes with time. If this is the case, the code is said to havememory. If the codebook

is fixed, then the code is memoryless. Figure 3.5 illustrates this terminology.

Specific to self-shielding coding is a restriction on which codewords are allowed

to follow which, as dictated by the Fundamental Rule. We say that a codeword is

connected to another codeword if it is valid to transition from one to the other. That

is, if two codewords are connected, then one may placed on the channel immediately

following the other. It will aid our analysis to import some terminology from graph

theory. We can form a graph with the codewords as vertices and the connections as

edges. The graph is undirected because the connection relation is symmetric. We

can then say that the neighbor set of a codeword is the set of codewords that it is

connected to, and the degree of a codeword is the size of its neighbor set. Note that

every codeword is connected to itself, because a channel that does not transition at

26 Chapter 3 Self-Shielding Codes

001

010

011

000

111

110 100

101

Figure 3.6 Connection Graph for n = 3.

all certainly abides by the Fundamental Rule. Thus, every codeword has itself as a

neighbor. The connection graph for n = 3 is shown in Figure 3.6.

Chapter
4

Unpruned Code With
Memory

(Counting the Neighbors)

4.1 Introduction

Now that the Fundamental Rule has been defined, we must analyze its implications

in an attempt to determine the properties of self-shielding codes. In this chapter, the

rudiments of self-shielding coding theory will be developed as we derive the perfor-

mance of a simple code. The theory developed in this chapter will be concerned only

with the size of codewords’ neighbor sets, not with their contents. The code type

that this theory applies to is the unpruned code with memory.

Although the cost metric as stated in Section 3.3 is the channel width n given

a particular symbol set size 2b, it is more convenient for our analysis to examine it

from the opposite viewpoint. That is, given a channel of n wires, we determine the

minimum number of symbols that can be expressed at any time. The base-2 logarithm

of this number is the maximum data width b, and we use this as our performance

metric.

27

28 Chapter 4 Unpruned Code With Memory

Symbol

Codebook when 011
is on the channel

Memory

000

011

111

001
010
011
110

α
β

δ

γ

of 011
Neighbors

βsymbol to
be sent placed on channel

codeword to be001

codeword currently on channel

Figure 4.1 Example of Codebooks and Memory.

In order for a symbol to be expressible, it must be mapped to a codeword in the

codebook. However, there is a restriction on which codewords can be in the codebook

at a given time. Because, by definition, only neighbors of the codeword currently on

that channel are allowed to follow it, these neighbors are the only codewords that

can be in the current codebook. If a symbol is mapped to one of these neighbors and

that neighbor is then placed on the channel, that symbol is expressed and the data

word that the symbol represents is effectively transmitted. Because the neighbor set

is different for each codeword, it is possible that the codebook will change every time

a new codeword is placed on the channel. That is, the symbol that is expressed by

a codeword on the channel may depend on what the previous codeword was. This

simply means that the encoding has memory. An example is illustrated in Figure 4.1.

Thus, the maximum number of symbols that can be expressed at a particular

time is equal to the degree of the codeword on the channel. If we want to express

more symbols than this, there simply aren’t enough neighbors to go around. For the

unpruned code with memory, we will make no assumptions about the contents of the

codebooks. Thus, we must be prepared for any of the 2n possible codewords to be

on the channel at any time. This means that we must choose b such that the degree

of every possible codeword is at least 2b. Therefore, to determine the maximum

performance of this code, we must find the codeword with the smallest degree, since

Degree of Class 1 Codewords 29

it will be the limiting factor in determining b.

However, calculating the degree of a codeword is not a trivial matter. Imagine if

there were no Fundamental Rule. We could just say that every codeword has degree

2n, because any codeword could transition to any other. But this trivial calculation

is based on an implicit assumption—that the bits can transition independently of

one another. Each of the n bits can go to either of 2 states, so we have a total of

2n possible transitions. However, with the Fundamental Rule in place, we suddenly

have a dependency between adjacent bit transitions. For example, if we choose to

raise a particular 0 bit in the codeword, then any adjacent 1 bits must stay, although

adjacent 0 bits may either rise or stay. The decision for them affects their adjacent

bits, and so on across the codeword. This may seem like a complicated situation, but

with the appropriate mathematical formalization, we can get it all under control. In

the following theorems, we will derive the method for calculating the degree of any

codeword, and we will use this to find the limiting codeword and its degree.

4.2 Degree of Class 1 Codewords

Definition: A class 1 codeword is a codeword with alternating 0 and 1 bits. For

example, 01010 and 10101 are 5-bit class 1 codewords.

Definition: dn is the degree of a class 1 codeword that is n bits wide.

Theorem 4.1: dn are Fibonacci numbers. Specifically,

dn = Fn+2 (4.1)

where Fn is the classical Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, . . .}.

Proof: Consider, without loss of generality, a class 1 codeword of n bits that begins

with a 0 bit. In a valid codeword transition, this first bit can either stay or rise, but

this choice affects the allowable transitions of the second bit. If the first bit stays,

the second bit is free to stay or fall with no restrictions. The second through nth

bits form a class 1 codeword of width n − 1, and thus can realize dn−1 transitions.

30 Chapter 4 Unpruned Code With Memory

[
neighbors of

010101

]
= 0

[
neighbors of

10101

]
+ 11

[
neighbors of

0101

]
d6 = d5 + d4

Figure 4.2 Example of Recursion of dn.

However, if the first bit rises, then the second bit is forced to stay, because it would

violate the Fundamental Rule if it were allowed to fall. The third bit is then free to

stay or rise without restrictions. The third through nth bits form a class 1 codeword

of width n−2, and thus can realize dn−2 transitions. The total number of transitions

dn is the sum of the two cases:

dn = dn−1 + dn−2 (4.2)

This is illustrated in Figure 4.2. This is the same recurrence relation obeyed by the

Fibonacci sequence. But in order to show that dn are in fact Fibonacci numbers, we

need to establish initial conditions. Two initial conditions are needed, because (4.2)

is a second-order equation. A 1-bit class 1 codeword is “0”. It can transition to two

codewords: “0” and “1”. A 2-bit class 1 codeword is “01”. It can transition to “00”,

“01”, or “11”, but not “10”. We see that d1 = 2 and d2 = 3. These are in fact

Fibonacci numbers, F3 and F4 respectively. Therefore, dn = Fn+2.

Corollary:

dn =
1

φ+ 1/φ

(
φn+2 − (−φ)−(n+2)

)
, φ =

1 +
√
5

2
(4.3)

dn =

{
2

φ+1/φ
cosh ((n+ 2) ln(φ)), odd n

2
φ+1/φ

sinh ((n + 2) ln(φ)), even n
(4.4)

Proof: If we rewrite (4.2) as

dn+2 − dn+1 − dn = 0 (4.5)

we see that it is a second-order homogeneous difference equation with constant co-

efficients. We solve by making the substitution dn = an in (4.5), and combining the

Degree of General Codewords 31

n dn log2(dn)

1 2 1.00
2 3 1.58

3 5 2.32
4 8 3.00

5 13 3.70
6 21 4.39

7 34 5.09
8 55 5.78

9 89 6.48

Table 4.1 Degrees of Some Class 1 Codewords.

two solutions for a using linear superposition. This results in a solution of the form

dn = c1a
n
1 + c2a

n
2 . (4.6)

We find that

a1 =
1 +

√
5

2
, a2 =

1−√
5

2
. (4.7)

To find c1 and c2, we need two initial conditions. Using d1 = 2 and d2 = 3 as above,

we find

c1 =
a2

1√
5
, c2 = − a2

2√
5
. (4.8)

The numbers in (4.7) are in fact rather famous. a1 is called the golden ratio, and is

commonly written as φ. a2 is the negative reciprocal of φ as well as its conjugate (as

well as 1 − φ), and is sometimes referred to as the silver ratio and written as φC .*

Applying (4.7) and (4.8) to (4.6), we can write the result as either (4.3) or (4.4)

Some values of dn are shown in Table 4.1.

* φ has a tendency to turn up in all sorts of places, from the growth patterns of plants to the
dimensions of the Greek Parthenon to the proportions in the paintings of Leonardo Da Vinci. The
famous opening bars of Beethoven’s Fifth are repeated at exactly the 1/φ point in the symphony.
There is much mathematical folklore associated with φ, and much of it is intertwined with Fibonacci
folklore because of their close association. There are also those who claim that φ has been over-
romanticized, and its ubiquity is all a big coincidence.

32 Chapter 4 Unpruned Code With Memory

4.3 Degree of General Codewords

Definition: An independent boundary in a codeword occurs between two adjacent

bits of the same value. A dependent boundary occurs between two adjacent bits of

different values.

For example, the codeword 0011 has three boundaries, and they are independent,

dependent, and independent respectively.

Definition: A section of a codeword is one of the pieces that would result if the

codeword were to be split at its independent boundaries.

For example, the codeword 10110100 has three sections: 101, 1010, and 0. Notice

that each section, if isolated, would be considered a class 1 codeword.

Definition: The class of a codeword is equal to the number of sections, or the number

of independent boundaries plus one.

Definition: d{n1,n2,...,nc}, where c is the class, denotes the degree of a codeword with

sections of width n1, n2, etc.

In general, it is often handy to describe a codeword with an ordered set of c

elements instead of explicitly giving its bit pattern. That is, the codeword 10110100

may be written as {3, 4, 1}. Notice that {3, 4, 1} refers to the bitwise inverse as well,

the codeword 01001011. This ambiguity is typically acceptable because codewords

and their bitwise inverses tend to have exactly the same properties. If we should want

to distinguish the two codewords, we may refer to the codeword’s polarity. Other

notational conventions include using {n1, n2, . . .}k to refer to the given sequence of

sections repeated k times, and {n1, n2, . . .}{m1, m2, . . .} to refer to the concatenation

of the codewords: {n1, n2, . . . , m1, m2, . . .}.

Theorem 4.2: The set of transitions that a section is allowed to make is not re-

stricted or affected by the transitions chosen for the other sections in the codeword.

Degree of General Codewords 33

of boundary
left side

of boundary

independent
 boundary

 00
 01
 10
 11

stay

rise

stay

rise

stay

stay

rise

rise

1010010

right side
of boundary

right side left side
of boundary

independent
 boundary

 00
 01
 10
 11

0101101

fall

stay

fall

staystay

fall

stay

fallrise next to fall
no possibility of

across independent
boundary

Figure 4.3 Independent Boundaries.

Proof: Two adjacent sections, by definition, are separated by an independent bound-

ary, meaning that there are two adjacent bits of the same value. No transition can

be chosen for these two bits that violates the Fundamental Rule. If they are both 0

bits, then they can both stay, both rise, or one can rise and the other stay. If they

are both 1 bits, then they can both stay, both fall, or one can fall and the other stay.

But in no case can there be a rising transition next to a falling one. (See Figure 4.3.)

Since the Fundamental Rule is the only restriction on bit transitions and only applies

to adjacent bits, the bit transitions on one side of an independent boundary cannot

restrict the transitions on the other side. Thus, the sets of transitions for each section

are independent of one another.

Remark: This theorem demonstrates the origin of the term independent boundary.

It is impossible to violate the Fundamental Rule across this boundary, so transitions

on one side are independent from those on the other.

Theorem 4.3: The degree of any codeword is equal to

d{n1,n2,...,nc} =
c∏
i=1

dni
(4.9)

where c is the codeword class and ni is the number of bits in the ith section.

Proof: By definition, each section, if isolated, would be a class 1 codeword, and so

by Theorem 4.1, it could make dni
valid transitions. By Theorem 4.2, each section

34 Chapter 4 Unpruned Code With Memory

10100100 −→ 1010 | 010 | 0

d{4,3,1} = d4 × d3 × d1 = 8× 5× 2 = 80

Figure 4.4 Example of Calculation of dW .

x = 5, y = 3

class 1:

dx+y︷ ︸︸ ︷
01010101 class 2:

dx︷ ︸︸ ︷
01010

× dy︷︸︸︷
010

Figure 4.5 Illustration of dx+y versus dx dy.

can transition independently of one another, so they are effectively isolated. Any

valid transition in one section can be matched with any valid set of transitions in the

other sections. Thus, the total number of valid transitions in the complete codeword

is the product of the degrees of each section.

The above formula is illustrated in Figure 4.4. We now know how to calculate

the degree of any codeword. It remains to find the codeword with the lowest degree,

because it is responsible for determining the performance of our code. In the following

theorem, we will prove that the limiting codeword which we seek is none other than

the class 1 codeword.

Theorem 4.4: For a given codeword width n, the degree of any codeword in class

c > 1 is greater than dn.

Proof: We begin by proving this for c = 2. Using Theorem 4.3, the proposition can

be stated mathematically as:

dx+y < dxdy for x > 0, y > 0 (4.10)

where x+ y = n. This is illustrated in Figure 4.5. Restating (4.10) in terms of (4.3),

we get(
φ+

1

φ

)(
φx+y+2 − (−φ)−x−y−2

)
<
(
φx+2 − (−φ)−x−2

)(
φy+2 − (−φ)−y−2

)
. (4.11)

Class Properties 35

Multiplying this out and shuffling terms gives us

φx+y+4 − φx+y+3 − φx+y+1 + (−φ)−x−y−4 − (−φ)−x−y−3 − (−φ)−x−y−1 >

(−1)yφx−y + (−1)xφy−x . (4.12)

Because φk is a solution to (4.5), we know that

φk = φk−1 + φk−2 . (4.13)

Transposing and resubstituting (4.13) a few times leads to the identity

φk = φk+4 − φk+3 − φk+1 . (4.14)

Because (−φ)−k solves (4.5) as well, we can similarly derive that

(−φ)−k = (−φ)−k−4 − (−φ)−k−3 − (−φ)−k−1 . (4.15)

Using these identities with (4.12) leads to

φx+y + (−φ)−x−y > (−1)yφx−y + (−1)xφy−x . (4.16)

Moving all terms to the left side and factoring gives us

(
φx − (−φ)−x)(φy − (−φ)−y) > 0 . (4.17)

(4.17) is true if
(
φk − (−φ)−k) is positive for both k = x and k = y.* If k is odd, this

expression is
(
φk + φ−k

)
, which is positive for all k. If k is even, the expression is(

φk − φ−k), which is true for all k > 0. Since both x and y are positive, this is always

the case. Thus dx+y < dxdy.

For classes c > 2, this inequality can be applied iteratively:

dx+y+z < dx+ydz < dxdydz (4.18)

and so on. Thus the degree of any codeword in class c > 1 is greater than the degree

of a class 1 codeword of the same width.

* Or negative for both, of course. But that’s not the case here.

36 Chapter 4 Unpruned Code With Memory

4.4 Class Properties

Armed with the previous theorems, we can go ahead and prove a number of interesting

properties about codeword classes. We will find the minimum degree, maximum

degree, and size of each class for a given n.

Theorem 4.5: For a given codeword width n and class c, the set of codewords with

the smallest degree in the class is the set of codewords with the most 2-bit sections.

(Class Minimum)

Proof: For c ≤ n
2
, the codewords with the most 2-bit sections are

{2, 2, 2, . . . , n− 2c+ 2} and its permutations. We can also write this as

{2}c−1{n− 2c+ 2}. For c > n
2
, the codewords have (n − c) 2-bit sections and

(2c−n) 1-bit sections. That is, {2}n−c{1}2c−n and its permutations. In both cases, it

is possible to generate all other codewords with the same n and c by starting with one

of these codewords and repeatedly replacing a 2-bit section and an m-bit section with

a (2 + k)-bit section and a (m − k)-bit section. That is, any other codeword can be

formed by taking k bits from some section and moving them to a 2-bit section, some

number of times. Each time this shift is made, the degree of the codeword changes

by a factor of
d2+kdm−k
d2dm

(4.19)

We will prove that for all numbers positive and m − k �= 2, this factor is greater

than 1. That is, the degree increases when the shift is made, unless the shift amounts

to simply swapping the sections. We can write this as the inequality

d2+kdm−k > d2dm (4.20)

and then restate it using (4.3):(
φk+4 − (−φ)−k−4

)(
φm−k−2 − (−φ)−m+k+2

)
>
(
φ4 + φ−4

)(
φm+2 − (−φ)−m+2

)
.

(4.21)

Multiplying, canceling common terms, and playing with powers of −1 gives us

φm−k−2(−φ)−k + (−φ)−m+k+2φk < φm−2 + (−φ)−m+2 . (4.22)

Class Properties 37

Moving terms to the left side and factoring results in

(
φk − (−φ)−k)(φm−k−2 − (−φ)−m−k+2

)
> 0 . (4.23)

This inequality is in a similar form as (4.17), and the analysis of (4.17) is applicable

here. We find, for the cases that we are interested in, the inequality is true for k > 0

and either m−k > 2 or (m−k) odd. The only time that a positive m− k can violate

both clauses of the second condition is when it is 2. Thus, for all numbers positive

and m− k �= 2, the inequality is true. Thus, the bit shift always results in the degree

increasing. Because any other codeword in the class can be formed by starting with

a codeword with the most 2-bit sections and applying enough shifts, the codeword

with the most 2-bit sections must have the lowest degree in the class.

Corollary: For a given codeword width n and class c, the smallest degree in the

class is:

3c−1dn−2c+2 for 1 ≤ c ≤ n
2

22c−n3n−c = 2n
(

3
4

)n−c
for n

2
≤ c ≤ n (4.24)

Proof: Applying Theorem 4.3 to Theorem 4.5 gives the desired result.

Theorem 4.6: For a given codeword width n and class c, the set of codewords with

the largest degree in the class is the set of codewords with the most 1-bit sections.

(Class Maximum)

Proof: The codewords with the most 1-bit sections are the permutations of

{1, 1, 1, . . . , n− c+ 1}, or {1}c−1{n− c+ 1}. With a method similar to that de-

scribed in Theorem 4.5, all other codewords with the same n and c and be generated

by repeatedly replacing a 1-bit section and an m-bit section with a (1+k)-bit section

and an (m− k)-bit section. When this replacement is made, the degree changes by a

factor of
d1+kdm−k
d1dm

. (4.25)

38 Chapter 4 Unpruned Code With Memory

We will prove that for all numbers positive and m− k �= 1, this factor is less than 1.

That is, the degree decreases when this change is made, unless it amounts to simply

swapping sections. We write this as the inequality

d1+kdm−k < d1dm (4.26)

and restate it using (4.3):

(
φk+3 − (−φ)−k−3

)(
φm−k−2 − (−φ)−m+k+2

)
<
(
φ4 + φ−3

)(
φm+2 − (−φ)−m+2

)
.

(4.27)

Multiplying and canceling common terms gives us

φm−k−1(−φ)−k + (−φ)−m+k+1φk < φm−1 + (−φ)−m+1 . (4.28)

Moving terms to the left side and factoring results in

(
φk − (−φ)−k)(φm−k−1 − (−φ)−m−k+1

)
> 0 . (4.29)

Remarkably, (4.29) is almost identical to (4.23), even though the inequality started

out in the other direction. (4.29) is true for k > 0 and m − k > 1. Thus, the bit

shift always results in the degree decreasing, as long as m−k �= 1. Because any other

codeword in the class can be formed by starting with a codeword with the most 1-bit

sections and applying enough shifts, the codeword with the most 1-bit sections must

have the highest degree in the class.

Corollary: For a given codeword width n and class c, the largest degree in the class

is:

2c−1dn−c+1 (4.30)

Proof: Applying Theorem 4.3 to Theorem 4.6 gives the desired result.

Remark: We can use (4.24) and (4.30) to calculate the range of degrees in each

class for a given n, as shown in Table 4.2. Doing so reveals a somewhat surprising

result. For n ≥ 8, there are overlaps in the ranges. There is some c for which the

Class Properties 39

c: 1 2 3 4 5 6 7 8 9 10 11

n
1 2

2 3 4

3 5 6 8

4 8 9-10 12 16

5 13 15-16 18-20 24 32

6 21 24-26 27-32 36-40 48 64

7 34 39-42 45-52 54-64 72-80 96 128

8 55 63-68 72-84 81-104 108-128 144-160 192 256

9 89 102-110 117-136 135-168 162-208 216-256 288-320 384 512

10 144 165-178 189-220 216-272 243-336 324-416 432-512 576-640 768 1024

11 233 267-288 306-356 351-440 405-544 486-672 648-832 864-1024 1152-1280 1536 2048

Table 4.2 Range of Degrees in Each Class.

maximum degree in class c is greater than the minimum degree in class c + 1. Or in

other words, there are codewords which have a higher degree than some codewords

in a higher class. It is important not to assume that degrees are strictly ordered by

class, because for n ≥ 8, they aren’t.*

Theorem 4.7: For a given codeword width n, the number of codewords in a class c

is:
2(n− 1)!

(c− 1)!(n− c)! (4.31)

(Class Size)

Proof: In a codeword of width n, there are n−1 bit boundaries. If the class is c, then

c− 1 of these boundaries must be independent. The number of ways of distributing

c− 1 objects over n− 1 positions is (
n− 1

c− 1

)
(4.32)

For each distribution of independent boundaries, there are two codewords, one of each

polarity. Once the first bit of the codeword is chosen, the independent/dependent

* Because the strict ordering of degrees by class is such a natural assumption to make, the author
spent a regrettable amount of time in the early stages of this research trying to prove it. The lesson
here is to be as thorough as possible with experimentation before attempting a proof. The other
lesson, perhaps, is that proving something that isn’t actually true can be really quite difficult.

40 Chapter 4 Unpruned Code With Memory

boundary distribution determines the rest of the bits, but the first bit can be chosen

to be either 0 or 1. Thus, the total number of codewords in the class is

2

(
n− 1

c− 1

)
(4.33)

which is equivalent to (4.31).

Remark: Notice that distributing c − 1 independent boundaries is equivalent to

distributing n − c dependent boundaries. Thus, class sizes show a symmetry, with

class c having the same number of members as class n− c+ 1.

4.5 Results

With the theory developed in Sections 4.2 and 4.3, and Theorem 4.4 in particular,

we are able to state the maximum performance of the unpruned code with memory.

Note that we have not designed this code, nor even defined a set of codewords. The

only specifications were that it must obey the Fundamental Rule, and it must allow

at least 2b symbols to be expressed when any possible n-bit value is on the channel.

From these two specifications alone, we can determine that the maximum number of

data bits that can be transmitted over a crosstalk-immune n-wire channel is:

b = log2 (dn) (4.34)

It can be seen in (4.3) that dn is asymptotically proportional to φn. Thus, adding

a wire to the channel increases the maximum data width by about log2(φ), or 0.69

bits. This can be compared to simple shielding, which has an asymptotic performance

of only 0.5 bits per channel wire.

Figure 4.6 plots the performance of this code, and Table 4.3 lists the channel

widths required to transmit data of various widths. We see that a 32-bit bus could

be implemented with 46 wires. This compares very favorably to a simple shielding

scheme which would require 63 wires. If we conceptually consider n−b, channel width
minus data bits, to be the number of “extra wires” required to eliminate crosstalk

delay, shielding uses 31 extra wires, whereas coding uses only 14.

But, we can do even better than this.

Results 41

8 16 24 32 40 48 56 64

8

16

24

32

40

data bits

wires required

uncoded coded shielded

Figure 4.6 Performance of Unpruned Code.

bits wires required bits wires required

coded shielded coded shielded

1 1 1 17 25 33
2 3 3 18 26 35
3 4 5 19 28 37
4 6 7 20 29 39
5 7 9 21 30 41
6 9 11 22 32 43
7 10 13 23 33 45
8 12 15 24 35 47
9 13 17 25 36 49
10 15 19 26 38 51
11 16 21 27 39 53
12 17 23 28 41 55
13 19 25 29 42 57
14 20 27 30 43 59
15 22 29 31 45 61
16 23 31 32 46 63

Table 4.3 Performance of Unpruned Code.

Chapter
5

Pruned Code With Memory
(Inspecting the Neighbors)

5.1 Introduction

In the previous chapter, we found the maximum performance of an unpruned code

with memory. That code was called “unpruned” because no assumptions were made

about which codewords were allowed on the channel. We had to be prepared to

transition from any possible n-bit value, and thus our performance was limited by

the codeword with the smallest degree. This codeword turned out to be the class 1

codeword.

However, if we ensure that our code never transitions to a class 1 codeword, then

we know that there will never be a class 1 codeword on the channel. Thus, we won’t

have to worry about transitioning from a class 1 codeword, and the code performance

will no longer be limited by dn. In other words, we simply throw the class 1 codewords

out of the codebooks.

Although this raises the limiting degree, and hence the performance of our code,

it also has the effect of decreasing the degrees of some of the other codewords. Specifi-

43

44 Chapter 5 Pruned Code With Memory

cally, the degrees of all codewords in the class 1 codewords’ neighbor sets will decrease,

because these codewords are no longer allowed to transition to a class 1 code. But

this won’t affect the overall performance of the code, unless one of these codewords

is the new limiting factor.

There is no reason to stop with class 1 codes, though. We can continue to find

and remove the codewords with the limiting degrees, continuing until the limiting

degree is as high as possible. This is the basis of the codeword pruning algorithms,

which we will study in this chapter. Inherent in understanding the pruning process is

the need to take a look inside the codewords’ neighbor sets, and see which codewords

they are connected to. Unlike the previous chapter, which dealt only with the size

of the neighbor set, the theory developed in this chapter will examine the neighbors

themselves.

5.2 Optimal Pruning

Consider the following algorithm for pruning the codeword set.

Algorithm 5.1: Optimal Codeword Pruning Algorithm

While there are valid codewords left:

Find the set of valid codewords with the lowest degree.

For each codeword W in the set:

Remove W from the set of valid codewords

Decrement the degree of each codeword in W ’s neighbor set.

As this algorithm progresses, the limiting degree will increase, hit a maximum,

and then decrease as the codebook gets depleted. We choose, of course, the set

of codewords that was active when the limiting degree was at its maximum. This

algorithm is optimal, in that it is guaranteed to come up with the best possible set

of codewords. This is proven in the next theorem.

Theorem 5.1: There is no set of codewords that has a higher minimum degree than

that produced by the Optimal Codeword Pruning Algorithm.

Optimal Pruning 45

Proof: At each point during the algorithm, the set of codewords with the lowest

degree is removed. Let us call this set SW . Consider what would happen if a codeword

W not in this set were to be removed instead. The degrees of W ’s neighbors would

decrease, and the limiting degree would decrease if one of these neighbors were in

SW . But the limiting degree could never increase, because it would still be limited

by the codewords in SW . Pruning any codeword results in other codewords’ degrees

decreasing, and until all codewords in SW are removed, the limiting degree can only

decrease or stay constant. Thus, removing W can have no benefits, either future or

present, until SW is removed, which is the procedure followed by the algorithm.

To visualize the pruning process, we can make a plot of the limiting degree versus

codewords pruned as the algorithm runs. Such a plot is called a pruning curve. Figure

5.1 shows the pruning curves for a few values of n. A more extensive collection of

pruning curves can be found in Appendix A. Examining the curves, we observe the

expected shape. The limiting degree increases, hits a maximum roughly in the middle,

and then drops to zero. Table 5.1 shows what this maximum degree is for some values

of n.

As Theorem 5.1 states, the above algorithm is optimal, and can be used to find the

fundamental performance limit for any self-shielding code. Unfortunately, pruning as

described by the optimal algorithm is extremely computationally intensive, both in

terms of running time and memory use. For example, if we implement the algorithm

directly, without using any theoretical tricks, the program requires 2n bits simply to

keep track of which codewords have been pruned. We can divide memory use in half

by only keeping track of codewords where the first bit is 0, since every codeword has

the same properties as its bitwise inverse, but that still would require 256 megabytes

of memory for n = 32. But, such an implementation would be unusably slow because

the program would have to recalculate the degree of every codeword on every pass.

Any practical implementation would keep track of the degree of each codeword, and

that would require 8 gigabytes of memory for n = 32.

Even more prohibitive than memory use is running time. The algorithm has a

46 Chapter 5 Pruned Code With Memory

n=5 n=10

n=15
n=20

Figure 5.1 Pruning Curves.

computational complexity of o(23n), because there are three nested traversals of the

codeword set, which goes as 2n. With moderately optimized code running on a DEC

AlphaServer 8400 5/625, the algorithm took several days to generate the pruning

curve for n = 23. That’s where the author stopped.

But from a theoretical standpoint, the computational complexity of the algorithm

isn’t the main concern—it’s that an algorithm is required in the first place. Optimal

pruning, as described, is a purely experimental procedure. It is very difficult to

come up with a mathematical description for the behavior of the algorithm, and it is

not amenable to the rigorous analysis that we seek. We would prefer to work with

Class Pruning 47

n max degree log2(max degree)

1 2 1.00

2 3 1.58

3 5 2.32

4 9 3.17

5 15 3.91

6 27 4.75

7 46 5.52

8 81 6.34

9 141 7.14

10 245 7.94

11 431 8.75

12 745 9.54

13 1322 10.37

14 2308 11.17

15 4099 12.00

16 7178 12.81

17 12859 13.65

18 22622 14.47

19 40255 15.30

20 71375 16.12

21 126866 16.95

22 225668 17.78

23 400467 18.61

Table 5.1 Maximum Performance After Optimal Pruning.

formulas and equations than experimental data. So, we do what every good engineer

does in such a situation. We make an approximation.

5.3 Class Pruning

Figure 5.2 shows some pruning curves, but with some additional data plotted. We

can now see not just the minimum degree at each point in the algorithm, but also

the class of the codewords being pruned. This appears as a descending staircase,

with class 1 at the top and class n at the bottom. (Again, a more complete set of

pruning curves can be found in Appendix A.) We see that for small n, the codewords

are pruned in class order. That is, all codewords in class c are entirely pruned before

any in class c + 1 are touched. For moderate n, we see a bit of aberration, but the

pruning is still very close to class order. For large n, it appears that most of the time,

there are two classes that are undergoing the bulk of the pruning, which smears out

48 Chapter 5 Pruned Code With Memory

n=10 n=15

n=19 n=23

Figure 5.2 Pruning Curves With Class Designation Line.

the class designation line. However, it is clear that the concept of codeword class is

still playing a strong role in determining the rough pruning order, even if it is not as

strict as we might hope.*

Furthermore, we see that the pruning curves for small and moderate n exhibit very

distinct spikes, one of which is typically at or near the global maximum. Comparing

the location of the spikes to the class designation line reveals that they usually occur

when a particular codeword class has been entirely pruned.

* One may be tempted to blame the breakdown of class order during pruning on the overlaps in
the ranges of degrees for each class, as pointed out earlier in Table 4.2. Although this connection is
not formally justified or even strictly correct, the author likes to believe in it anyway, at least from
a qualitative point of view.

Class Pruning 49

n=9 n=12

n=16
n=19

Figure 5.3 Optimal (solid) and Class (dotted) Pruning Curves.

These observations imply that we might be able to approximate the optimal

pruning behavior by pruning entire classes of codewords at once. The revised pruning

algorithm could be written as follows:

Algorithm 5.2: Class Pruning Algorithm

For each c from 1 to n:

Remove all codewords in class c from the set of valid codewords

Recalculate the degrees of the rest of the codewords

Again, the limiting degree will rise, hit a maximum, and fall. Figure 5.3 shows some

curves generated by this algorithm superimposed on the corresponding optimal curves.

50 Chapter 5 Pruned Code With Memory

Data is given in the form: max degree (bits)

n optimal class pruned error
1 2 (1.00) 2 (1.00)

2 3 (1.58) 3 (1.58)

3 5 (2.32) 5 (2.32)

4 9 (3.17) 9 (3.17)

5 15 (3.91) 15 (3.91)

6 27 (4.75) 27 (4.75)

7 46 (5.52) 46 (5.52)

8 81 (6.34) 81 (6.34)

9 141 (7.14) 141 (7.14)

10 245 (7.94) 243 (7.92) 0.8% (0.02)

11 431 (8.75) 431 (8.75)

12 745 (9.54) 733 (9.52) 1.6% (0.02)

13 1322 (10.37) 1314 (10.36) 0.6% (0.01)

14 2308 (11.17) 2281 (11.16) 1.2% (0.01)

15 4099 (12.00) 3997 (11.96) 2.5% (0.04)

16 7178 (12.81) 7061 (12.79) 1.6% (0.02)

17 12859 (13.65) 12135 (13.57) 5.6% (0.08)

18 22622 (14.47) 21763 (14.41) 3.8% (0.06)

19 40255 (15.30) 37932 (15.21) 5.8% (0.09)

20 71375 (16.12) 66832 (16.03) 6.4% (0.09)

21 126866 (16.95) 118228 (16.85) 6.8% (0.10)

22 225668 (17.78) 204600 (17.64) 9.3% (0.14)

23 400467 (18.61) 366689 (18.48) 8.4% (0.13)

Table 5.2 Comparison of Optimal and Class Pruning.

Numerical results are listed in Table 5.2. There is no guarantee of optimality with

this algorithm. However, we see that for n < 10, the results match exactly with the

optimal. For at least n ≤ 23, which is all the optimal data that is available, the error

is less than 10%, or 0.15 bits. Thus, the approximation is fairly good. Furthermore,

because it is sub-optimal, the results are always achievable.

From an analysis point of view, class pruning is superior to optimal pruning

in two ways. First, a class pruning curve consists of n data points, in contrast to

the 2n points generated by the optimal algorithm. This amount of data is, of course,

exponentially easier to deal with. Secondly, with the right mathematical tools, we can

directly calculate the limiting degree at each point with no need for experimentation.

The n data points can be generated analytically without ever having to traverse the

codeword set. The key to this formulation is the class distribution polynomial.

Derivation of the Class Distribution Polynomial 51

5.4 Derivation of the Class Distribution Polynomial

Definition: D{n1,n2,...,nc}(x) is called the class distribution polynomial for the code-

word {n1, n2, . . . , nc}. The number of class k codewords in this codeword’s neighbor

set is equal to the coefficient of the xk−1 term of the polynomial. Equivalently, we can

say that the number of neighbors with r independent boundaries is equal to the coeffi-

cient of the xr term. We may also speak of distributions of general sets of codewords,

such as subsets of a codeword’s neighbor set, and this again refers to a polynomial as

defined above.

As an example, the class distribution polynomial for the codeword 01001011, or

{3, 4, 1}, is:

D{3,4,1}(x) = 3x+ 9x2 + 17x3 + 22x4 + 18x5 + 9x6 + 2x7 (5.1)

This means that the codeword {3, 4, 1} can transition to zero class 1 codewords, three

class 2 codewords, nine class 3 codewords, and so on.

Note that DW (1) = dW for any codeword W . That is, the sum of the coefficients

of the polynomial is the total degree of the codeword. Thus, in some sense, the theory

in the previous chapter is simply a special case of the more general theory that will

be developed here.* Note also that the highest term of DW (x) will always be 2xn−1,

because there are two class n codewords, 00000 . . . and 11111 . . ., and both of them

can transition to every codeword.

We will now derive the method for computing DW (x).

Definition: Consider a class 1 codeword of width n. Pn(x) is the class distribution

of the set of neighbors of the codeword whose first and last bits are the same value

as those of the codeword. Less formally, we say that Pn(x) is the class distribution

for a class 1 codeword when the first and last bits do not transition.

* As is commonly the situation, the more general theory will prove to be much harder to work
with than the special case.

52 Chapter 5 Pruned Code With Memory

neighbors of 01010
described by: P5(x) = 1 + 3x2 + x4 Q5(x) = x+ 2x3 R5(x) = x

2 + x4

00000 (class 5) 11000 (class 4) 11011 (class 3)
00010 (class 3) 11010 (class 2) 11111 (class 5)
01000 (class 3) 11110 (class 4)
01010 (class 1) –or–
01110 (class 3) 00011 (class 4)

01011 (class 2)
01111 (class 4)

Figure 5.4 Examples of Pn(x), Qn(x), Rn(x).

Definition: Qn(x) is the class distribution for a class 1 codeword of width n,

when the first bit transitions and the last bit does not. (By symmetry, it is also the

distribution when the last bit transitions and the first bit does not.) Rn(x) is the

class distribution when both the first and last bits transition. Qn(x) and Rn(x) will

only be used in this derivation, whereas Pn(x) is a general concept which will be used

throughout the theory.

Examples of the three distributions are shown in Figure 5.4.

Theorem 5.2:

Qn(x) = xPn−1(x) (5.2)

Proof: Consider a class 1 codeword of width n. Qn(x) is the distribution of the

neighbors which cause the first bit to transition and the last bit to stay. In a class

1 codeword, if the first bit transitions, the second bit must stay; otherwise, it would

violate the Fundamental Rule. The second through nth bits now form a class 1

codeword with the first and last bits staying, and thus the distribution of this smaller

codeword can be described with Pn−1(x). However, in a class 1 codeword, if one bit

transitions and an adjacent bit does not, an independent boundary is created between

the two bits, because they are now the same value. Thus, there is an independent

boundary between the first and second bits of every neighbor described by Qn(x),

so we must increment the class numbers in Pn−1(x) by one. Thus, we get xPn−1(x).

This is illustrated in Figure 5.5.

Derivation of the Class Distribution Polynomial 53

neighbors of 010101 neighbors of 010101
described by Q6(x): described by R6(x):

1 1 0 0 0 1
1 1 0 1 0 1

1 1 0 1 1 1 1 1 0 0 0 0
1 1 1 1 0 1 1 1 0 1 0 0

1

x
↓
1 1 1 1 1︸ ︷︷ ︸
P5(x)

1

x
↓
1 1 1 0︸ ︷︷ ︸
P4(x)

0

x
↓

Figure 5.5 Expressing Qn(x) and Rn(x) in Terms of Pn(x).

Theorem 5.3:

Rn(x) = x
2Pn−2(x) (5.3)

Proof: Consider a class 1 codeword of width n. Rn(x) is the distribution of neighbors

that cause the first bit and last bits to transition. Thus, the second and second-to-last

bits must stay, and the second through second-to-last bits form a class 1 codeword

that can be described by Pn−2(x). Two independent boundaries are created between

the first and second bits and between the second-to-last and last bits. Thus, the class

numbers in Pn−2(x) must be bumped up by two. This gives us x2Pn−2(x). This is

illustrated in 5.5.

Theorem 5.4: Pn(x) is an even polynomial.

Proof: Consider, without loss of generality, a class 1 codeword that begins with a 0

bit. If we name the first bit “bit 1”, this codeword has 0’s in odd-numbered bits and

1’s in even numbered bits. Because Pn(x) only considers neighbors who also begin

with a 0 bit, we can generate all of the interesting neighbors by replacing some set of

dependent boundaries with independent boundaries. (Recall that a class 1 codeword

has only dependent boundaries.) However, each time we add an independent bound-

ary, we swap the phase described above. That is, to the right of the first independent

boundary, there are 0’s in even-numbered positions and 1’s in odd-numbered posi-

tions. To the right of the second independent boundary, we are back to the original

54 Chapter 5 Pruned Code With Memory

second bit second bit
stays transitions

0101010 0101010 0101010
↓ ↓ ↓

0.........0︸ ︷︷ ︸ 01........0︸ ︷︷ ︸ 00........0︸ ︷︷ ︸
P7(x) = P6(x) + x

↓
Q6(x) = P6(x) + x

2P5(x)

Figure 5.6 Recursion of Pn(x).

phase, and so on. It is easy to see that if there is an odd number of independent

boundaries, the last bit will be different than it was in the original codeword, and

if there is an even number, it will be the same. However, the definition of Pn(x)

requires the last bit not to transition. Thus, we can only consider neighbors with an

even number of independent boundaries. Since class was defined as the number of

independent boundaries plus one, these are the neighbors in odd-numbered classes.

But, for each term in a class distribution polynomial, the power of x is one less than

the class number that the term represents. Pn(x) will therefore only have terms with

even powers of x. Thus, it is an even polynomial.

Corollary: Qn(x) is an odd polynomial, and Rn(x) is an even polynomial.

Proof: If P (x) is even, then xP (x) is odd, and x2P (x) is even. Using the identities

in Theorem 5.2 and 5.3, we see that Q(x) is odd and R(x) is even.

Theorem 5.5:

Pn(x) = Pn−1(x) + x
2Pn−2(x) (5.4)

Proof: Consider a class 1 codeword of width n. Pn(x) only considers neighbors that

cause the first and last bits not to transition. Given that the first and last bits are

staying, the second bit can either stay or transition. If the second bit stays, then

the second through nth bits form a class 1 codeword with a distribution described by

Pn−1(x). Because the first and second bits are both staying, there is still a dependent

boundary between them, and the class numbers in Pn−1(x) do not have to be adjusted.

If the second bit transitions, then the second through nth bits form a class 1 codeword

Derivation of the Class Distribution Polynomial 55

with a distribution described by Qn−1(x). However, the first and second bits are now

the same, creating an independent boundary which increments the class numbers.

Thus, the distribution for this possibility is xQn−1(x), which by Theorem 5.2 can be

written as x2Pn−2(x). The overall distribution is the sum of these two possibilities,

so Pn(x) = Pn−1(x) + x
2Pn−2(x). This is illustrated in Figure 5.6.

Corollary:

Qn(x) =Qn−1(x) + x
2Qn−2(x) (5.5)

Rn(x) =Rn−1(x) + x
2Rn−2(x) (5.6)

Proof: Multiplying both sides of (5.4) by x or x2 and applying Theorem 5.2 or 5.3

respectively will generate the same recursion in terms of Qn(x) or Rn(x).

Theorem 5.6:

Pn(x) =

n−1
2 �∑
j=0

(
n− j − 1

j

)
x2j (5.7)

Proof: Instead of proving this directly, we will express Pn(x) in terms of another

polynomial, and use the well-known properties of that polynomial to get our result.

The Fibonacci Polynomial is defined by the recurrence equation:

Fn(u) = uFn−1(u) + Fn−2(u) (5.8)

with F1(u) = 1 and F2(u) = u. If we make the change of variables u = 1/x, we can

rewrite (5.8) as

xFn

(
1

x

)
= Fn−1

(
1

x

)
+ xFn−2

(
1

x

)
. (5.9)

Now, let us try the substitution

Fk

(
1

x

)
= x1−kPk(x) . (5.10)

Plugging this into (5.9), we get

x2−nPn(x) = x2−nPn−1(x) + x
4−nPn−2(x) . (5.11)

56 Chapter 5 Pruned Code With Memory

Multiplying both sides by xn−2 results in an equation identical to (5.4). Thus, (5.10)

is a valid identity, provided it holds for two initial conditions as well. (Two initial

conditions are required because the difference equation is second-order.)

A 1-bit class 1 codeword is the codeword “0”. It has two neighbors, 0 and 1, but

only one of them leaves the first and last bits unchanged. That neighbor is, of course,

itself, and the first and last bits refer to the same bit. A 2-bit class 1 codeword is

“01”. It has three neighbors, 00, 01, and 11, but only one of them, namely itself,

leaves the first and last bits unchanged, because the codeword is only two bits to

begin with. Thus, our initial conditions are:

P1(x) = 1, P2(x) = 1 . (5.12)

Trying these conditions with our identity in (5.10) results in

F1

(
1

x

)
= 1, F2

(
1

x

)
=

1

x
. (5.13)

Changing variables back to u, we get

F1(u) = 1, F2(u) = u (5.14)

which is identical to the initial conditions of the Fibonacci Polynomial given earlier.

Thus (5.10) is a valid identity.

It has been shown [10] that the Fibonacci Polynomial can also be written as a

sum of terms as follows:

Fn(x) =

n−1
2 �∑
j=0

(
n− j − 1

j

)
xn−2j−1 (5.15)

Simply applying (5.10) to (5.15) results in the equation in (5.7).

Remark: Note that (5.7) is only valid for n ≥ 1. In order to find Pn(x) for n ≤ 0,

we must use Theorem 5.5 and iterate back to it. Interestingly, Pn(x) is well-defined

and consistent for for n ≤ 0, although it loses physical meaning.

Derivation of the Class Distribution Polynomial 57

P0(x) = 0

P1(x) = 1

P2(x) = 1

P3(x) = 1 + x2

P4(x) = 1 + 2x2

P5(x) = 1 + 3x2 + x4

P6(x) = 1 + 4x2 + 3x4

P7(x) = 1 + 5x2 + 6x4 + x6

P8(x) = 1 + 6x2 + 10x4 + 4x6

P9(x) = 1 + 7x2 + 15x4 + 10x6 + x8

Table 5.3 Pn(x).

Remark: Pn(x) is going to become a cornerstone of many of the expressions and

theorems that follow in this chapter. However, a comparison of (5.7) and (5.15) re-

veals that Pn(x) and the Fibonacci Polynomial have the exactly same coefficients, but

in the opposite order. This implies that if we had defined the class distribution poly-

nomial differently, or perhaps even defined the notion of class in terms of dependent

boundaries instead of independent boundaries, we could be using Fn(x) instead as the

basis for class distribution theory. There is something to be said for attempting to

express results in terms of classical functions whenever possible instead of introducing

new functions, both because of the potential to leverage previous research and the

stigma associated with renaming an old idea. However, using the Fibonacci Polyno-

mial would have made the work awkward and messy, and was not worth it.* Thus,

we stick with Pn(x).

Pn(x) for some values of n is listed in Table 5.3. A more extensive table of these

polynomials can be found in Appendix B.

* In a similar vein, some thought was given to using the classical Fibonacci sequence Fn instead
of dn in the work in the previous chapter, since dn = Fn+2. This proved to be extremely awkward.
It was much more natural to simply define a new sequence dn and express results in terms of it.

58 Chapter 5 Pruned Code With Memory

WA = 011010 WB = 01101 WC = 01101001101

↓ ↓ ↓
A(x) →1 B(x) → 0....... C(x) →10.......

Figure 5.7 Illustration of Theorem 5.7.

Theorem 5.7: Let A(x) be the distribution of some codeword WA (not necessarily

class 1) where its rightmost bit transitions. Let B(x) be the distribution of some other

codeword WB where its leftmost bit does not transition. Further, let the rightmost

bit of WA and the leftmost bit of WB have the same value. Suppose we form a new

codeword WC by concatenating the two codewords, WAWB, and let C(x) be the

distribution of WC where the bits across the concatenation boundary transition and

don’t transition respectively, as illustrated in Figure 5.7. Then,

C(x) = A(x)B(x) . (5.16)

Proof: Because the rightmost bit of WA and the leftmost bit of WB are the same,

the concatenation has an independent boundary where they were joined. According

to Theorem 4.2, the set of transitions allowed on one side of the boundary cannot

be restricted by the choice of a transition on the other side. Thus, each neighbor of

WA described by A(x) can be paired with each neighbor of WB described by B(x).

Suppose a neighbor of WA with rA independent boundaries is paired with a neighbor

of WB with rb independent boundaries. The neighbor of WC that is formed this way

has rA+rB independent boundaries, because the independent boundaries that were in

WA’s neighbor and WB’s neighbor are still there, and no new independent boundary

was created in the concatenation because WA’s neighbor’s rightmost bit and WB’s

neighbor’s leftmost bit are different. We know this because A(x) describes neighbors

where the rightmost bit transitions and B(x) describes neighbors where the leftmost

bit does not transition, and both bits started out as the same value.

Thus, if there are kA neighbors of WA that have rA independent boundaries, and

kB neighbors of WB that have rB independent boundaries, then they will generate

Derivation of the Class Distribution Polynomial 59

WA = 011010 WB = 01101 WC = 01101001101

↓ ↓ ↓
A(x) →1 B(x) → 1....... C(x) →11.......

WA = 011010 WB = 01101 WC = 01101001101

↓ ↓ ↓
A(x) →0 B(x) → 0....... C(x) →00.......

Figure 5.8 Illustration for Second Corollary of Theorem 5.7.

kA kB neighbors ofWC with rA+rB independent boundaries. That is, the kAx
rA term

in A(x) and the kBx
rB term in B(x) should combine somehow to form a kA kB x

rA+rB

term in C(x). Furthermore, C(x) should consist of the sum of all such terms that

can be generated in this way by pairing terms of A(x) and terms of B(x). Polyno-

mial multiplication is exactly this operation. Thus C(x) can be formed by simply

multiplying A(x) and B(x).

Corollary: If we instead let A(x) be the distribution where WA’s rightmost bit does

not transition, and B(x) be the distribution where WB’s leftmost bit does transition,

and swap the definition of C(x) accordingly, (5.16) still holds.

Proof: This is exactly equivalent to the situation in the Theorem, but with the bit

ordering reversed.

Corollary: If we let A(x) be the distribution where WA’s rightmost bit transitions

and B(x) be the distribution where WB’s leftmost bit transitions, or if we let A(x)

be the distribution where WA’s rightmost bit does not transition and B(x) be the

distribution where WB’s leftmost bit does not transition, and restrict the transitions

across the concatenation boundary in WC accordingly as illustrated in Figure 5.8,

then we get

C(x) = xA(x)B(x) . (5.17)

Proof: In both cases, the two bits around the concatenation boundary in the neigh-

bors of WC are the same. This creates an additional independent boundary, and thus

60 Chapter 5 Pruned Code With Memory

the powers of x must all be incremented by one.

Definition: Mn(x) is the two-by-two matrix of polynomials:

Mn =

[
xPn Pn + x

2Pn−1

Pn + (x2 − 1)Pn−1 xPn + xPn−1

]
(5.18)

where the “(x)” suffix has been omitted for clarity.

Theorem 5.8: Suppose we have [A(x) B(x)], where A(x) is now the distribution

of some codewordW where the rightmost bit transitions, and B(x) is the distribution

where the rightmost bit does not transition. Now, let us form a new codeword Wnew

by adding an n-bit section to the end. The new distributions [Anew(x) Bnew(x)],

defined as above, can be calculated as

[Anew(x) Bnew(x)] = [A(x) B(x)]Mn(x) (5.19)

where standard matrix multiplication is implied.

Proof: Because the n-bit section being added is, in isolation, a class 1 codeword, the

Pn(x), Qn(x), and Rn(x) distributions, as defined, apply to it.

First, we will calculate Anew(x). Neighbors described by Anew(x) must only be

those that cause the rightmost bit of Wnew to transition. That rightmost bit is the

rightmost bit of the new section. Given that the rightmost bit of the section must

transition, we see by definition that Rn(x) is the distribution of the section where its

leftmost bit transitions, and Qn(x) is the distribution where the leftmost bit stays.

We know that A(x) is the distribution of W where the rightmost bit transitions, and

B(x) is the distribution where the rightmost bit stays. Furthermore, adding a section

to a codeword by definition entails adding an independent boundary, meaning that

the leftmost bit of the section and the rightmost bit ofW are the same value. We are

concatenating W and the section, and thus can use the results of Theorem 5.7 and

its corollaries.

Derivation of the Class Distribution Polynomial 61

Anew(x) = xA(x)Rn(x) (both bits across junction tranistion)

+ xB(x)Qn(x) (neither bit across junction tranisitions)

+ A(x)Qn(x) (transition on left side of junction only)

+ B(x)Rn(x) (transition on right side of junction only) (5.20)

Calculation of Bnew(x) is similar. Neighbors described by Bnew(x) must only be

those that cause the rightmost bit of Wnew, and thus the section, to stay. Given

that the rightmost bit of the section must stay, we see by definition that Qn(x) is

the distribution of the section where its leftmost bit transitions, and Pn(x) is the

distribution where the leftmost bit stays.

Bnew(x) = xA(x)Qn(x) (both bits across junction tranistion)

+ xB(x)Pn(x) (neither bit across junction tranisitions)

+ A(x)Pn(x) (transition on left side of junction only)

+ B(x)Qn(x) (transition on right side of junction only) (5.21)

We find that we can write (5.20) and (5.21) compactly in matrix form:

[Anew Bnew] = [A B]

[
xRn +Qn xQn + Pn
xQn +Rn xPn +Qn

]
(5.22)

Substituting the identities in Theorems 5.2 and 5.3 for Qn(x) and Rn(x), we can write

the matrix on the right as[
x3Pn−2 + xPn−1 x2Pn−1 + Pn
x2Pn−1 + x

2Pn−2 xPn + xPn−1

]
. (5.23)

We can then use the recursion formula in Theorem 5.5 to write (5.23) entirely in

terms of Pn(x) and Pn−1(x).[
xPn Pn + x

2Pn−1

Pn + (x2 − 1)Pn−1 xPn + xPn−1

]
(5.24)

This is by definition the Mn(x) matrix, and thus (5.19) holds.

62 Chapter 5 Pruned Code With Memory

Theorem 5.9:

D{n1,n2,...,nc}(x) =
1

x+ 1
[1 1]

(
c∏
i=1

Mni
(x)

)[
1
1

]
(5.25)

Proof: Consider the codeword W = {n1, n2, . . . , nc}. If we let A1(x) be the distri-

bution of the first section of W where its rightmost bit transitions, and B1(x) be the

distribution where its rightmost bit stays, and define AW (x) and BW (x) similarly for

the entire codeword, Theorem 5.8 can be applied (c− 1) times to give us

[AW (x) BW (x)] = [A1(x) B1(x)]

(
c∏
i=2

Mn1(x)

)
(5.26)

Although (5.26) is a valid and even usable formula for calculating the distribution of

a codeword, it is not especially convenient because the first section is treated special.

We would prefer to express [A1(x) B1(x)] in terms of Mn1(x), so the first section

simply can be incorporated into the product. Because A1(x) and B1(x) describe the

distribution of a class 1 codeword, we can write them in terms of Pn(x), Qn(x), and

Rn(x). Simply from the definitions, we see that

[A1(x) B1(x)] = [Rn1(x) +Qn1(x) Qn1(x) + Pn1(x)] . (5.27)

Recalling from (5.22) that Mn(x) can be written as[
xRn +Qn xQn + Pn
xQn +Rn xPn +Qn

]
(5.28)

we can factor out the matrix in (5.27) to find that

[Rn1(x) +Qn1(x) Qn1(x) + Pn1(x)] =
[

1
x+1

1
x+1

][
xRn1 +Qn1 xQn1 + Pn1

xQn1 +Rn1 xPn1 +Qn1

]
(5.29)

or equivalently,

[A1(x) B1(x)] =
1

x+ 1
[1 1]Mn1(x) (5.30)

Combining this identity with (5.26) results in

[AW (x) BW (x)] =
1

x+ 1
[1 1]

(
c∏
i=1

Mni
(x)

)
(5.31)

Derivation of the Class Distribution Polynomial 63

Because AW (x) represents the distribution when the rightmost bit of W transitions,

and BW (x) represents the distribution when the rightmost bit does not transition,

the total distribution is simply the sum of these two:

D{n1,n2,...,nc}(x) = [AW (x) BW (x)]

[
1
1

]
(5.32)

Combining (5.31) with (5.32) gives us our final answer:

D{n1,n2,...,nc}(x) =
1

x+ 1
[1 1]

(
c∏
i=1

Mni
(x)

)[
1
1

]
(5.33)

which is identical to (5.25).

Remark: Recall from (4.9) that the expression for computing the total degree of a

codeword is

d{n1,n2,...,nc} =
c∏
i=1

dni
(5.34)

Notice how similar in form this expression is to (5.33). Both involve the product over

all sections of an entity that depends only on the section width. The distribution

polynomial, however, depends on the order the sections are in, and this is reflected

by the fact that matrix multiplication is non-commutative. It is, however, associative,

which means that
c∏
i=1

Mni
(x) (5.35)

can be computed by grouping the sections in any way we choose. Once we have (5.35),

finding D{n1,n2,...,nc}(x) is a simple matter of summing the elements of the matrix and

dividing by (x+ 1).

Table 5.4 lists Mn(x) for a few values of n. A more extensive table of these

matrices and some of their products can be found in Appendix C.

We have now derived the method for computing the class distribution polyno-

mial. Before we go on to wield it and prove lots of interesting results, it is worth

mentioning that the use of a polynomial to represent class distribution is admittedly

completely a gimmick. The author feels this way because the polynomial is never

64 Chapter 5 Pruned Code With Memory

M1(x) =

[
x 1
1 x

]

M2(x) =

[
x 1 + x2

x2 2x

]

M3(x) =

[
x+ x3 1 + 2x2

2x2 2x+ x3

]

M4(x) =

[
x+ 2x3 1 + 3x2 + x4

2x2 + x4 2x+ 3x3

]

M5(x) =

[
x+ 3x3 + x5 1 + 4x2 + 3x4

2x2 + 3x4 2x+ 5x3 + x5

]

M6(x) =

[
x+ 4x3 + 3x5 1 + 5x2 + 6x4 + x6

2x2 + 5x4 + x6 2x+ 7x3 + 4x5

]

Table 5.4 Mn(x).

actually evaluated, except possibly at x = 1 to represent the sum of the terms. The

variable x has no physical meaning; it simply serves as a placeholder. In fact, if

we chose to represent class distribution with a vector instead of a polynomial, the

theory would work out exactly the same, except with vector convolution in place of

polynomial multiplication, as shown in Figure 5.9. (This is in fact how the class

distribution functions were implemented with Matlab.) There are three reasons for

using polynomials instead of the somewhat more honest approach of using vectors.

First, matrices of vectors look awkward. Secondly, (5.33) and (5.34) can be written

in a similar form, as a product over sections, which emphasizes that they are related.

Thirdly, we are all familiar with the operation of factoring polynomials, whereas few

of us learned to deconvolve vectors in high school algebra.

A further justification has to do with the similarity of Pn(x) to the Fibonacci

Polynomial. If expressing the work in terms of polynomials results in a classical,

well-known function popping up, then we are probably doing something right.

Properties of the Class Distribution Polynomial 65

polynomial multiplication(
x+ 3x3 + x5

)(
1 + 6x2 + 10x4 + 4x6

)
= x+ 9x3 + 29x5 + 40x7 + 22x9 + 4x11

vector convolution

< 0, 1, 0, 3, 0, 5 > ∗ < 1, 0, 6, 0, 10, 0, 4 > = < 0, 1, 0, 9, 0, 29, 0, 40, 0, 22, 0, 4>

Figure 5.9 Polynomial Multiplication Versus Vector Convolution.

5.5 Properties of the Class Distribution Polynomial

Some experimentation with the class distribution polynomial reveals an interesting

fact. Many codewords have a particular class number below which they have no

neighbors whatsoever. For example, the codeword {1, 2, 3, 4, 5} can only transition to

codewords in class 4 or higher; it has no neighbors in classes 1 through 3. Exploration

of this phenomenon proves useful for the analysis of class pruning, so we will derive

a method for computing the lowest class that a given codeword can transition to.

Because this derivation is somewhat complicated, it has been broken up into a number

of lemmas, which will be combined in Theorem 5.10.

Definition: Let oT , where T is a matrix of polynomials, denote a matrix that con-

sists of the lowest-ordered term of each element of T , with the coefficient set to one.*

For example,

o

[
x3 + x 2x2 + 1
x4 + 2x2 3x3 + 2x

]
=

[
x 1
x2 x

]
(5.36)

Lemma 5.1: For two matrices T and S,

o(TS) = o((oT)(oS)) (5.37)

Proof: Let us represent T and S in a general form as

T =

[
ka1x

a + ka2x
a+1 + . . . kc1x

c + kc2x
c+1 + . . .

kb1x
b + kb2x

b+1 + . . . kd1x
d + kd2x

d+1 + . . .

]
* Do not confuse this with the customary usage of o, which is typically used to refer to an

unspecified polynomial with the argument as the highest-ordered term.

66 Chapter 5 Pruned Code With Memory

S =

[
ke1x

e + ke2x
e+1 + . . . kg1x

g + kg2x
g+1 + . . .

kf1x
f + kf2x

f+1 + . . . kh1x
h + kh2x

h+1 + . . .

]
(5.38)

where “. . .” represents higher order terms. If we calculate the top-left element of TS,

we get

ka1ke1x
a+e + (ka1ke2 + ka2ke1)x

a+e+1 + . . .

+ kc1kf1x
c+f + (kc1kf2 + kc2kf1)x

c+f+1 + . . . (5.39)

Applying the o operation to (5.39) results in

o
(
xa+e + xc+f

)
(5.40)

which is the same as the top-left element of o((oT)(oS)). The other three elements

of the matrix can similarly be verified.

With the previous lemma established, the distributive property of the o operator

will often be used implicitly from this point on.

Lemma 5.2:

oMn =



[
x 1
x2 x

]
for n > 1[

x 1
1 x

]
for n = 1

(5.41)

Proof: (5.7) tells us that the lowest term of Pn(x) is(
n− j − 1

j

)
x2j

∣∣∣∣
j=0

=

(
n− 1

0

)
= 1 (5.42)

That is, a class 1 codeword can only transition to one class 1 codeword, namely, itself.

However (5.7) is only valid for n ≥ 1. With the help of Theorem 5.5, we can calculate

P0(x):

P0(x) =
1

x2
(P2(x)− P1(x)) =

1

x2
(1− 1) = 0 (5.43)

Thus, the lowest term of Pn(x) and Pn−1(x) is always 1, except for n = 1, for which

Pn−1(x) equals zero. Plugging this information into the definition of Mn(x)[
xPn Pn + x

2Pn−1

Pn + (x2 − 1)Pn−1 xPn + xPn−1

]
(5.44)

and taking the lowest term of each element, we see that (5.41) holds.

Properties of the Class Distribution Polynomial 67

Lemma 5.3: If, for some matrix T , oT is equal to[
x 1
x2 x

]
(5.45)

or any mirror image thereof (horizontally flipped, vertically flipped, or both), then

o

(
T

[
x 1
1 x

])
(5.46)

is equal to oT flipped horizontally.

Proof: Let us represent oT in a general form as[
xa xc

xb xd

]
(5.47)

(5.46) is then equal to

o

([
xa xc

xb xd

][
x 1
1 x

])
= o

[
xa+1 + xc xc+1 + xa

xb+1 + xd xd+1 + xb

]
(5.48)

When we apply the o operation to the matrix on the right, the higher of the two

terms in each element will disappear. We see that the term that is of the form xk+1

will always be higher or equal to the term that it is being added to, as long as

−1 ≤ a− c ≤ 1 and − 1 ≤ b− d ≤ 1 (5.49)

It is easy to see that in (5.45) or any mirror image, (a− c) and (b−d) are always ±1.

Thus, (5.49) holds, and we can neglect the xk+1 terms in (5.48). This leaves us with[
xc xa

xd xb

]
(5.50)

which is indeed the horizontal mirror image of (5.47).

Lemma 5.4: If, for some matrix T , oT is equal to[
x 1
x2 x

]
(5.51)

or any mirror image thereof (horizontally flipped, vertically flipped, or both), then

o

([
x 1
1 x

]
T

)
(5.52)

is equal to oT flipped vertically.

68 Chapter 5 Pruned Code With Memory

Proof: This proof is very similar to that of Lemma 5.3. If we represent oT as in

(5.45), then (5.52) is equal to

o

([
x 1
1 x

][
xa xc

xb xd

])
= o

[
xa+1 + xb xc+1 + xd

xb+1 + xa xd+1 + xc

]
(5.53)

The terms of the form xk+1 will disappear, as long as

−1 ≤ a− b ≤ 1 and − 1 ≤ c− d ≤ 1 (5.54)

In (5.51) or any mirror image, (a− b) and (c− d) are always ±1. Thus, (5.54) holds,

and we can neglect the xk+1 terms in (5.53). This leaves us with

o

[
xb xd

xa xc

]
(5.55)

which is indeed the vertical mirror image of (5.47).

Lemma 5.5: Let T be some matrix such that

oT =

[
x 1
x2 x

]
. (5.56)

Then,

o
(
T k
)
= xk−1oT (5.57)

Proof:

o

([
x 1
x2 x

][
x 1
x2 x

])
=

[
x2 x
x3 x2

]
= x

[
x 1
x2 x

]
(5.58)

If we apply (5.58) k − 1 times, we come out with (5.57).

Lemma 5.6: Let T and S be some matrices such that

oT = oS =

[
x 1
1 x

]
(5.59)

Then,

o

(
T

[
x 1
x2 x

]
S

)
= oT (5.60)

Proof:

o

([
x 1
x2 x

][
x 1
1 x

][
x 1
x2 x

])
= o

([
1 x
x x2

][
x 1
x2 x

])
=

[
x 1
x2 x

]
(5.61)

Properties of the Class Distribution Polynomial 69

We are now equipped to tackle the theorem.

Theorem 5.10: Consider a codeword W . Let W ′ be W with all pairs of adjacent 1-

bit sections removed. Let k be the number of boundaries between adjacent non-1-bit

sections in W ′. The lowest class number in the neighbor set of W is k + 1.

Proof: Consider a codeword W = {n1, n2, . . . , nc}. According to Lemma 5.1,

o

(
c∏
i=1

Mni

)
= o

(
c∏
i=1

oMni

)
(5.62)

Therefore, we need only consider oMni
, never Mni

itself. From Lemma 5.2 we know

that

oMn =



[
x 1
x2 x

]
for n > 1[

x 1
1 x

]
for n = 1

(5.63)

and (5.62) is thus the product of some combination of the two matrices in (5.63). From

Lemmas 5.3 and 5.4, we know that multiplying by an oM1 matrix simply results in a

flip. Since two flips in a row cancel each other out, we know we can remove adjacent

pairs of oM1 matrices without affecting the final result. The product now consists

of strings of oMn>1 matrices separated by single oM1 matrices. By Lemma 5.5, we

know that the product of (k+1) oMn>1 matrices is equal to (xk oMn>1). If we apply

this rule to each string of oMn>1 matrices, letting kj represent the length of each

string minus one, we get a factor of x
∑

j
kj times an alternating pattern of oMn>1

matrices and oM1 matrices. Employing Lemma 5.6, we can collapse this down to a

single oMn>1 matrix, possibly with a oM1 matrix to the left and/or right of it. By

Lemmas 5.3 and 5.4, this is simply some mirror image of oMn>1, and thus its lowest

term is 1. Therefore, the lowest term in

c∏
i=1

Mn1(x) (5.64)

has the power
∑

j kj and consequently, so does the lowest term in the sum of the

elements of (5.64). Dividing by (x+1) does not change the power of the lowest term,

70 Chapter 5 Pruned Code With Memory

W = {2, 3, 1, 1, 1, 4, 1, 1, 5, 6, 1, 7}

W ′ = {2,
↑
3, 1, 4,

↑
5,
↑
6, 1, 7} (all {1, 1} pairs removed)

Three boundaries between non-1-bit sections.

Lowest class in W ’s neighbor set is 4.

Figure 5.10 Example of Theorem 5.10.

and thus the lowest term of

D{n1,n2,...,nc}(x) =
1

x+ 1
[1 1]

(
c∏
i=1

Mni
(x)

)[
1
1

]
(5.65)

has this power. This means that the lowest class number in the neighbor set is equal

to

1 +
∑
j

kj (5.66)

which is equivalent to what is stated in the theorem. An example is shown in Figure

5.10.

Corollary: A codeword that contains no 1-bit sections cannot transition to any

codeword in a class lower than its own.

Proof: If c is the codeword class, than such a codeword has (c− 1) boundaries be-

tween non-1-bit sections, and by the Theorem, the lowest class number in its neighbor

set is ((c− 1) + 1), or c.

Our next theorem concerns an interesting and useful relationship that shows up

when a codeword is bitwise rotated through an independent boundary.

Theorem 5.11: Consider a codewordW = {n1, n2, . . . , nc}. LetWr be the codeword

that results when W is rotated through r independent boundaries. That is,

Wr = {nr+1, nr+2, . . . , nc, n1, n2, . . . , nr} (5.67)

Properties of the Class Distribution Polynomial 71

Although W and Wr may have different distributions, the sum of the neighbors in

the pair of classes, k and k+ 1, is the same for all r, where k is any even number if c

is even, or any odd number if c is odd. That is, the sum of the coefficients of the xk−1

and xk terms of the distribution stay constant when the codeword is rotated through

any independent boundary.

Proof: By Theorem 5.4, we know that Pn(x) is an even polynomial. Studying the

definition of Mn(x) [
xPn Pn + x

2Pn−1

Pn + (x2 − 1)Pn−1 xPn + xPn−1

]
(5.68)

we see that it has the form [
odd even
even odd

]
(5.69)

It is easy to verify that, for any matrices of polynomials,[
odd even
even odd

][
odd even
even odd

]
=

[
even odd
odd even

]
(5.70)

and [
even odd
odd even

][
odd even
even odd

]
=

[
odd even
even odd

]
(5.71)

It follows that

c∏
i=1

Mni
=



[
odd even
even odd

]
if c is odd[

even odd
odd even

]
if c is even

(5.72)

Now, let us realize that rotation through the rth independent boundary is equivalent

to splitting the codeword at this boundary, and swapping the two halves. That is,

DWr =
1

x+ 1
[1 1]

(
c∏

i=r+1

Mni
(x)

r∏
i=1

Mni
(x)

)[
1
1

]
(5.73)

This can also be seen by simply examining (5.67). Let us say that

r∏
i=1

Mni
=

[
A1 C1

B1 E1

]
and

c∏
i=r+1

Mni
=

[
A2 C2

B2 E2

]
(5.74)

We then calculate that
r∏
i=1

Mni

c∏
i=r+1

Mni
=

[
A1A2 + C1B2 A1C2 + C1E2

B1A2 + E1B2 B1C2 + E1E2

]
(5.75)

72 Chapter 5 Pruned Code With Memory

D{1,2,3,4,5} = 27x3 +72x4 +210x5 +375x6 +542x7 +636x8 +557x9 +398x10 +206x11 +77x12 +18x13 +2x14

D{2,3,4,5,1} = 27x3 +72x4 +210x5 +375x6 +542x7 +636x8 +557x9 +398x10 +206x11 +77x12 +18x13 +2x14

D{3,4,5,1,2} = 9x2 +18x3 +111x4 +171x5 +420x6 +497x7 +646x8 +547x9 +399x10 +205x11 +77x12 +18x13 +2x14

D{4,5,1,2,3} = 9x2 +18x3 +105x4 +177x5 +405x6 +512x7 +641x8 +552x9 +399x10 +205x11 +77x12 +18x13 +2x14

D{5,1,2,3,4} = 9x2 +18x3 +106x4 +176x5 +412x6 +505x7 +646x8 +547x9 +398x10 +206x11 +77x12 +18x13 +2x14︸︷︷︸
27

︸︷︷︸
282

︸︷︷︸
917

︸︷︷︸
1193

︸︷︷︸
604

︸︷︷︸
95

Figure 5.11 Example of Theorem 5.11.

and
c∏

i=r+1

Mni

r∏
i=1

Mni
=

[
A1A2 +B1C2 C1A2 + E1C2

A1B2 +B1E2 C1B2 + E1E2

]
(5.76)

Now, let us assume that c is odd. When we sum the elements of (5.75) or (5.76), the

odd part of the result will be the sum of the top-left element and the bottom-right

element, as implied by (5.72). Notice that this sum is the same for both (5.75) and

(5.76). That is,

Odd

(
[1 1]

r∏
i=1

Mni

c∏
i=r+1

Mni

[
1
1

])

= Odd

(
[1 1]

c∏
i=r+1

Mni

r∏
i=1

Mni

[
1
1

])
= A1A2 +B1C2 + C1B2 + E1E2 (5.77)

This means that the odd terms of (x + 1)DWr are constant for all choices of r. If

the odd terms of DWr + x DWr are constant, then the xk coefficient plus the xk−1

coefficient of DWr must be constant for all odd k. If we instead assume that c is

even, we can simply replace the word “odd” with “even” in the above argument. An

example is shown in Figure 5.11.

Corollary: Even if all codewords in the classes less than c are pruned away, the

degree after pruning of Wr is the same for all r.

Proof: By the Theorem, we know that the sum of the neighbors in classes c and

c+1 is constant with respect to r, as well as classes c+2 and c+3, classes c+4 and

Properties of the Class Distribution Polynomial 73

c + 5, and so on. This may leave one class unpaired at the end, but we know that

every codeword has exactly two neighbors in class n. Thus, the sum of the neighbors

in classes c through n is constant with respect to r.

As a result of Theorem 5.11 and its corollary, we often will be able to disregard

the rotation of a codeword when dealing with class pruning. That is, we will often

be able to prove a result for one specific codeword, and have the result hold for all

rotations of that codeword.

Unlike the previous two theorems, which are quite useful, the following two formu-

las are unfortunately rather unwieldy and difficult to apply. They are here because

I calculated them, and because there might someday be a use for them, however

unlikely that appears. Derivations are not shown.

Useless Formula 5.1: MaMb =

(x2 + 1)PaPb + x

2Pa−1Pb + (x2 − 1)PaPb−1 + (x4 − x2)Pa−1Pb−1

2xPaPb + x
3Pa−1Pb + (x3 + x)PaPb−1 + x

3Pa−1Pb−1

2xPaPb + x
3Pa−1Pb + (x3 − x)PaPb−1 + (x3 − x)Pa−1Pb−1

(x2 + 1)PaPb + (2x2 − 1)Pa−1Pb + 2x2PaPb−1 + x
4Pa−1Pb−1




(5.78)

Useless Formula 5.2:

Mk
n =

[
a1u

k + a2v
k c1u

k + c2v
k

b1u
k + b2v

k e1u
k + e2v

k

]
(5.79)

where

q =
√
P 2
n + (2x2 + 1)PnPn−1 +

(
x4 − 3

4

)
P 2
n−1 (5.80)

u = xPn+ 1
2
Pn−1 + q, v = xPn + 1

2
Pn−1 − q (5.81)

a1 =
1

2
− xPn−1

4q
, a2 =

1

2
+
xPn−1

4q
(5.82)

b1 =
Pn + (x2 − 1)Pn−1

2q
, b2 = −Pn + (x2 − 1)Pn−1

2q
(5.83)

c1 =
Pn + x

2Pn−1

2q
, c2 = −Pn + x

2Pn−1

2q
(5.84)

e1 =
1

2
+
xPn−1

4q
, e2 =

1

2
− xPn−1

4q
(5.85)

74 Chapter 5 Pruned Code With Memory

For k = 0, (5.79) evaluates to the identity matrix, as we would expect. For general

k and most values of n, (5.79) evaluates to a horrible mess. But for n = 1, it’s fairly

tame:

Mk
1 =

[
1
2
(x+ 1)k + 1

2
(x− 1)k 1

2
(x+ 1)k − 1

2
(x− 1)k

1
2
(x+ 1)k − 1

2
(x− 1)k 1

2
(x+ 1)k + 1

2
(x− 1)k

]
(5.86)

(5.86) is somewhat interesting, because it says that diagonally opposed elements in

Mk
1 are equal, and the elements are the even and odd parts of the binomial expansion.

Furthermore, noticing that the codeword {1}n is a class n codeword, whose neighbor

set is the entire set of codewords, summing the elements of (5.86) forMn
1 and dividing

by (x+ 1) as in Theorem 5.9 provides an alternate proof of Theorem 4.7.

5.6 Limiting Codewords with Class Pruning

We now have a way of quickly computing the degree of any codeword W at any stage

of class pruning. We simply generate the class distribution polynomial DW and sum

the coefficients of xk and higher terms, where classes k and below have been pruned.

Alternately, we can sum the coefficients of all terms lower than xk, and subtract the

result from dW . Either way, we obtain the answer analytically instead of through an

expensive experimentation process.

However, simply being able to calculate the degree of a codeword is not enough.

If we wish to find the maximum performance of this code, we need a pruning curve.

And to generate a pruning curve, we have to know the minimum degree in each class,

and preferably the codeword responsible for this minimum. Otherwise, generating the

curve would still require going through every codeword at every step, searching for the

minimum degree. Because there are only n steps, this would lead to a computational

complexity of o(n2n), which is much better than the o(23n) complexity of the optimal

algorithm, but still unacceptable.

Fortunately, it is clear from experimentation exactly what the limiting codewords

are for each class. Unfortunately, the theory has not yet developed to the point where

this can be proven. Therefore, we must humbly submit it as a conjecture.

Conjecture 5.1: If all codewords in classes lower than some class c have been pruned

Limiting Codewords with Class Pruning 75

c n = 10 n = 11 n = 12 n = 13

1 {10} {11} {12} {13}
2 {2,8} {2,9} {2,10} {2,11}
3 {2,2,6} {2,2,7} {2,2,8} {2,2,9}
4 {2,2,2,4} {2,2,2,5} {2,2,2,6} {2,2,2,7}
5 {2,2,2,2,2} {2,2,2,2,3} {2,2,2,2,4} {2,2,2,2,5}
6 {2,1,2,1,2,2} {2,1,2,2,2,2} {2,2,2,2,2,2} {2,2,2,2,2,3}
7 {2,1,1,2,1,2,1} {2,1,2,1,2,1,2} {2,1,2,1,2,2,2} {2,1,2,2,2,2,2}
8 {2,1,1,1,2,1,1,1} {2,1,1,2,1,1,2,1} {2,1,2,1,2,1,2,1} {2,1,2,1,2,1,2,2}
9 {2,1,1,1,1,1,1,1,1} {2,1,1,1,1,2,1,1,1} {2,1,1,2,1,1,2,1,1} {2,1,1,2,1,2,1,2,1}
10 {1,1,1,1,1,1,1,1,1,1} {2,1,1,1,1,1,1,1,1,1} {2,1,1,1,1,2,1,1,1,1} {2,1,1,1,2,1,1,2,1,1}
11 {1,1,1,1,1,1,1,1,1,1,1} {2,1,1,1,1,1,1,1,1,1,1} {2,1,1,1,1,1,2,1,1,1,1}
12 {1,1,1,1,1,1,1,1,1,1,1,1} {2,1,1,1,1,1,1,1,1,1,1,1}
13 {1,1,1,1,1,1,1,1,1,1,1,1,1}

Table 5.5 Limting Codewords In Class Pruning.

away, the set of codewords in class c with the minimum degree include:

{2}c−1{n− 2c+ 2} and all rotations, for 1 ≤ c ≤ n
2

{2, 1}2c−n{2}2n−3c and all rotations, for n
2
≤ c ≤ 2n

3{
{2}{1}
 c

n−c�
}c−(n−c)
 c

n−c�{{2}{1}
 c
n−c

−1�}(n−c)
 c
n−c

+1�−c

and all rotations, for 2n
3
≤ c < n (5.87)

Because the above formulation is somewhat convoluted, the codewords will be

described a little less formally. For 1 ≤ c ≤ n
2
, the limiting codewords are simply

those with the most 2-bit sections. For n
2
≤ c < n, the codewords are again those with

the most 2-bit sections, with the 1-bit sections distributed as uniformly as possible

between the 2-bit sections, and regions with the same number of 1-bit sections between

2-bit sections grouped together. The still confused reader is advised to examine Table

5.5 for some examples. Note the careful wording in the conjecture—these codewords

are not necessarily the only codewords with the limiting degree. But there are no

codewords with a lower degree.

There are several things to notice about these codewords. For one thing, they

76 Chapter 5 Pruned Code With Memory

form a subset of the codewords described by Theorem 4.5, which described the set

of limiting codewords without pruning. That is, these codewords have the minimum

degree in the class, both before and after class pruning. Another interesting point is

that, by Theorem 5.10 and particularly its corollary, the degree of these codewords

for 1 ≤ c ≤ n
2
does not change after pruning. Thus, we know immediately from the

corollary of Theorem 4.5 exactly what the limiting degree is:

3c−1dn−2c+2 for 1 ≤ c ≤ n
2

(5.88)

Unfortunately, the global maximum of the class pruning curve is almost never in this

region, but it is still a noteworthy fact.

Conjecture 5.1 might be considered to be “unsafe”, because the conclusions that

we draw from it are optimistic rather than pessimistic. That is, if the conjecture is

wrong, the true performance of the code is worse than what we state. However, the

power of Theorem 5.11 makes it easy to experimentally verify the conjecture for a

wide range of n, and it has always been found to hold.

Furthermore, with some effort and a lot of lemmas, we can employ lowest-term

analysis to prove the conjecture for a couple of special cases.

Definition: Let -T , where T is a matrix of polynomials, denote a matrix that consists

of the lowest-ordered term of each element of T . This is similar to the o operator

introduced earlier, except we do not discard the coefficient. For example,

-

[
x3 + x 2x2 + 1
x4 + 2x2 3x3 + 2x

]
=

[
x 1
2x2 2x

]
(5.89)

Lemma 5.7: For two matrices T and S,

-(TS) = -((-T)(-S)) (5.90)

Proof: Let us represent T and S in a general form as

T =

[
ka1x

a + ka2x
a+1 + . . . kc1x

c + kc2x
c+1 + . . .

kb1x
b + kb2x

b+1 + . . . kd1x
d + kd2x

d+1 + . . .

]

S =

[
ke1x

e + ke2x
e+1 + . . . kg1x

g + kg2x
g+1 + . . .

kf1x
f + kf2x

f+1 + . . . kh1x
h + kh2x

h+1 + . . .

]
(5.91)

Limiting Codewords with Class Pruning 77

where “. . .” represents higher order terms. If we calculate the top-left element of TS,

we get

ka1ke1x
a+e + (ka1ke2 + ka2ke1)x

a+e+1 + . . .

+ kc1kf1x
c+f + (kc1kf2 + kc2kf1)x

c+f+1 + . . . (5.92)

Applying the - operator to (5.92) results in

-
(
ka1ke1x

a+e + kc1kf1x
c+f
)

(5.93)

which is the same as the top-left element of -((-T)(-S)). The other three elements of

the matrix can similarly be verified.

With the previous lemma established, the distributive property of the - operator

will often be used implicitly from this point on.

Lemma 5.8:

-Mn =




[
x 1
1 x

]
for n = 1[

x 1
x2 2x

]
for n = 2[

x 1
2x2 2x

]
for n ≥ 3

(5.94)

Proof: The n = 1 and n = 2 cases can be computed directly. For n ≥ 3, we again

must examine the definition of Mn:[
xPn Pn + x

2Pn−1

Pn + (x2 − 1)Pn−1 xPn + xPn−1

]
(5.95)

We know from (5.42) that the lowest term of Pn is 1 for n ≥ 1. This is enough to

compute - of all elements of Mn except the bottom-left. Turning back to (5.7), we

can compute the second lowest term of Pn:(
n− j − 1

j

)
x2j

∣∣∣∣
j=1

=

(
n− 2

1

)
x2 = (n− 2)x2 for n ≥ 3 (5.96)

The lowest term of the bottom-left element of Mn is thus:

-
((
(n− 2)x2 + 1

)
+
(
x2 − 1

)(
(n− 3)x2 + 1

))
= ((n− 2)− (n− 3) + 1)x2 = 2x2 (5.97)

78 Chapter 5 Pruned Code With Memory

Therefore,

-Mn =

[
x 1
2x2 2x

]
for n ≥ 3 (5.98)

as was stated in (5.94).

Lemma 5.9:

-Mk
1 =



[
k x 1
1 k x

]
for odd n[

1 k x
k x 1

]
for even n

(5.99)

Proof: Let us define a matrix Ta such that

-Ta =

[
a x 1
1 a x

]
(5.100)

Then,

-(TaM1) = -

([
a x 1
1 a x

][
x 1
1 x

])
=

[
1 (a + 1)x

(a + 1)x 1

]
(5.101)

Furthermore,

-
(
TaM

2
1

)
= -

([
1 (a+ 1)x

(a+ 1)x 1

][
x 1
1 x

])

=

[
(a+ 2)x 1

1 (a+ 2)x

]
= -Ta+2 (5.102)

Recognizing that -T1 =M1 and following the recursion established above, we see that

(5.99) holds. An alternate proof can be derived by examining (5.86).

Lemma 5.10:

-Mk
2 = xk−1

[
d2k−3 x d2k−2

d2k−2 x
2 d2k−1 x

]
(5.103)

Proof: Suppose we have a sequence of matrices Tk such that

-Tk =

[
ak x ck
bk x

2 ek x

]
(5.104)

Then,

-(TkM2) = -

([
ak x ck
bk x

2 ek x

][
x 1
x2 2x

])

= x

[
(ak + ck)x (ak + 2ck)
(bk + ek)x

2 (bk + 2ek)x

]
= x -Tk+1 (5.105)

Limiting Codewords with Class Pruning 79

This suggests the following system of recurrence equations for the top row of -Tk:

ak+1 = ak + ck

ck+1 = ak + 2ck (5.106)

We can combine these equations to yield the individual recurrence equations

ak = 3ak−1 − ak−2

ck = 3ck−1 − ck−2 (5.107)

which in fact describe the same recurrence. Noticing that coefficients in the bottom

rows of the matrices in (5.105) are identical in form to those in the top rows, we

conclude that bk and ek follow this recursion as well. Now, consider the recurrence

equation followed by dn:

dn = dn−1 + dn−2 (5.108)

Creatively transposing and resubstituting (5.108) a few times leads to the identity

dn = 3dn−2 − dn−4 (5.109)

Making the substitution n = 2k in the above equation gives us

d2k = 3d2(k−1) − d2(k−2) (5.110)

Comparing (5.110) and (5.107), we see that d2k follows the same recursion as ak, bk,

ck, and ek. Now we must establish two initial conditions. If we let T1 = M2 and

T2 =M
2
2 , we find that

a1 = 1, a2 = 2

b1 = 1, b2 = 3

c1 = 1, c2 = 3

e1 = 2, e2 = 5 (5.111)

80 Chapter 5 Pruned Code With Memory

Comparing these numbers to dn, we can conclude that:

ak = d2k−3

bk = d2k−2

ck = d2k−2

ek = d2k−1 (5.112)

Given that T1 = M2, and -(TkM2) = x -Tk+1 as in (5.105), (5.112) leads directly to

(5.103).

Lemma 5.11:
d2k

3k
(5.113)

is monotonic decreasing for k ≥ 1, and non-increasing for k ≥ 0.

Proof: We can state this as
d2(k+1)

3k+1
<
d2k

3k
(5.114)

Expressing dn in terms of (4.3), we can write this inequality as

φ2

(
φ2

3

)k+1

− φ−2

(
1

3φ2

)k+1

< φ2

(
φ2

3

)k
− φ−2

(
1

3φ2

)k
(5.115)

Factoring, we get (
φ4

3
− φ2

)(
φ2

3

)k
<

(
1

3φ4
− 1

φ2

)(
1

3φ2

)k
(5.116)

Interestingly, both constant terms in parentheses above are equal to −1
3
. (A clue as

to why can be found in (5.110).) Thus, we get(
−1

3

)(
φ2

3

)k
<

(
−1

3

)(
1

3φ2

)k
(5.117)

Cross-multiplying gives us

φ4k > 1 (5.118)

which is true for k > 0. This proves that (5.113) is monotonic decreasing for k ≥ 1.

Now, simply observing that
d0

30
=
d2

31
= 1 (5.119)

proves that (5.113) is non-increasing for k ≥ 0. A plot is shown in Figure 5.12. An

alternate proof can be derived by taking a closer look at (5.109).

Limiting Codewords with Class Pruning 81

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Figure 5.12 d2n/3n.

Definition: dpW denotes the degree of the codewordW after all codewords in classes

lower than the class of W have been pruned away.

Theorem 5.12: Consider the codeword W = {2, 2, 2, . . .}, or {2}c. Let W ′ be W

with any two 2-bit sections replaced with a 1-bit section and a 3-bit section. Then,

dpW ≤ dpW ′ (5.120)

Proof: We know from the corollary of Theorem 5.10 that dpW = dW , because W is

unaffected by class pruning. Thus, from Theorem 4.3, we can calculate dpW simply

to be 3c. Finding dpW ′ is not so trivial, because W ′ is affected by class pruning.

However, it is not affected very much. From Theorem 5.10, we see that the only

neighbors of W ′ that are pruned are in classes c−1 and possibly c−2.* Furthermore,

Theorem 5.11 tells us that the sum of the neighbors in these two classes is constant

for any rotation of W ′. More importantly, we can see from the proof of Theorem 5.11

exactly what this sum is. It is equal to the lowest term of the sum of the top-left and

bottom-right elements of
c∏
i=1

Mni
(x) (5.121)

* Specifically, if the 1-bit section is not placed on the end of the codeword, there will be neighbors
is class c − 2.

82 Chapter 5 Pruned Code With Memory

If we can calculate this sum, we can simply subtract it from dW ′ to find dpW ′, which

is what we seek. We know from Lemma 5.7 that

-

c∏
i=1

Mni
(x) = -

c∏
i=1

-Mni
(x) (5.122)

and thus we need only deal with -Mni
, not Mni

itself. W ′ can be described by a

rotation of some codeword

{2}j{3}{2}k{1} (5.123)

where c = j + k + 2. With the help of Lemmas 5.8 and 5.10, we can calculate the

lowest-term matrix of this codeword. (The - operator is implied for all of the following

expressions.)

(
-M j

2 -M3

)(
-Mk

2 -M1

)
=

(
xj−1

[
d2j−3 x d2j−2

d2j−2 x
2 d2j−1 x

][
x 1
2x2 2x

])(
xk−1

[
d2k−3 x d2k−2

d2k−2 x
2 d2k−1 x

][
x 1
1 x

])

= xj+k−1

[
d2jx d2j

d2j+1x
2 d2j+1x

][
d2k−2 d2k−1x
d2k−1x d2k

]

= xj+k
[
d2jd2k d2jd2k+1 x

d2j+1d2k x d2j+1d2k+1 x
2

]
(5.124)

where the identities

dn = dn−1 + dn−2

dn = 2dn−2 + dn−3 (5.125)

were applied as needed. The sum of the top-left and bottom-right elements of this

matrix is

d2jd2k x
j+k + d2j+1d2k+1 x

j+k+2 (5.126)

and the coefficient of the lowest term is simply d2jd2k. This is then the number of

neighbors this codeword has in classes c− 1 and c− 2. Thus, we have

dpW ′ = dW ′ − d2jd2k

= 10× 3j+k − d2jd2k (5.127)

Limiting Codewords with Class Pruning 83

We can now rewrite (5.120) as

3j+k+2 ≤ 10× 3j+k − d2jd2k (5.128)

Rearranging, we see this is equivalent to

d2jd2k

3j+k
≤ 1 (5.129)

We have equality in (5.129) for j = k = 0. By Lemma 5.11, we see that the left hand

side of (5.129) cannot increase for any positive values of j and k. Therefore, (5.120)

holds.

Theorem 5.13: Consider a codeword W = {a, 2, 2, 2, . . .} = {a}{2}c−1 or any rota-

tion thereof, where a > 2. Let W ′ be W with any two 2-bit sections replaced with a

1-bit section and a 3-bit section. Then,

dpW < dpW ′ (5.130)

Proof: As in the proof of Theorem 5.12, W is unaffected by class pruning, and the

change in the degree of W ′ can be calculated by examining the lowest terms of the

product of Mni
. W ′ can be described as a rotation and/or reversal of some codeword

{2}i{a}{2}j{3}{2}k{1} (5.131)

where c = i+ j + k+3. With the help of Lemmas 5.8 and 5.10, we can calculate the

lowest-term matrix of this codeword. Notice that -
(
M j

2 M3M
k
2 M1

)
has already been

calculated in (5.124), so that saves us some work. The - operator is implied for all of

the following expressions.(
-M i

2 -Ma

)(
-M j

2 -M3 -M
k
2 -M1

)
=

(
xi−1

[
d2i−3 x d2i−2

d2i−2 x
2 d2i−1 x

][
x 1
2x2 2x

])(
xj+k

[
d2jd2k d2jd2k+1 x

d2j+1d2k x d2j+1d2k+1 x
2

])

= xi+j+k
[
d2ix d2i

d2i+1x
2 d2i+1x

][
d2jd2k d2jd2k+1 x

d2j+1d2k x d2j+1d2k+1 x
2

]

= xi+j+k+1

[
d2id2j+2d2k d2id2j+2d2k+1 x

d2i+1d2j+2d2k x d2i+1d2j+2d2k+1 x
2

]
(5.132)

84 Chapter 5 Pruned Code With Memory

The coefficient of the lowest term of the sum of the top-left and bottom-right elements

is simply d2id2j+2d2k. This is then the number of neighbors this codeword has in classes

c− 1 and c− 2. Thus, we have

dpW ′ = dW ′ − d2i d2j+2 d2k

= 10da 3
j+k − d2i d2j+2 d2k (5.133)

We can now rewrite (5.130) as

da 3
i+j+k+2 < 10da 3

j+k − d2id2j+2d2k (5.134)

Rearranging, we see this is equivalent to

d2i d2j+2 dk
3i+j+k

< da (5.135)

The inequality is true for i = j = k = 0 and a = 3. We see that the left hand side of

(5.135) is non-increasing for positive i, j, and k, and the right hand side is monotonic

increasing for all a that we are concerned with. Therefore, (5.130) holds.

Conjecture 5.1 described the codewords with the limiting degree for each class

after pruning. Theorems 5.12 and 5.13 demonstrate that changing this limiting code-

word by “one step”, that is, shifting a bit from one section to another, results in the

degree increasing for c < n
2
and either increasing or staying constant for c = n

2
. This is

obviously not a full proof of the conjecture, but it’s a start. The problem is that these

theorems rely on a trick—recognizing that the degrees of the limiting codewords do

not change at all with pruning, and that the degrees of codewords that are one step

away from them change only by a lowest term that is easy to derive. Changing the

limiting codeword by two steps makes things much more complicated, because more

than just a lowest term is involved. Likewise, the degrees of the limiting codewords

for c > n
2
are themselves affected by class pruning, so this lowest term trick simply

won’t work. Be aware that the calculation of these degrees is still very easy and

straightforward. The difficulty comes when we try to prove a result for the general

case.

Results 85

5.7 Results

With the data obtained from the optimal pruning algorithm, it is fair to say that we

have determined the fundamental limits of the performance of self-shielding codes.

As in the last chapter, we have not designed a code, but simply found the best any

code can do given the specifications. However, unlike in the last chapter where the

code design was left completely arbitrary, the pruning process gives a specific set of

codewords to use. The extra performance over the last chapter’s code comes from

restricting ourselves to this set.

For large n, we can use the class pruning algorithm in lieu of the optimal one.

This does not give us the fundamental limit on code performance, but it appears

to be fairly close. Furthermore, with faith in Conjecture 5.1 (or alternatively, a

small amount of experimentation), we can calculate class pruning results quickly and

analytically.

Figure 5.13 plots the performance of the pruned code, and compares it to the

other codes discussed. The data shown is from the class pruning algorithm; optimal

data would visually coincide with the plotted line for n ≤ 23, so it need not be

plotted separately. Table 5.6 lists the channel widths required to transit data of

various widths. We see that a 32-bit bus could be implemented with 40 wires, which

compares quite favorably to the other schemes. If we conceptually consider n − b,
channel width minus data bits, to be the number of “extra wires” required to eliminate

crosstalk delay, shielding uses 31 extra wires, whereas pruned coding uses merely 8.

86 Chapter 5 Pruned Code With Memory

8 16 24 32 40 48 56 64

8

16

24

32

40

data bits

wires required

A B C D

A: uncoded

B: pruned code

C: unpruned code

D: shielded

Figure 5.13 Performance of Pruned Code.

bits wires required bits wires required

pruned unpruned shielded pruned unpruned shielded

1 1 1 1 17 22 25 33
2 3 3 3 18 23 26 35
3 4 4 5 19 24 28 37
4 6 6 7 20 25 29 39
5 7 7 9 21 27 30 41
6 8 9 11 22 28 32 43
7 9 10 13 23 29 33 45
8 11 12 15 24 30 35 47
9 12 13 17 25 31 36 49
10 13 15 19 26 33 38 51
11 14 16 21 27 34 39 53
12 16 17 23 28 35 41 55
13 17 19 25 29 36 42 57
14 18 20 27 30 38 43 59
15 19 22 29 31 39 45 61
16 20 23 31 32 40 46 63

Table 5.6 Performance of Pruned Code.

Chapter
6

Memoryless Code
(Connecting the Neighbors)

6.1 Introduction

The previous chapter explored the maximum possible performance obtainable with

a self-shielding code. The basic idea was that, for each codeword allowed on the

channel, a codebook with 2b entries could be constructed. The encoder and decoder

would both be aware of the current codeword on the channel and the mapping between

codewords and codebooks. When the encoder placed the next word on the channel,

the decoder would look it up in the current codebook and translate it to a symbol,

as well as change the current codebook to reflect the new word on the channel.

Although this scheme gives the maximum performance possible, it may not be

easy to design or implement such a code. Code design involves mapping 2b data words

to codewords, and is a difficult task, especially when the designer is aiming for an

efficient implementation. But our coding scheme as described requires designing a 2b-

entry codebook for each codeword. The designer thus has to juggle something on the

order of 2n−12b codebook entries. Of course, with the proper analysis techniques and

87

88 Chapter 6 Memoryless Code

CAD tools, this job may be feasible, or even easily automated. But until the theory

and toolset have advanced to that point, we will give the poor designer a break, and

consider what performance can be obtained with a single 2b-sized codebook.

The codebook in such a code is fixed—the mapping between symbols and code-

words is not dependent on the codeword previously on the channel, or on anything

else. Because the codebook does not change, this encoding is memoryless.

6.2 Analysis of the Memoryless Code

In the codes with memory, the reason multiple codebooks had to be used was that

most codewords could not transition to every valid codeword. They could only tran-

sition to a subset of the codeword set, so the codebooks associated with them had

to reflect the mapping between the symbols and that particular subset. Now, we are

restricted to a single codebook. This codebook must be used when any codeword is

on the channel, and the codebook must contain 2b entries, mapping every symbol to

every valid codeword. These two observations lead to the fundamental stipulation be-

hind memoryless coding: every codeword in the codebook must be able to transition

to every other codeword in the codebook. Our goal, in determining the maximum

performance of a memoryless code, is to find the largest such codebook.

In graph theory, a clique in an undirected graph is defined as a subgraph where

every pair of nodes is connected with an edge.* We can build a graph with all pos-

sible codewords as vertices and represent valid transitions with edges. The largest

memoryless codebook is then represented by the largest clique in this graph.

In the following two theorems, we will prove that this largest clique is in fact the

neighbor set of a class 1 codeword.

Theorem 6.1: The entire neighbor set of a codeword is a clique if and only if the

codeword is class 1.

Proof: (“if” case): A class 1 codeword has only dependent boundaries, so the pair of

bits across any boundary is either 01 or 10. Consider a boundary between a 01 pair.

* A clique is sometimes referred to as a complete subgraph, or a fully-connected subgraph. Do
not confuse this with a strongly-connected subgraph, which applies to directed graphs.

Analysis of the Memoryless Code 89

All neighbors of the codeword will have either a 00, 01, or 11 across that boundary.

No neighbor can have a 10 across the boundary because that would violate the Fun-

damental Rule. Notice that all three possibilities, 00, 01, and 11, can transition to

one another. Therefore, every neighbor can transition to every other neighbor with-

out violating the Fundamental Rule across that boundary. Consider now a boundary

between a 10 pair. All neighbors have either 00, 10, or 11 across this boundary, and

again, these three pairs can all transition to each other. This argument holds for

every boundary in the codeword. The Fundamental Rule cannot be violated across

any boundary when any neighbor transitions to another. Thus, the neighbor set of a

class 1 codeword is a clique.

(“only if” case): A codeword in class c > 1 has, by definition, at least one inde-

pendent boundary. Consider the pair of bits across an independent boundary, either

00 or 11. There are neighbors of this codeword with 00, 01, 10, and 11 bit pairs

across this boundary. However, the neighbors with 01 across the boundary cannot

transition to the neighbors with 10 across the boundary, because that would violate

the Fundamental Rule. Thus, the neighbor set of a codeword in class c > 1 is not a

clique.

Definition: In accordance with the above theorem, we can use the term class 1

clique to refer to the neighbor set of a class 1 codeword.

Definition: A clique is said to be prime if no codeword can be added to the set with

the set remaining a clique. (This does not imply that the clique is the largest possible

clique; it simply means that, given the codewords already in the set, there is no room

to grow.)

We can see readily that the class 1 clique is prime, because if any codeword were

added to the set, the class 1 codeword would not be able to transition to it. However,

we do not know that the class 1 clique is the largest clique. To prove that, we need

another theorem.

90 Chapter 6 Memoryless Code

case 1 case 2 case 3

↓ ↓ ↓
0000 0000 0000

0001 0001 0010

1000 0111 0100

1001 1111 0110

does not does not not a
contain contain clique
1111 0011

Figure 6.1 Example of Lemma 6.1.

Definition: To say that a bit boundary in a set of codewords is 01-type implies that

in the set, there are codewords with 00, 01, and 11 across that boundary, but no

codewords with 10 across the boundary. A 10-type boundary similarly implies that

there are codewords in the set with 00, 10, and 11, but not 01, across that boundary.

Be aware that 01-type and 10-type boundaries are concepts defined for entire sets of

codewords, not individual codewords.

Lemma 6.1: In a prime clique, every boundary is either 01-type or 10-type.

Proof: There are three ways in which a boundary in a set of codewords can be neither

01-type nor 10-type. The first is if no codeword in the set has 00 across the boundary,

or if no codeword has 11 across the boundary. The second is if all codewords in the

set have either 00 or 11 across the boundary. The third is if there are codewords with

both 01 and 10 across the boundary. These three cases are illustrated in Figure 6.1.

Consider the first case. Such a boundary cannot occur in a prime clique, because

every prime clique must contain the 0000 . . . and 1111 . . . codewords. Next, consider

a clique with a boundary of the second case. If we select one codeword with 00

across the boundary and another with 11 across the boundary, we can form a new

codeword by taking the portion of the first codeword to the left of the boundary

and concatenating it with the portion of the second codeword to the right of the

boundary. This new codeword is not a member of the clique, but it can transition

Analysis of the Memoryless Code 91

to all codewords in the clique. Thus, the clique is not prime. Now, consider a set

of codewords with a boundary of the third case. The codewords with 01 across the

boundary cannot transition to the codewords with 10 across the boundary. Thus,

the set is not even a clique. Because none of these cases can occur in a prime clique,

every boundary must be 01-type or 10-type.

Theorem 6.2: The class 1 clique is the largest clique.

Proof: As implied by Lemma 6.1, there are 2n−1 different prime cliques for a given

n, because each boundary can be one of the two types. We will first derive a method

for calculating the size of each prime clique. For a given clique of width n, let xn and

yn be the number of members whose rightmost bits are 0 and 1 respectively. Now

we wish to extend the width by one by adding a boundary and a bit, and calculate

xn+1 and yn+1. But we must choose the boundary to be either 01-type or 10-type.

Suppose we choose 01-type. This means that the last bit pair can take on the values

00, 01, or 11. Specifically, there can be xn codewords of length n+ 1 that end in 00,

xn codewords that end in 01, and yn codewords that end in 11. The codewords that

end in 00 contribute toward xn+1, and the codewords that end in 01 and 11 contribute

toward yn+1. We can express this as:

xn+1 = xn, yn+1 = xn + yn (01-type boundary) (6.1)

Now, suppose we had chosen to add a 10-type boundary instead. Following similar

reasoning, we find that

xn+1 = xn + yn, yn+1 = xn (10-type boundary) (6.2)

Now that we’ve defined some recurrences, we need initial conditions. Consider a prime

clique of 1-bit codewords. There is only one such clique, consisting of the codewords

0 and 1. Thus,

x1 = 1, y1 = 1 (6.3)

We now have a method for computing the size of a prime clique, given the types of

its boundaries. We can’t simply solve these recurrence equations though, because

92 Chapter 6 Memoryless Code

the proper equation to use at each step depends on the boundary type at that point.

Instead, we will summarize our method as an algorithm.

Algorithm 6.1: Size of Prime Clique

x = y = 1

For each boundary from 1 to n− 1:

If the boundary is 01-type, y = x+ y

If the boundary is 10-type, x = x+ y

Clique size = x+ y

We wish to construct a clique with boundary types assigned in such a way as to

maximize x+ y at the end of the algorithm. It can be seen that the optimal decision

at each step of the algorithm, in order to maximize the running total of x and y, is

to choose:

x = x+ y (or 10-type boundary) when x < y

y = x+ y (or 01-type boundary) when x > y (6.4)

Suppose, at some point in the algorithm, x < y. In accordance with (6.4), we choose

x = x+ y. Notice that now, x > y. In the next step, we apply (6.4) again and choose

y = x + y. This brings us back to the x < y situation. We see therefore that the

optimal decision flops back and forth between the two. This corresponds to a clique

where the boundary type alternates between 01-type and 10-type. A class 1 codeword

is a member of this clique; therefore, this is a class 1 clique. Because x = y at the

start of the algorithm, the initial choice of boundary type is arbitrary. Thus, there

are two largest prime cliques, both class 1 cliques, one of each polarity.

Remark: It is interesting to take a closer look at some of the other prime cliques. For

example, consider a clique with only 01-type boundaries. For n = 5, the members of

this clique are 00000, 00001, 00011, 00111, 01111, 11111. These are often referred to as

thermometer codewords, because with some imagination, they resemble the mercury

in a thermometer. In general (and less formally), a prime clique may have regions of

Results 93

alternating-type boundaries and same-type boundaries; we might refer to the former

as “class 1 regions” and the latter as “thermometer regions”. Throughout the clique,

the bits in a class 1 region resemble neighbors of a class 1 codeword, whereas the bits

in a thermometer region resemble a thermometer code. This is unimportant.

6.3 Results

The theory developed in this chapter has demonstrated that the largest set of code-

words that can all transition to one another is the neighbor set of a class 1 codeword.

This means that the maximum performance of a memoryless code is the same as

that of the unpruned code with memory. Specifically, for a given n, we can have dn

codewords in the codebook.

Note that this code, like the pruned code with memory in the last chapter, comes

with a specific set of codewords to use. The set found in the previous chapter gave

us additional performance beyond dn; the set found in this chapter gives us no addi-

tional performance, but provides a code property that may considerably ease imple-

mentation. In some sense, it’s remarkable that we can place on our code the severe

restriction of a single, fixed codebook, and still come out with a performance of dn.

Figure 6.2 plots the performance of this code, and Table 6.1 lists the channel

widths required to transmit data of various widths. If the reader experiences a feeling

of déjà vu, it may be because these are identical to those at the end of the previous

chapter, with only the captions altered.

94 Chapter 6 Memoryless Code

8 16 24 32 40 48 56 64

8

16

24

32

40

data bits

wires required

A B C D

A: uncoded

B: code with memory

C: memoryless code

D: shielded

Figure 6.2 Performance of Codes.

bits wires required bits wires required

memory memoryless shielded memory memoryless shielded

1 1 1 1 17 22 25 33
2 3 3 3 18 23 26 35
3 4 4 5 19 24 28 37
4 6 6 7 20 25 29 39
5 7 7 9 21 27 30 41
6 8 9 11 22 28 32 43
7 9 10 13 23 29 33 45
8 11 12 15 24 30 35 47
9 12 13 17 25 31 36 49
10 13 15 19 26 33 38 51
11 14 16 21 27 34 39 53
12 16 17 23 28 35 41 55
13 17 19 25 29 36 42 57
14 18 20 27 30 38 43 59
15 19 22 29 31 39 45 61
16 20 23 31 32 40 46 63

Table 6.1 Performance of Codes.

Chapter
7

Implementation

7.1 Introduction

As was stated in the first chapter, the primary thrust of this work is theoretical. The

intent was to determine the fundamental limits on the performance of self-shielding

codes and to develop a mathematical framework for understanding them, and this

goal was realized in the previous chapters.

Nevertheless, we will now venture into the realm of the practical, and take a brief

look at some issues related to the logical and physical implementation of these codes.

Circuit models for implementation of the encoder and decoder will be discussed. We

will see how to implement a b bit bus when we can’t afford to encode b bits all at

once. Finally, an example design will be presented.

7.2 Encoder and Decoder Models

Although Chapter 3 presented some conceptual models for understanding the coding

process, they wouldn’t be especially useful in the implementation of a real encoder

95

96 Chapter 7 Implementation

C

D

LC

D

L

decoder

channel
sender

receivern n b
b

encoder

Figure 7.1 Unpipelined Circuit Model For Code With Memory.

or decoder. A circuit model that can be used to implement a code with memory

is shown in Figure 7.1. The “CL” blocks represent combinational logic, which may

contain digital logic gates but no storage or timing elements. The “D” blocks represent

memory elements; specifically, a bank of D-type flip-flops, whose outputs are equal

to their inputs delayed by one clock cycle.

It is easy to see that the circuit model shown can implement a self-shielding code.

The output of the first CL block, which is the codeword placed on the channel, is a

function of the previous codeword on the channel and the data word to be transmitted.

In our conceptual model, the previous codeword on the channel selects the codebook,

and the data word is mapped to a symbol, which selects the entry of the codebook

to use. In the implementation, this process can be condensed into a single block of

combinational logic with the proper inputs, as shown. The memory element is simply

there to provide one of the necessary inputs, namely the previous codeword. The

encoder shown in the figure is a case of a special class of synchronous circuits with

feedback called finite state machines. Specifically, it is a Mealy machine, because the

output changes combinationally with the input. Finite state machines are a well-

studied class of circuits, and there are formalized methods and CAD tools to aid in

their design.*

The output of the second CL block, which is the decoded data word, is a function

* Although the quality of the methods and tools is questionable, especially in comparison to a
good human designer. It is generally accepted that the “state-encoding problem” is a long way from
being well-solved.

Encoder and Decoder Models 97

C D D LC

D

L

decoder

sender b
channeln receivern b

encoder

Figure 7.2 Pipelined Circuit Model For Code With Memory.

of the current codeword on the channel and the previous codeword on the channel. In

the conceptual model, the previous codeword on the channel selects the codebook, and

the current codeword on the channel selects the entry of the codebook that contains

the desired symbol. This symbol is mapped to a data word. Again, this process is

contained within a single block of combinational logic.

Although Figure 7.1 depicts a valid circuit model for the implementation of our

code, it may not be a very useful one. The problem is that it is not pipelined. A

combinational path exists from the input of the encoder to the output of the decoder,

and in order for this to be a proper synchronous design, the propagation delay across

this entire path must be less than one clock cycle. Given that the motivation for

coding in the first place was to overcome a critical timing problem with the channel,

it seems counter-productive to stack our encoder and decoder on this critical path.

Figure 7.2 shows a pipelined circuit model. Note that there is now a memory

element immediately on either side of the channel. This gives the codeword almost

the entire clock cycle to travel across the channel. There are now two delay elements

in the forward path, so the data will arrive at the destination in three clock cycles

instead of one. But in most situations, the throughput is much more important than

latency, and we still have a throughput of one data word per clock cycle.

Notice that no additional memory element needed to be added to the encoder

in order to pipeline it. Instead, the existing memory element was simply brought

into the forward path. This changes the classification of this circuit from a Mealy

machine to a Moore machine, because the output now only changes on clock edges.

98 Chapter 7 Implementation

Csender b
LCL b

channel

decoderencoder

n n receiver

Figure 7.3 Unpipelined Circuit Model For Memoryless Code.

C D Dsender b
LCL b

channeln n

encoder decoder

receiver

Figure 7.4 Pipelined Circuit Model For Memoryless Code.

With the decoder, no such trick is possible, and an additional memory element had

to be inserted.

Memoryless codes are much easier to deal with. Figures 7.3 and 7.4 show a non-

pipelined and pipelined circuit model for a memoryless encoder and decoder. The

non-pipelined case is almost trivial. The first CL block performs the encoding and

the second the decoding. Because the code is memoryless, they need no inputs other

than the current data word and codeword respectively. The pipelined case is similar,

except memory elements were added on either side of the channel in order to shrink

the critical path as much as possible. The latency and throughput are the same as in

the pipelined coders with memory.

7.3 Partial Coding

The results of the previous chapters gave us the theoretical maximum performance

for a code of the given width. However, like so many other theoretical maximums,

we may have some trouble achieving it in practice. With a bus width b of 32 or 64

data bits, it may be infeasible or impractical to design a circuit to encode all b bits

at once.

However, there is an easy solution, and that is to gently reintroduce the shielding

concept. Instead of encoding b bits, the bus can be broken into sub-buses of smaller

Partial Coding 99

a
a

a0

1

2

6-bit to

8-wire

encoder

a
a

a3

4

5

8-wire channel

4-wire

encoder

3-bit to

4-wire

encoder

3-bit to

shield wire

a
a

a0

a
a

a

1

2

3

4

5

4-wire sub-channel

4-wire sub-channel

Figure 7.5 Breaking Bus and Channel into Sub-Buses and Sub-Channels.

width, which can then be encoded individually and output on sub-channels. Each

sub-channel would have to be explicitly shielded from its neighbors with a dedicated

ground wire. This is illustrated in Figure 7.5.

The reader may worry that these extra shield wires will degrade the performance

of our code, and indeed they do somewhat. But they may be necessary for a reason

unrelated to coding. In modern high-speed designs, many buses are routed with a

ground wire between sections of data wires.* These wires are not used as crosstalk

shields, but as current return paths, and serve to ensure that the loop created by

current traveling across the bus is both small and predictable. This is important

for a number of reasons, such as controlling the supply voltage droop during current

spikes due to the finite resistance of the wires, and preventing inductive interference.

The shield wires in our partial-coding scheme can thus serve the dual purpose of

preventing crosstalk between sub-channels and creating a return path for bus current.

Figure 7.6 shows the number of wires required, including shield wires, for encoding

a 32-bit bus when the individual sub-buses are no wider than a given number of bits.

The most striking feature of this plot is the steep drop-off at the beginning. At

b = 3, we have already gone from 63 wires to only 53. That is, an array of simple

3-bit encoders and decoders will immediately cut 10 wires from the channel. Another

interesting feature is the shallow trail-off at the end. We see that, with either code

* Here, we use “ground” in the sense of AC-ground. That is, a low-impedance constant-voltage
wire, typically one of the supply rails.

100 Chapter 7 Implementation

1 3 5 7 9 11 13 16 20 24 28 32
38

40

42

44

46

48

50

52

54

56

58

60

62

64

maximum sub−bus width

to
ta

l w
ire

s
re

qu
ire

d

memoryless

with memory

Figure 7.6 Wires Required for Partial Coding a 32-bit Bus.

type, dividing the bus in half and coding 16 bits at a time instead of 32 will cost only

one extra channel wire.

Table 7.1 lists combinations of sub-bus widths that can be used to achieve the

points on the convex hull of Figure 7.6. These are the combinations with the smallest

maximum sub-bus width for the given performance. Studying Table 7.1 reveals a

rather curious fact. Notice that no sub-buses of width 4 or 8 are listed. This is

because, with both code types, a 3- or 7-bit sub-bus, followed by a shield wire and a

1-bit sub-bus, requires just as many wires as a 4- or 8-bit sub-bus respectively. This is

unfortunate, because these unusable widths happen to be the ones that divide evenly

into 32. Looking at the first few entries of the tables, we see that only 30 bits of the

bus are effectively being encoded, with remaining two simply shielded individually. If

our bus width were 30 instead of 32, the gains of partial coding over shielding would

be even more impressive.

Design Example 101

“k1(b1) + k2(b2) + . . .” means:

k1 sub-buses of width b1, k2 sub-buses of width b2, etc.

with memory memoryless

53 wires: 10(3) + 2(1) 53 wires: 10(3) + 2(1)
51 wires: 6(5) + 2(1) 51 wires: 6(5) + 2(1)

48 wires: 5(6) + 2(1) 50 wires: 4(7) + (3) + (1)
46 wires: 4(7) + (3) + (1) 49 wires: 3(9) + (5)

45 wires: 2(9) + 2(7) 48 wires: 2(12) + (7) + (1)
43 wires: 2(11) + (10) 47 wires: 2(16)

41 wires: 2(16) 46 wires: (32)
40 wires: (32)

Table 7.1 Sub-Bus Width Combinations and Wire Usage for b = 32.

7.4 Design Example

Figures 7.7 and 7.8 are gate-level schematic diagrams of circuits that implement a

3-bit to 4-wire memoryless encoder and decoder respectively. The mapping between

data words and codewords is shown in Table 7.2. Notice that, indeed, the set of

codewords used is the neighbor set of a class 1 codeword.

The code design featured in this example is optimal in the sense that no 3-bit

memoryless encoder or decoder can be implemented with fewer two-input gates. After

the rigor of the previous chapters, it may refresh the reader to learn that this code was

designed through pure brute force. There are 8! or 40,320 ways of mapping the eight

data words to the eight codewords in the class 1 clique. In an automated fashion, a

circuit was designed for each of these mappings. Each circuit was fed into the SIS

Boolean network manipulation package [11], which was instructed to simplify it as

much as possible. Of the resulting circuits, 48 of them had five-gate encoders and

four-gate decoders. These circuits were all of the same form as the circuit shown here,

except with variables permuted or inverted.

Using the partial coding technique described in the previous section, we can

encode a 32-bit bus using ten 3-bit sub-buses and two simply shielded wires. With

102 Chapter 7 Implementation

y0

y1

y2

y3

x0

x1

x2

x0

x2

x2

x1

x0

Figure 7.7 Encoder.

x0

x1
y3

y2

y0

y0

x2
y2

y1

Figure 7.8 Decoder.

data word codeword

000 0111

001 0001
010 1111

011 0000
100 0101

101 0100
110 1101

111 1100

Table 7.2 Data Word to Codeword Mapping for Design Example.

this design example, we see that the encoder would require 50 two-input gates, and

the decoder 40 two-input gates. The channel would be 53 wires wide.

Unfortunately, code design through exhaustive search only works with b = 3. For

a larger bus width, 2b! is unfathomably huge, and the design of a good code would

Design Example 103

require human insight and possibly further theoretical research. Nevertheless, even

this little 3-bit code is useful, given the partial coding technique. The ability to

remove ten wires from a crosstalk-immune channel for the cost of a handful of gates

is quite impressive, and not something that an IC designer should overlook.

Chapter
8

Conclusion

8.1 Summary

As device geometries shrink, chip sizes increase, and clock speeds get faster, intercon-

nect delay is becoming increasingly significant. In particular, the propagation delay

through long cross-chip buses is already proving to be a limiting factor in the speed of

some designs, and this trend will only get worse. In such cases, it becomes necessary

to reduce or prevent crosstalk delay along the bus.

This report has discussed a novel technique whereby crosstalk delay can be elim-

inated at a high level, with no need to worry about circuit tricks or technology-

dependent issues. This technique is to encode the bus data onto a number of channel

wires, which by design will never incur crosstalk delay.

Understanding the coding process and deriving the fundamental limits on per-

formance required the development of “self-shielding code theory”. The maximum

performance obtainable, and the set of codewords required to achieve this perfor-

mance, was derived for codes with and without memory. Some implementation issues

105

106 Chapter 8 Conclusion

were discussed, and an example design was presented.

8.2 Future Work

There is still work to be done, both theoretical and practical. The proof of Conjecture

5.1 will require a more sophisticated theory and understanding of the class pruning

process. Perhaps, even the behavior of the optimal pruning algorithm can be de-

scribed mathematically. The theory gives a set of codewords, but says nothing about

how to map them to data words for the most efficient implementation. The ultimate

usefulness of this technique will depend on how well the codes can be designed and

implemented.

This report described the analysis of codes with and without memory. However,

there is another type of code that was not discussed—codes that are memoryless at

the decoder, but use memory at the encoder. It is possible to imagine a code that

is described by a fixed, many-to-one mapping between codewords and data words.

That is, each data word can be represented by a particular set of codewords. In such

a case, the decoder needs no memory, because the mapping is fixed and the sets are

mutually exclusive. However, we allow the encoder to use memory to determine, of

the possible codewords that map to the desired data word, which one will obey the

Fundamental Rule given the codeword already on the channel. The analysis of this

type of code has proven so far to be extremely difficult, and the possible performance

of such a code is unknown.

Finally, an interesting direction for future work is research into hybrid codes. If

there is going to be an encoder and decoder around the channel, it might make sense to

incorporate other desirable channel properties into the code. Codes could be designed

that eliminate crosstalk delay as well as reduce average power consumption, prevent

current spikes, perform error detection or correction, or accomplish some other task

that is well-suited to bus encoding.

Hopefully, the theory and associated mathematical framework that was developed

in this report will aid future designers who attempt to design self-shielding codes.

Appendix A

Pruning Curves

These are plots of minimum degree versus codewords pruned for the two pruning algorithms. The

solid line is from the optimal algorithm, and the dotted line is from the class pruning algorithm. The

“descending staircase”-type line represents the class of the codewords being pruned in the optimal

algorithm, with class 1 at the top of the plot and class n at the bottom. This line is dashed for

n < 10, and solid for n ≥ 10.

n = 4 n = 5

n = 6 n = 7

107

108 Appendix A

n = 8 n = 9

n = 10 n = 11

n = 12 n = 13

Pruning Curves 109

n = 14 n = 15

n = 16 n = 17

n = 18 n = 19

110 Appendix A

n = 20

n = 21

Pruning Curves 111

n = 22

n = 23

Appendix B

Table of Pn(x)

P0(x) = 0

P1(x) = 1

P2(x) = 1

P3(x) = 1 + x2

P4(x) = 1 + 2x2

P5(x) = 1 + 3x2 + x4

P6(x) = 1 + 4x2 + 3x4

P7(x) = 1 + 5x2 + 6x4 + x6

P8(x) = 1 + 6x2 + 10x4 + 4x6

P9(x) = 1 + 7x2 + 15x4 + 10x6 + x8

P10(x) = 1 + 8x2 + 21x4 + 20x6 + 5x8

P11(x) = 1 + 9x2 + 28x4 + 35x6 + 15x8 + x10

P12(x) = 1 + 10x2 + 36x4 + 56x6 + 35x8 + 6x10

P13(x) = 1 + 11x2 + 45x4 + 84x6 + 70x8 + 21x10 + x12

P14(x) = 1 + 12x2 + 55x4 + 120x6 + 126x8 + 56x10 + 7x12

P15(x) = 1 + 13x2 + 66x4 + 165x6 + 210x8 + 126x10 + 28x12 + x14

113

Appendix C

Table of Mn(x) and

Products

M1(x) =

[
x 1
1 x

]

M2(x) =

[
x 1 + x2

x2 2x

]

M3(x) =

[
x+ x3 1 + 2x2

2x2 2x+ x3

]

M4(x) =

[
x+ 2x3 1 + 3x2 + x4

2x2 + x4 2x+ 3x3

]

M5(x) =

[
x+ 3x3 + x5 1 + 4x2 + 3x4

2x2 + 3x4 2x+ 5x3 + x5

]

M6(x) =

[
x+ 4x3 + 3x5 1 + 5x2 + 6x4 + x6

2x2 + 5x4 + x6 2x+ 7x3 + 4x5

]

M7(x) =

[
x+ 5x3 + 6x5 + x7 1 + 6x2 + 10x4 + 4x6

2x2 + 7x4 + 4x6 2x+ 9x3 + 9x5 + x7

]

M8(x) =

[
x+ 6x3 + 10x5 + 4x7 1 + 7x2 + 15x4 + 10x6 + x8

2x2 + 9x4 + 9x6 + x8 2x+ 11x3 + 16x5 + 5x7

]

M9(x) =

[
x+ 7x3 + 15x5 + 10x7 + x9 1 + 8x2 + 21x4 + 20x6 + 5x8

2x2 + 11x4 + 16x6 + 5x8 2x+ 13x3 + 25x5 + 14x7 + x9

]

M10(x) =

[
x+ 8x3 + 21x5 + 20x7 + 5x9 1 + 9x2 + 28x4 + 35x6 + 15x8 + x10

2x2 + 13x4 + 25x6 + 14x8 + x10 2x+ 15x3 + 36x5 + 30x7 + 6x9

]

115

116 Appendix C

M1
1 (x) =

[
x 1
1 x

]

M2
1 (x) =

[
1 + x2 2x
2x 1 + x2

]

M3
1 (x) =

[
3x+ x3 1 + 3x2

1 + 3x2 3x+ x3

]

M4
1 (x) =

[
1 + 6x2 + x4 4x+ 4x3

4x+ 4x3 1 + 6x2 + x4

]

M5
1 (x) =

[
1 + 10x2 + 5x4 5x+ 10x3 + x5

5x+ 10x3 + x5 1 + 10x2 + 5x4

]

M1
2 (x) =

[
x 1 + x2

x2 2x

]

M2
2 (x) =

[
2x2 + x4 3x+ 3x3

3x3 5x2 + x4

]

M3
2 (x) =

[
5x5 + 4x5 8x2 + 9x4 + x6

8x4 + x6 13x3 + 5x5

]

M4
2 (x) =

[
13x4 + 13x6 + x8 21x3 + 27x5 + 6x7

21x5 + 6x7 34x4 + 19x6 + x8

]

M5
2 (x) =

[
34x5 + 40x7 + 7x9 55x4 + 80x6 + 26x8 + x10

55x6 + 25x8 + x10 89x5 + 65x7 + 8x9

]

M1(x)M2(x) =

[
2x2 3x+ x3

x+ x3 1 + 3x2

]

M2(x)M1(x) =

[
1 + 2x2 2x+ x3

2x+ x3 3x2

]

M1(x)M3(x) =

[
3x2 + x4 3x+ 3x3

x+ 3x3 1 + 4x2 + x4

]

M3(x)M1(x) =

[
1 + 3x2 + x4 2x+ 3x3

2x+ 3x3 4x2 + x4

]

References

[1] C. E. Shannon. “A Mathematical Theory of Communication,” The Bell System

Technical Journal, Vol. 27, pp. 379–423, 623–656, October, 1948.

[2] J. Rabaey. Digital Integrated Circuts—A Design Perspective, Second Edition.

Prentice Hall, New Jersery, To Be Published.

[3] J. Rabaey. Digital Integrated Circuts—A Design Perspective. Prentice Hall, New
Jersery, 1995.

[4] A. Vittala and M. Marek-Sadowska. “Crosstalk Reduction for VLSI,” IEEE

Transactions on Computer-Aided Design, Vol. 7, pp. 392–96, March 1997.

[5] T. Gao and C. L. Liu. “Minimum Crosstalk Channel Routing,” IEEE Transac-
tions on Computer-Aided Design, Vol. 15, pp. 465–74, 1996.

[6] T. Xue, E. Kuh, and D. Wang. “Post Global Routing Crosstalk Systhesis,” IEEE

Transactions on Computer-Aided Design, Vol. 16, pp. 1418–30, 1997.

[7] J. Yim and C. Kyung. “Reducing Cross-Coupling among Interconnect Wires
in Deep-Submicron Datapath Design,” Proceedings. 1999 Design Automation

Conference, pp. 485–90, 1999.

[8] K. Hirose and H. Yusuura. “A Bus Delay Reduction Technique Considering
Crosstalk,” Proceedings. Design, Automation, and Test in Europe Conference

and Exhibition 2000, pp. 441–5, 2000.

[9] D. Li, A. Pua, P. Srivastava, and U. Ko. “A Repeater Optimization Methodology
for Deep Sub-Micron, High-Performance Processors,” Proceeding. International

Conference on Computer Design, VLSI in Computers and Processors, pp. 726–31,
1997.

[10] E. Weisstein. CRC Concise Encyclopedia of Mathematics. CRC Press, LLC,

1998.

[11] E.M. Sentovich, et al. “SIS: A System for Sequential Circuit Synthesis,” Technical
Report of the UC Berkeley Electronics Research Lab, May 1992.

117

Colophon

About forty pages of this document were written in Microsoft Word. At that point,

the author saw the light (or rather, turned away from the evil, evil darkness) and
converted it all to TEX format. The remainder of the document was written in a

Windows 95 port of GNU Emacs, and compiled with MiKTEX 2.0. It was typeset
using Plain TEX and a “thesis” macro package that was pilfered from Brian Limketkai

and mangled to suit the author’s needs. Paragraphs were typeset using the included

Computer Modern Roman fonts (CMR) at 12 point with 1.5 line spacing. Chapter
and section headings were typeset using the Century Gothic font, converted from the

Windows Truetype font collection. Figures were drawn in xfig 3.2 or TEX, and plots
were generated with MATLAB 5.3.

The author plans to never again attempt to use a Microsoft product to write a

technical paper.

119

Ah... it seems the student has become... the Master.

