
Bus Encoding to Prevent Crosstalk Delay

Bret Victor and Kurt Keutzer
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
{bret, keutzer}@eecs.berkeley.edu

 Abstract— The propagation delay across long on-chip buses
is increasingly becoming a limiting factor in high-speed
designs. Crosstalk between adjacent wires on the bus may
create a significant portion of this delay. Placing a shield
wire between each signal wire alleviates the crosstalk
problem but doubles the area used by the bus, an
unacceptable consequence when the bus is routed using
scarce top-level metal resources. Instead, we propose to
employ data encoding to eliminate crosstalk delay within a
bus. This paper presents a rigorous analysis of the theory
behind “self-shielding codes”, and gives the fundamental
theoretical limits on the performance of codes with and
without memory. Specifically, we find that a 32-bit bus can
be encoded with 40 wires using a code with memory or 46
wires with a memoryless code, in comparison to the 63 wires
required with simple shielding.

1. Introduction

 As device geometries shrink, chip sizes increase, and
clock speeds get faster, interconnect delay is becoming
increasingly significant. In particular, the propagation delay
through long cross-chip buses is already proving to be a limiting
factor in the speed of some designs, and this trend will only get
worse. It has been shown that the delay through a long bus is
strongly a function of the coupling capacitance between the
wires. Especially detrimental to the delay is the Miller-like
effect when adjacent wires simultaneously transition in opposite
directions. When the cross-coupling capacitance is comparable
to or exceeds the loading capacitance on the wires, the delay of
such a transition may be twice or more that of a wire
transitioning next to a steady signal. We call this delay penalty
the “crosstalk delay”.
 In some high-speed designs where crosstalk delay
would have limited the clock speed, the technique of shielding
was used. This involves putting a grounded wire between every
signal wire on the bus. Although this certainly is effective in
preventing crosstalk within the bus, it has the effect of doubling
the wiring area. Cross-chip buses often must be routed in higher
metal layers, which are scaled more slowly than the rest of the
geometry in order to prevent an unacceptable increase in
resistance. Thus, routing resources are scarce at these levels,
and it can be difficult to justify doubling the bus width.
 However, if we abstract the concept of shielding and
just look at the signals on the wires of a shielded bus, we can

think of it as a very simple bus encoding. Two wires are used
for every data bit. A data bit of “0” is encoded as a “00” signal
on the wires, and a “1” is encoded as “10”. The purpose of this
“encoding” is to prevent adjacent wires from transitioning in
opposite directions, and this particular encoding achieves that
goal by forcing every other wire to a steady value. But the
question arises: Are there other possible encodings that can
achieve the same goal, but with fewer wires? Such encodings
may require extra logic or memory elements, but as the speed of
logic goes up and the relative area consumed by logic goes
down, such a tradeoff seems increasingly valid.
 Indeed, such encodings exist. We will refer to them as
“self-shielding” or “crosstalk-immune” codes. In this paper, we
will approach this subject from a rigorous theoretical standpoint.
Rather than giving ad-hoc designs and heuristic methods, or
prematurely attempting to design for efficient implementation,
we will instead develop the theory behind crosstalk-immune
coding, describe the fundamental capabilities and limitations that
the theory implies, and give methods for generating optimal sets
of codewords. Such an analysis is always necessary before good
codes can be designed and implemented.

2. Background

 We can model the chain of communication as shown in
Figure 1. Adopting some terminology from coding theory, we
say that the data words to be encoded are represented by
symbols. The mapping between symbols and actual data words
is an implementation step and will not be discussed here. The
values placed on the channel by the encoder are called
codewords, and the mapping between symbols and codewords is
called a codebook. If the codebook changes with time, then the
encoding is said to have memory.
 Specific to crosstalk-immune coding is the notion of
which codewords can follow which. The fundamental rule is

EncoderSender Decoder Receiver
 b b n

channel

Figure 1: Model of Communication Chain

codeword at time 1: 0010 0000 0100 0100
 ↓ ↓ ↓ ↓
codeword at time 2: 0110 1111 0001 0010

 valid valid valid invalid

Figure 2: Examples of Valid and Invalid Transitions

that, given a particular value currently on the channel, the next
value cannot cause any adjacent wires to transition in opposite
directions. We say that a codeword is connected to another
codeword if it is valid to transition from one to the other. Figure
2 presents some examples of valid and invalid transitions. In
order to import some terminology from graph theory, we can
form a graph with the codewords as vertices and the connections
as edges. This graph is undirected because the connection
relation is symmetric. We can then say that the neighbor set of a
codeword is the set of codewords that it is connected to, and its
degree is the size of this set. Note that it is valid for a codeword
to transition to itself, and thus every codeword has itself as a
neighbor.

3. Unpruned Code with Memory

 All of the codes we discuss will transmit one full data
word on each clock cycle. If the data word is b bits wide and all
data words are allowed, then at all times there must be at least 2b
symbols that can be expressed, and thus at least 2b codewords in
the codebook. If our code has memory, however, these do not
have to be the same codewords at all times. The codebook could
be any subset of the neighbor set of the codeword currently on
the channel. That is, for every codeword, a mapping is defined
between the symbol set and some subset of the codeword’s
neighbor set. This mapping is known by both the encoder and
decoder, and thus when the channel transitions to a particular
neighbor, it represents a particular symbol and information is
transmitted.
 For our first code, the “unpruned code with memory”,
we will make no restrictions on which values are allowed to be
in the codebook. That is, we will assume that any possible n-bit
value could be a codeword and thus could be on the channel.
The maximum number of expressible symbols is limited by the
least connected value, or the codeword with the smallest degree.
The first step, then, is to derive a formula for calculating the
degree of a codeword. We can then find and prove which
codeword has the minimum degree for a given width n. This
degree will represent the maximum performance available from
this type of code.

Definition: A class 1 codeword is a codeword with alternating 0
and 1 bits. For example, 01010 and 10101 are 5-bit class 1
codewords.

Definition: dn is the degree of an n-bit class 1 codeword.

Theorem 1: dn are Fibonacci numbers. Specifically:
 dn = Fn+2 (1)
where Fn is the classical Fibonacci sequence {1,1,2,3,5,8,13,…}.
Proof: Consider, without loss of generality, a class 1 codeword
of n bits that begins with a 0 bit. This first bit can either stay or
rise. If it stays, the second bit is free to fall or stay, and thus dn-1

transitions can be realized. If the first bit rises, the second bit is
forced to stay, because it cannot fall next to a rising bit. The
third bit is then free to rise or stay, and dn-2 transitions can be
realized. The total number of possible transitions is the sum of
the two cases:
 dn = dn-1 + dn-2 (2)
This is the same recurrence relation obeyed by the Fibonacci
sequence. In order to show that dn are in fact Fibonacci
numbers, we need to establish two initial conditions. A one-bit
class 1 codeword is “0”. It can transition to two codewords: “0”
and “1”. A two-bit class 1 codeword is “01”. It can transition to
“00”, “01”, or “11”, but not “10”. We see that d1 = 2 and d2 = 3.
These are in fact Fibonacci numbers, F3 and F4 respectively.
Therefore, dn = Fn+2.

Corollary:

 () 




 +−+
+ −−=)2(21

1

nn
nd φφ

φφ ,
2

51+=φ (3)

()

()







+

+
=

+

+

nevenn

noddn
d n

,)ln()2(sinh

,)ln()2(cosh

1

1

2

2

φ

φ

φ

φ

φ

φ
 (4)

Proof: These expressions can be derived by solving the
difference equation (2) and applying the initial conditions in the
above proof.

 Some values of dn are given in Table 1. Now that we
have an expression for the degree of a class 1 codeword, we will
proceed to derive the degree of any arbitrary codeword.

Definition: An independent boundary in a codeword occurs
between two adjacent bits of the same value. A dependent
boundary in a codeword occurs between two adjacent bits of
different values. For example, the codeword 0011 has three
boundaries, and they are independent, dependent, and
independent respectively.

Definition: A section of a codeword is one of the pieces that
would result if the codeword were split at its independent
boundaries. For example, the codeword 10110100 has three
sections: 101, 1010, and 0. Notice that each section , if isolated,
would be considered a class 1 codeword.

Definition: The class of a codeword is equal to the number of
sections. This is also the number of independent boundaries plus
one.

Definition: },...,,{ 21 cnnnd , where c is the class, denotes the

degree of a codeword with sections of width n1, n2, etc.

 Table 1: Degrees of Some Class 1 Codewords

 n dn log2(dn)
 1 2 1.00
 2 3 1.58
 3 5 2.32
 4 8 3.00
 5 13 3.70
 6 21 4.39
 7 34 5.09
 8 55 5.78
 9 89 6.48

Theorem 2: The degree of any codeword is equal to

 ∏
=

=
c

i
nnnn ic

dd
1

},...,,{ 21
 (5)

where c is the codeword class and ni is the number of bits in the
ith section.
Proof: Two adjacent sections, by definition, are separated by an
independent boundary. The two bits across this boundary are the
same value, and thus it is impossible for one to rise and the other
fall. Because the fundamental rule on bit transitions cannot be
violated across an independent boundary, the set of transitions
allowed for one section is not affected by the transitions chosen
for other sections. Thus, we can determine the number of
transitions for each section independently, and multiply the
results from each section to obtain the total number of transitions
allowed. By definition, each section is in isolation a class 1
codeword. Thus, the total number of transitions is the product of

ind , where ni is the width of each section.

 We now know how to calculate the degree of any
codeword. In the next theorem, we will find that the codewords
with the smallest degree, which determine the performance of
our code, are none other than the class 1 codewords.

Theorem 3: For a given codeword width n, the degree of any
codeword of class c > 1 is greater than dn.
Proof: We start by proving this for c = 2. Using Theorem 2, the
proposition can be stated mathematically as:
 dx+y < dx dy (6)
Restating this in terms of (3) and applying algebraic
transformations (as well as using the fact that φn = φn-1 + φn-2) we
can reduce the inequality to:

 ()() 0)()(>−−−− −− yyxx φφφφ (7)

When x > 0 and y > 0, this inequality is true. Thus, for a given n,
a class 2 codeword has a higher degree than a class 1 codeword.
The expression can be applied iteratively for higher classes:
 dx+y+z < dx+y dz < dx dy dz (8)
and so on. Thus any codeword with class c > 1 has a higher
degree than a class 1 codeword.

 We have found that the minimum codebook size occurs
when a class 1 codeword is on the channel, and at that point, the
number of symbols that can be expressed is given by (3). Given

this information, we can now state the maximum performance of
a self-shielding code when any possible value is allowed as a
codeword on the channel. If n is the channel width, then the
maximum number of information bits is log2(dn). This is plotted
in Figure 3. Asymptotically, increasing n by 1 multiplies the
number of symbols by φ, or 1.62. So, adding a physical wire
allows for about log2(1.62), or 0.69, more bits of information.
We see that a 32-bit bus could be implemented with 46 wires.
This compares very favorably to a simple shielding scheme
which would require 63 wires. We can conceptually consider
(n-b) / b to be the inflation in wire usage due to eliminating
crosstalk delay. With shielding, this wiring overhead is 97%,
whereas with coding, it is only 44%. However, we can do even
better than this.

4. Pruned Code with Memory

 The previous result was limited by the degree of the
class 1 codeword. However, if we ensure that the code never
transitions to a class 1 codeword, then we know it will never
need to transition from one. If we throw the class 1 codewords
out of the codebook, we are no longer limited by their poor
performance, although the degrees of the codewords in the
discarded codes’ neighbor sets will decrease. Extending this
idea leads to the codebook pruning algorithm:

Algorithm 1:

While there are valid codewords left:
 Find the set of valid codewords with the lowest degree.
 For each codeword W in the set:
 Remove W from the set of valid codewords.
 Decrement the degree of each of W’s neighbors.

As the algorithm progresses, the limiting degree will increase,
hit a maximum, and then decrease as the codebook gets
depleted. We choose, of course, the set of codewords that was
active when the limiting degree was at its maximum. This
algorithm is guaranteed to find the best possible set of
codewords because at each step, if anything other than the
limiting codewords were removed, the limiting degree could
only decrease or stay constant. It could never improve.
 To visualize the pruning process, we can make a plot of
the limiting degree versus codewords pruned as the algorithm
runs. Figure 4 shows these “pruning curves” for a few values of
n. The expected shape can be observed. By locating the peak of
each curve, we find the maximum performance obtainable by a
self-shielding code of the given width.
 Unfortunately, pruning as described by the above
algorithm is a purely experimental procedure. It is extremely
computationally intensive for large n (we could only run the
algorithm up to n = 23), and worse, it is not amenable to the
rigorous mathematical analysis that we seek. However, there is
a sub-optimal pruning algorithm that is a fairly close
approximation to the optimal one and allows analytic
expressions to be derived.
 Examination of the optimal pruning process reveals
that, especially for small n, the codewords are pruned roughly in
class order. That is, most of a given class c is pruned before any
codeword in class c + 1 is touched. This observation is less true

8 16 24 32 40 48 56 64

8

16

24

32

40

wires used

data bits

unencoded coded shielded

Figure 3: Performance of Unpruned Code

for large n (e.g., n > 16), but the dependence on class is still
strongly visible. In fact, the spikes that are visible in the pruning
curves usually occur after an entire class of codewords is fully
pruned.
 This observation leads to the idea of pruning entire
codeword classes at once. The revised pruning algorithm can be
written as follows:

Algorithm 2:
 For each c from 1 to n:
 Remove class c codewords from the set of valid codewords.
 Recalculate the degrees of the rest of the codewords.

Again, the limiting degree will rise, hit a maximum, and fall.
There is no guarantee of optimality with this algorithm.
However, we find that its results match exactly with the optimal
for n < 10, and the error stays below 10%, or 0.15 bits, for at
least n ≤ 23, which was the highest we could check. Thus, the
approximation is fairly good. Furthermore, because it is sub-
optimal, the results are always achievable.
 Again, the primary motivation behind this algorithm,
other than the simplicity of having logarithmically less data
points to deal with, was that it can be subjected to mathematical
analysis. This is possible through the use of the class
distribution polynomial. For a given codeword, a polynomial
D(x) can be generated where the number of class c codewords in
the neighbor set is equal to the coefficient of the xc-1 term.1
Thus, this polynomial describes the class distribution of the
neighbor set, and can be used to calculate the effects of pruning
various code classes. Specifically:

 [] 














+
= ∏

= 1

1
)(11

1

1
)(

1
},...,,{ 21

c

i
nnnn xM

x
xD

ic
 (8)

where

1 Note that DW(1) = dW. Thus, this can be seen as a generalization of the
previous theorems.

 () 







+++

+
=

−−

−

11
2

1
2

1
)(

nnnn

nnn
n

PxPxPxP

PxPPx
xM (9)

)()(
1

)(2
2

1
2

2

1

0

xPxxPx
j

jn
xP nn

j

n

j
n −−





 −

=
+=




 −−
= ∑ (10)

with P0 = 0 and P1 = 1.
 The derivation of these expressions, as well as a
discussion of the many interesting results that they imply, is
beyond the scope of this paper. We will simply state that it is
possible to find which codeword is the limiting one in each
class, and the determination of its degree after pruning is a trivial
matter of generating the class distribution polynomial and
summing the coefficients of the xa terms for a ≥ c-1.
 With the experimental results from the optimal pruning
algorithm, it is fair to say that we have determined the
fundamental limits on the performance of self-shielding codes
up to n = 23. For larger n, we can use the class pruning
algorithm in lieu of the optimal one, for an apparently close
approximation to the fundamental limit. Notice that, unlike the
unpruned code where the code design was left completely
arbitrary, these algorithms provide a specific set of codewords to
use. The extra performance over the unpruned code comes from
restricting ourselves to this set.
 Figure 5 plots the maximum performance of the pruned
code with memory, using the analytic algorithm. The data from
the optimal algorithm would visibly coincide with the plotted
line for n ≤ 23, so it is not plotted separately. We see that a 32
bit bus could be implemented with only 40 wires. In this case,
the wiring overhead as defined earlier is only 25%, which
compares extremely favorably to 44% with unpruned coding and
97% with simple shielding.

5. Memoryless Code

 The previous codes required the encoder and decoder to
hold state, because the codebook was dependent on the previous
value on the channel. Now, we ask what kind of performance is
possible with a memoryless code. Such a code would have a
single, unchanging codebook. Thus, every codeword in the
book would have to be able to transition to every other
codeword. We want to find the largest such codebook.
 In graph theory, a clique in an undirected graph is

8 16 24 32 40 48 56 64

8

16

24

32

40

wires used

data bits

A B C D

A: unencoded
B: pruned code
C: unpruned or memoryless
D: shielded

Figure 4: Pruning Curves

codewords pruned

li
m

it
in

g
de

gr
ee

 n = 20

 n = 15

 n = 11

(not to relative scale)

Figure 5: Performance of Code Types

defined as a subgraph where every pair of nodes is connected
with an edge. If we represent the valid transitions of the
codewords as edges on a graph, then the problem of finding the
largest memoryless codebook becomes the problem of finding
the largest clique. Interestingly, evaluating this clique problem
leads to results identical to Table 1. The size of the largest
clique is always dn.
 In the next two theorems, we will show that for a given
n, there are two identically-sized largest cliques, each consisting
of the entire neighbor set of one of the two class 1 codewords.
Theorem 4 will prove that the neighbor set of a class 1 codeword
is a clique, and Theorem 5 will prove that there is no larger
clique.

Theorem 4: The entire neighbor set of a codeword is a clique if
and only if the codeword is class 1.
Proof: (“if” case): A class 1 codeword has only dependent
boundaries, so the pair of bits across any boundary is either 01 or
10. Consider a boundary between a 01 pair. All neighbors of the
codeword will have either a 00, 01, or 11 across that boundary.
Notice that all three possibilities can transition to one another.
Therefore, every neighbor can transition to every other neighbor
without violating the bit transition rule across that boundary.
Consider now a boundary between a 10 pair. All neighbors have
either 00, 10, or 11 across this boundary, and again, these three
pairs can all transition to each other. This argument holds for
every boundary in the codeword. The bit transition rule cannot
be violated across any boundary when any neighbor transitions
to any other neighbor, so the neighbor set of a class 1 codeword
is a clique
(“only if” case): A codeword in class c > 1 has, by definition, at
least one independent boundary. Consider the pair of bits across
an independent boundary, either 00 or 11. There are neighbors
of this codeword with 00, 01, 10, and 11 bit pairs across this
boundary. However, the neighbors with 01 across the boundary
cannot transition to the neighbors with 10 across the boundary.
Thus, the neighbor set of a codeword in class c > 1 is not a
clique.

Definition: A clique is said to be prime if there is no codeword
that can be added to the set with the set remaining a clique. (It
does not imply that it is the largest clique; it simply means that it
has no room to grow.)

Theorem 5: There is no clique larger than dn.
Proof: (sketch) First, we will enumerate all possible prime
cliques. It can be shown that every bit boundary in a prime
clique is either “01-type” or “10-type”. To say a boundary is 01-
type implies that in the clique, there are codewords with 00, 01,
and 11 across that boundary, but no codewords with 10 across
the boundary. Similarly, across a 10-type boundary, codewords
in the clique may have 00, 10, and 11, but not 01. Since each of
the n-1 boundaries in a prime clique can be one of two types,
there are 2n-1 prime cliques. It can be shown that the number of
codewords in a given prime clique can be calculated using the
following algorithm:

Algorithm 3:
 x = y = 1
 For each boundary, from 1 to n - 1:
 If the boundary is 01-type, y = x + y
 If the boundary is 10-type, x = x + y
 Prime clique size = x + y

We wish to construct a clique to maximize x + y at the end of the
algorithm. It can be seen that the optimal decision at each step
of the algorithm, in order to maximize the running total of x and
y, is to place a 01-type when x < y and a 10-type when x > y.
The choice of the first pair type is arbitrary, because at that
point, x = y. Thereafter, the optimal choice alternates between
the two types, and thus the largest clique consists of alternating
01-type, 10-type boundaries. We see that a class 1 codeword is
a member of this clique (with the polarity of the class 1
codeword determined by the choice of the initial boundary). By
Theorem 4, the size of this largest clique is dn.

 We have now determined the maximum performance of
a memoryless self-shielding code: log2(dn) bits per wire. Notice
that this code, like the pruned code with memory, comes with a
specific set of codewords to use. The sets found by the pruning
algorithms provide additional performance beyond dn, whereas
the set found in this section (the neighbor set of a class 1
codeword) gives no additional performance, but instead provides
a code property that may considerably ease implementation.
 Because the maximum performance of a memoryless
code is the same as that of an unpruned code with memory, the
results can be viewed in Figure 5. Again, adding a physical wire
allows for 0.69 more information bits, and a 32-bit bus would
require 46 wires. But the encoder and decoder could be purely
combinational, and there would be a single, fixed codebook.

6. Implementation Issues

 Although the primary thrust of this paper is theoretical,
we will now take a brief look at some issues related to the

 b C
L D

 n b
sender receiver

encoder decoder

channel
C

L

D

 n
D

 b C
L

D

 n b
sender receiver

encoder decoder

channel
C

L

D

 n

Figure 6a: Unpipelined Circuit Model for Code with Memory

Figure 6b: Pipelined Circuit Model for Code with Memory

logical and physical implementation of self-shielding codes.

Encoder and Decoder Circuit Models
 Figure 6a shows a block diagram of an encoder and
decoder that can implement a self-shielding code with memory.
It is easy to recognize the encoder as a simple finite state
machine (a Mealy machine), and the decoder is a function only
of the current and immediately previous input, with no feedback
at all. However, with this architecture, a combinational path
exists from the input of the encoder to the output of the decoder,
which adds the logic delay to the delay of the channel. A
pipelined circuit model, shown in Figure 6b, gives the data
almost the full clock cycle to travel across the channel, in
exchange for two extra clock cycles of latency. The encoder is
now a Moore machine, and the decoder uses two memory
elements.
 Figures 7a and 7b show unpipelined and pipelined
circuit models respectively for a memoryless coder. Because a
memoryless code depends only on the current input, these
models are almost trivially simple.

Partial Coding
 The results in the previous sections give the theoretical
maximum performance for a code of a given width. However, it
may be infeasible to design a circuit to encode 32 or more bits of
data at once. In such a case, the bus can be broken into sub-

nto

simply as a current return path.
 Figure 8 shows the number of wires required, including
shield wires, for encoding a 32-bit bus when the individual sub-
buses are no wider than a given number of bits. Note that the
number of wires required drops off sharply even when the sub-
buses are small. For example, a very simple 3-bit to 4-wire
memoryless code requires a channel width of only 53 wires. A
code with memory using one 4-bit and four 7-bit sub-buses
requires only 46 wires.

Design Example
 Figure 9 gives gate-level schematic diagrams of a
sample encoder and decoder that implement a 3-bit to 4-wire
memoryless code. The mapping between data words and
codewords is shown as well. Notice that, indeed, the set of
codewords used is the neighbor set of a class 1 codeword. Using
the partial coding technique described above, an array of ten of
these simple coders could be used to implement a crosstalk-
immune 32-bit bus with 53 wires. When compared to a 63-wire
shielded channel, this amounts to cutting ten wires from the
channel for the cost of a handful of gates.

7. Comparison to Other Techniques

 In the literature, there are a number of other techniques
designed for combating crosstalk. Many of them, such as those
described in [1], [2] and [3], employ creative routing strategies

 data word codeword
 000 0111
 001 0001
 010 1111
 011 0000
 100 0101
 101 0100
 110 1101
 111 1100

y1
y2

y0

x2

y3
x1

y2
x0

y0

x1
x2

x0

x0
x2

y3

y2

x2
y1

x0

x1
y0

 b C
L

 n b
sender receiver

encoder decoder

channel
C

L
 n

 b C
L D

 n b
sender receiver

encoder decoder

channel
C

L
 n

D

Figure 7a: Unpipelined Circuit Model for Memoryless Code

Figure 7b: Pipelined Circuit Model for Memoryless Code Figure 9: Example 4-Bit to 3-Wire Coder
buses of smaller width which could be encoded individually o

sub-channels. Each sub-channel would then have to be shielded
from its neighbor with a dedicated ground wire. But it should be
noted that, in practice, such a wire might be needed anyway

in order to minimize crosstalk delay within a datapath or logic
block. Our technique. on the other hand, is intended for use with
long, straight buses, and thus these routing schemes are not
applicable to our domain of interest. [4] and [5] mention some
techniques that are more relevant, such as skewing the timing of
signals on adjacent wires, interleaving mutually exclusive buses,
and precharging the bus. However, skewing requires careful,
technology-dependent circuit design and brings up tricky timing
issues, whereas our technique is technology-independent and
fully synchronous, with the crosstalk immunity “correct by
construction.” Interleaving is a useful technique, but it cannot
be used with buses that are allowed to transition on any and
every clock cycle. Precharging a long bus can incur detrimental
power costs, and is usually not an option.
 Probably the most common technique is simply using
large repeaters to drive the Miller capacitance through brute
force [6]. A quantitative comparison between our technique and
optimally-sized repeaters is technology- and implementation-

1 4 8 12 16 20 24 28 32
38
40
42
44
46
48
50
52
54
56
58
60
62
64

max data bits encoded together

to
ta

l w
ir

es
 r

eq
ui

re
d

memoryless

with memory

Figure 8: Wires Required with Partial Coding

dependent, and will not be given. However, conceptually, using
large repeaters is a power-hungry technique, and shielding is an
area-hungry technique. Crosstalk-immune bus encoding avoids
crosstalk delay with a modest impact on either area or power.

8. Conclusion

 In this paper, we have introduced the concept of using
data encoding to mitigate crosstalk delay on buses, and we
presented a theoretical framework for understanding crosstalk-
immune coding. We determined the fundamental limits on
performance, in terms of required channel width versus data bits,
for codes with and without memory, and found them to be very
satisfactory. Future work will include designing codes such that
the coding circuitry can be implemented efficiently and
exploring hybrid code designs. The latter would involve codes
that eliminate crosstalk delay as well as reduce average power
consumption, perform error detection or correction, or
accomplish some other task that is well suited to bus encoding.

References

[1] A. Vittal and M. Marek-Sadowska, “Crosstalk Reduction for

VLSI,” IEEE Trans. Computer-Aided Design, vol. 16, no. 3, 1997.
[2] T. Gao and C. L. Liu, “Minimum Crosstalk Channel Routing,”

IEEE Trans. Computer-Aided Design, vol. 15, no. 5, pp. 465-74,
1996.

[3] T. Xue, E. Kuh, and D. Wang, “Post Global Routing Crosstalk
Synthesis,” IEEE Trans. Computer-Aided Design, vol. 16, no. 12,
pp. 1418-30, 1997.

[4] J. Yim and C. Kyung, “Reducing Cross-Coupling among
Interconnect Wires in Deep-Submicron Datapath Design,”
Proceedings. 1999 Design Automation Conference, pp. 485-90.
1999

[5] K. Hirose and H. Yasuura, “A Bus Delay Reduction Technique
Considering Crosstalk,” Proceedings. Design, Automation and
Test in Europe Conference and Exhibition 2000, pp. 441-5. 2000.

[6] D. Li, A. Pua, P. Srivastava, and U. Ko, “A Repeater Optimization
Methodology for Deep Sub-Micron, High-Performance
Processors,” Proceedings. International Conference on Computer
Design, VLSI in Computers and Processors. pp. 726-31. 1997

