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 Abstract— The propagation delay across long on-chip buses 
is increasingly becoming a limiting factor in high-speed 
designs. Crosstalk between adjacent wires on the bus may 
create a significant portion of this delay.  Placing a shield 
wire between each signal wire alleviates the crosstalk 
problem but doubles the area used by the bus, an 
unacceptable consequence when the bus is routed using 
scarce top-level metal resources.  Instead, we propose to 
employ data encoding to eliminate crosstalk delay within a 
bus.  This paper presents a rigorous analysis of the theory 
behind “self-shielding codes”, and gives the fundamental 
theoretical limits on the performance of codes with and 
without memory.  Specifically, we find that a 32-bit bus can 
be encoded with 40 wires using a code with memory or 46 
wires with a memoryless code, in comparison to the 63 wires 
required with simple shielding. 
 
 
1.  Introduction 
 
 As device geometries shrink, chip sizes increase, and 
clock speeds get faster, interconnect delay is becoming 
increasingly significant.  In particular, the propagation delay 
through long cross-chip buses is already proving to be a limiting 
factor in the speed of some designs, and this trend will only get 
worse.  It has been shown that the delay through a long bus is 
strongly a function of the coupling capacitance between the 
wires.  Especially detrimental to the delay is the Miller-like 
effect when adjacent wires simultaneously transition in opposite 
directions.  When the cross-coupling capacitance is comparable 
to or exceeds the loading capacitance on the wires, the delay of 
such a transition may be twice or more that of a wire 
transitioning next to a steady signal.  We call this delay penalty 
the “crosstalk delay”.  
 In some high-speed designs where crosstalk delay 
would have limited the clock speed, the technique of shielding 
was used.  This involves putting a grounded wire between every 
signal wire on the bus.  Although this certainly is effective in 
preventing crosstalk within the bus, it has the effect of doubling 
the wiring area.  Cross-chip buses often must be routed in higher 
metal layers, which are scaled more slowly than the rest of the 
geometry in order to prevent an unacceptable increase in 
resistance.  Thus, routing resources are scarce at these levels, 
and it can be difficult to justify doubling the bus width. 
 However, if we abstract the concept of shielding and 
just look at the signals on the wires of a shielded bus, we can 

think of it as a very simple bus encoding.  Two wires are used 
for every data bit.  A data bit of “0” is encoded as a “00” signal 
on the wires, and a “1” is encoded as “10”.  The purpose of this 
“encoding” is to prevent adjacent wires from transitioning in 
opposite directions, and this particular encoding achieves that 
goal by forcing every other wire to a steady value.  But the 
question arises:  Are there other possible encodings that can 
achieve the same goal, but with fewer wires?  Such encodings 
may require extra logic or memory elements, but as the speed of 
logic goes up and the relative area consumed by logic goes 
down, such a tradeoff seems increasingly valid. 
 Indeed, such encodings exist.  We will refer to them as 
“self-shielding” or “crosstalk-immune” codes.  In this paper, we 
will approach this subject from a rigorous theoretical standpoint.  
Rather than giving ad-hoc designs and heuristic methods, or 
prematurely attempting to design for efficient implementation, 
we will instead develop the theory behind crosstalk-immune 
coding, describe the fundamental capabilities and limitations that 
the theory implies, and give methods for generating optimal sets 
of codewords.  Such an analysis is always necessary before good 
codes can be designed and implemented. 
 
2.  Background 
 
 We can model the chain of communication as shown in 
Figure 1.  Adopting some terminology from coding theory, we 
say that the data words to be encoded are represented by 
symbols.  The mapping between symbols and actual data words 
is an implementation step and will not be discussed here.  The 
values placed on the channel by the encoder are called 
codewords, and the mapping between symbols and codewords is 
called a codebook.  If the codebook changes with time, then the 
encoding is said to have memory. 
 Specific to crosstalk-immune coding is the notion of 
which codewords can follow which.  The fundamental rule is 

EncoderSender Decoder Receiver
 b  b n

channel

Figure 1: Model of Communication Chain 

codeword at time 1: 0010 0000 0100 0100 
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codeword at time 2: 0110 1111 0001 0010 
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Figure 2: Examples of Valid and Invalid Transitions 



that, given a particular value currently on the channel, the next 
value cannot cause any adjacent wires to transition in opposite 
directions.  We say that a codeword is connected to another 
codeword if it is valid to transition from one to the other.  Figure 
2 presents some examples of valid and invalid transitions.  In 
order to import some terminology from graph theory, we can 
form a graph with the codewords as vertices and the connections 
as edges.  This graph is undirected because the connection 
relation is symmetric.  We can then say that the neighbor set of a 
codeword is the set of codewords that it is connected to, and its 
degree is the size of this set.  Note that it is valid for a codeword 
to transition to itself, and thus every codeword has itself as a 
neighbor.   
 
3.  Unpruned Code with Memory 
 
 All of the codes we discuss will transmit one full data 
word on each clock cycle.  If the data word is b bits wide and all 
data words are allowed, then at all times there must be at least 2b 
symbols that can be expressed, and thus at least 2b codewords in 
the codebook.  If our code has memory, however, these do not 
have to be the same codewords at all times.  The codebook could 
be any subset of the neighbor set of the codeword currently on 
the channel.  That is, for every codeword, a mapping is defined 
between the symbol set and some subset of the codeword’s 
neighbor set.  This mapping is known by both the encoder and 
decoder, and thus when the channel transitions to a particular 
neighbor, it represents a particular symbol and information is 
transmitted. 
 For our first code, the “unpruned code with memory”, 
we will make no restrictions on which values are allowed to be 
in the codebook.  That is, we will assume that any possible n-bit 
value could be a codeword and thus could be on the channel.  
The maximum number of expressible symbols is limited by the 
least connected value, or the codeword with the smallest degree.  
The first step, then, is to derive a formula for calculating the 
degree of a codeword.  We can then find and prove which 
codeword has the minimum degree for a given width n.  This 
degree will represent the maximum performance available from 
this type of code. 
 
Definition:  A class 1 codeword is a codeword with alternating 0 
and 1 bits.  For example, 01010 and 10101 are 5-bit class 1 
codewords. 
 
Definition: dn is the degree of an n-bit class 1 codeword. 

Theorem 1:  dn are Fibonacci numbers.  Specifically: 
 dn  =  Fn+2  (1) 
where Fn is the classical Fibonacci sequence {1,1,2,3,5,8,13,…}. 
Proof:  Consider, without loss of generality, a class 1 codeword 
of n bits that begins with a 0 bit.  This first bit can either stay or 
rise.  If it stays, the second bit is free to fall or stay, and thus dn-1 

transitions can be realized.  If the first bit rises, the second bit is 
forced to stay, because it cannot fall next to a rising bit.  The 
third bit is then free to rise or stay, and dn-2 transitions can be 
realized.  The total number of possible transitions is the sum of 
the two cases: 
  dn  =  dn-1 + dn-2   (2) 
This is the same recurrence relation obeyed by the Fibonacci 
sequence.  In order to show that dn are in fact Fibonacci 
numbers, we need to establish two initial conditions. A one-bit 
class 1 codeword is “0”.  It can transition to two codewords: “0” 
and “1”.  A two-bit class 1 codeword is “01”.  It can transition to 
“00”, “01”, or “11”, but not “10”.  We see that d1  = 2 and d2  = 3. 
These are in fact Fibonacci numbers, F3 and F4 respectively.  
Therefore, dn  =  Fn+2.  
 
Corollary:  
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Proof:  These expressions can be derived by solving the 
difference equation (2) and applying the initial conditions in the 
above proof.   
 
 Some values of dn are given in Table 1.  Now that we 
have an expression for the degree of a class 1 codeword, we will 
proceed to derive the degree of any arbitrary codeword.   
 
Definition:  An independent boundary in a codeword occurs 
between two adjacent bits of the same value.  A dependent 
boundary in a codeword occurs between two adjacent bits of 
different values.  For example, the codeword 0011 has three 
boundaries, and they are independent, dependent, and 
independent respectively. 
 
Definition:  A section of a codeword is one of the pieces that 
would result if the codeword were split at its independent 
boundaries.  For example, the codeword 10110100 has three 
sections:  101, 1010, and 0.  Notice that each section , if isolated, 
would be considered a class 1 codeword. 
 
Definition:  The class of a codeword is equal to the number of 
sections.  This is also the number of independent boundaries plus 
one. 
 

Definition:  },...,,{ 21 cnnnd , where c is the class, denotes the 

degree of a codeword with sections of width n1, n2, etc. 
 
 
 Table 1: Degrees of Some Class 1 Codewords 

 n dn log2(dn) 
 1 2 1.00 
 2 3 1.58 
 3 5 2.32 
 4 8 3.00 
 5 13 3.70 
 6 21 4.39 
 7 34 5.09 
 8 55 5.78 
 9 89 6.48 



Theorem 2:  The degree of any codeword is equal to  
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where c is the codeword class and ni is the number of bits in the 
ith section. 
Proof:  Two adjacent sections, by definition, are separated by an 
independent boundary.  The two bits across this boundary are the 
same value, and thus it is impossible for one to rise and the other 
fall.  Because the fundamental rule on bit transitions cannot be 
violated across an independent boundary, the set of transitions 
allowed for one section is not affected by the transitions chosen 
for other sections.  Thus, we can determine the number of 
transitions for each section independently, and multiply the 
results from each section to obtain the total number of transitions 
allowed.  By definition, each section is in isolation a class 1 
codeword.  Thus, the total number of transitions is the product of 

ind , where ni is the width of each section.    

 
 We now know how to calculate the degree of any 
codeword.  In the next theorem, we will find that the codewords 
with the smallest degree, which determine the performance of 
our code, are none other than the class 1 codewords. 
 
Theorem 3:  For a given codeword width n, the degree of any 
codeword of class c > 1 is greater than dn.  
Proof:  We start by proving this for c = 2.  Using Theorem 2, the 
proposition can be stated mathematically as: 
 dx+y < dx dy  (6) 
Restating this in terms of (3) and applying algebraic 
transformations (as well as using the fact that φn = φn-1 + φn-2) we 
can reduce the inequality to: 

  ( )( ) 0)()( >−−−− −− yyxx φφφφ   (7) 

When x > 0 and y > 0, this inequality is true.  Thus, for a given n, 
a class 2 codeword has a higher degree than a class 1 codeword.  
The expression can be applied iteratively for higher classes:  
  dx+y+z < dx+y dz < dx dy dz  (8) 
and so on.  Thus any codeword with class c > 1 has a higher 
degree than a class 1 codeword.     
 
 We have found that the minimum codebook size occurs 
when a class 1 codeword is on the channel, and at that point, the 
number of symbols that can be expressed is given by (3).  Given 

this information, we can now state the maximum performance of 
a self-shielding code when any possible value is allowed as a 
codeword on the channel.  If n is the channel width, then the 
maximum number of information bits is log2(dn).  This is plotted 
in Figure 3.  Asymptotically, increasing n by 1 multiplies the 
number of symbols by φ, or 1.62.  So, adding a physical wire 
allows for about log2(1.62), or 0.69, more bits of information.  
We see that a 32-bit bus could be implemented with 46 wires. 
This compares very favorably to a simple shielding scheme 
which would require 63 wires.  We can conceptually consider 
(n-b) / b to be the inflation in wire usage due to eliminating 
crosstalk delay.  With shielding, this wiring overhead is 97%, 
whereas with coding, it is only 44%.  However, we can do even 
better than this. 
 
4.  Pruned Code with Memory 
 
 The previous result was limited by the degree of the 
class 1 codeword.  However, if we ensure that the code never 
transitions to a class 1 codeword, then we know it will never 
need to transition from one.  If we throw the class 1 codewords 
out of the codebook, we are no longer limited by their poor 
performance, although the degrees of the codewords in the 
discarded codes’ neighbor sets will decrease.  Extending this 
idea leads to the codebook pruning algorithm: 
 
Algorithm 1: 

While there are valid codewords left: 
 Find the set of valid codewords with the lowest degree. 
 For each codeword W in the set: 
  Remove W from the set of valid codewords. 
  Decrement the degree of each of  W’s neighbors. 

 
As the algorithm progresses, the limiting degree will increase, 
hit a maximum, and then decrease as the codebook gets 
depleted.  We choose, of course, the set of codewords that was 
active when the limiting degree was at its maximum.  This 
algorithm is guaranteed to find the best possible set of 
codewords because at each step, if anything other than the 
limiting codewords were removed, the limiting degree could 
only decrease or stay constant.  It could never improve.
 To visualize the pruning process, we can make a plot of 
the limiting degree versus codewords pruned as the algorithm 
runs.  Figure 4 shows these “pruning curves” for a few values of 
n.  The expected shape can be observed.  By locating the peak of 
each curve, we find the maximum performance obtainable by a 
self-shielding code of the given width.   
 Unfortunately, pruning as described by the above 
algorithm is a purely experimental procedure.  It is extremely 
computationally intensive for large n (we could only run the 
algorithm up to n = 23), and worse, it is not amenable to the 
rigorous mathematical analysis that we seek.  However, there is 
a sub-optimal pruning algorithm that is a fairly close 
approximation to the optimal one and allows analytic 
expressions to be derived. 
 Examination of the optimal pruning process reveals 
that, especially for small n, the codewords are pruned roughly in 
class order.  That is, most of a given class c is pruned before any 
codeword in class c + 1 is touched.  This observation is less true 

8 16 24 32 40 48 56 64

8

16

24

32

40

wires used

data bits

unencoded coded shielded

Figure 3:  Performance of Unpruned Code 



for large n (e.g., n > 16), but the dependence on class is still 
strongly visible.  In fact, the spikes that are visible in the pruning 
curves usually occur after an entire class of codewords is fully 
pruned. 
 This observation leads to the idea of pruning entire 
codeword classes at once.  The revised pruning algorithm can be 
written as follows: 
 
Algorithm 2: 
 For each c from 1 to n: 
        Remove class c codewords from the set of valid codewords. 
        Recalculate the degrees of the rest of the codewords. 
 
Again, the limiting degree will rise, hit a maximum, and fall.  
There is no guarantee of optimality with this algorithm.  
However, we find that its results match exactly with the optimal 
for n < 10, and the error stays below 10%, or 0.15 bits, for at 
least n ≤ 23, which was the highest we could check.  Thus, the 
approximation is fairly good.  Furthermore, because it is sub-
optimal, the results are always achievable.   
 Again, the primary motivation behind this algorithm, 
other than the simplicity of having logarithmically less data 
points to deal with, was that it can be subjected to mathematical 
analysis.  This is possible through the use of the class 
distribution polynomial.  For a given codeword, a polynomial 
D(x) can be generated where the number of class c codewords in 
the neighbor set is equal to the coefficient of the xc-1 term.1  
Thus, this polynomial describes the class distribution of the 
neighbor set, and can be used to calculate the effects of pruning 
various code classes.  Specifically: 
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where 

                                                           
1 Note that DW(1) = dW.  Thus, this can be seen as a generalization of the 
previous theorems. 
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with P0 = 0 and P1 = 1. 
 The derivation of these expressions, as well as a 
discussion of the many interesting results that they imply, is 
beyond the scope of this paper.  We will simply state that it is 
possible to find which codeword is the limiting one in each 
class, and the determination of its degree after pruning is a trivial 
matter of generating the class distribution polynomial and 
summing the coefficients of the xa terms for a ≥ c-1.  
 With the experimental results from the optimal pruning 
algorithm, it is fair to say that we have determined the 
fundamental limits on the performance of self-shielding codes 
up to n = 23.  For larger n, we can use the class pruning 
algorithm in lieu of the optimal one, for an apparently close 
approximation to the fundamental limit.  Notice that, unlike the 
unpruned code where the code design was left completely 
arbitrary, these algorithms provide a specific set of codewords to 
use.  The extra performance over the unpruned code comes from 
restricting ourselves to this set. 
 Figure 5 plots the maximum performance of the pruned 
code with memory, using the analytic algorithm.  The data from 
the optimal algorithm would visibly coincide with the plotted 
line for n ≤ 23, so it is not plotted separately.  We see that a 32 
bit bus could be implemented with only 40 wires.  In this case, 
the wiring overhead as defined earlier is only 25%, which 
compares extremely favorably to 44% with unpruned coding and 
97% with simple shielding. 
  
5.  Memoryless Code 
 
 The previous codes required the encoder and decoder to 
hold state, because the codebook was dependent on the previous 
value on the channel.  Now, we ask what kind of performance is 
possible with a memoryless code.  Such a code would have a 
single, unchanging codebook.  Thus, every codeword in the 
book would have to be able to transition to every other 
codeword.  We want to find the largest such codebook. 
 In graph theory, a clique in an undirected graph is 
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defined as a subgraph where every pair of nodes is connected 
with an edge.  If we represent the valid transitions of the 
codewords as edges on a graph, then the problem of finding the 
largest memoryless codebook becomes the problem of finding 
the largest clique.  Interestingly, evaluating this clique problem 
leads to results identical to Table 1.  The size of the largest 
clique is always dn. 
 In the next two theorems, we will show that for a given 
n, there are two identically-sized largest cliques, each consisting 
of the entire neighbor set of one of the two class 1 codewords.  
Theorem 4 will prove that the neighbor set of a class 1 codeword 
is a clique, and Theorem 5 will prove that there is no larger 
clique. 
 
Theorem 4:  The entire neighbor set of a codeword is a clique if 
and only if the codeword is class 1. 
Proof:  (“if” case):  A class 1 codeword has only dependent 
boundaries, so the pair of bits across any boundary is either 01 or 
10.  Consider a boundary between a 01 pair. All neighbors of the 
codeword will have either a 00, 01, or 11 across that boundary.  
Notice that all three possibilities can transition to one another. 
Therefore, every neighbor can transition to every other neighbor 
without violating the bit transition rule across that boundary.   
Consider now a boundary between a 10 pair.  All neighbors have 
either 00, 10, or 11 across this boundary, and again, these three 
pairs can all transition to each other.  This argument holds for 
every boundary in the codeword.  The bit transition rule cannot 
be violated across any boundary when any neighbor transitions 
to any other neighbor, so the neighbor set of a class 1 codeword 
is a clique 
(“only if” case):  A codeword in class c > 1 has, by definition, at 
least one independent boundary. Consider the pair of bits across 
an independent boundary, either 00 or 11.  There are neighbors 
of this codeword with 00, 01, 10, and 11 bit pairs across this 
boundary.  However, the neighbors with 01 across the boundary 
cannot transition to the neighbors with 10 across the boundary.  
Thus, the neighbor set of a codeword in class c > 1 is not a 
clique.   
 
Definition:  A clique is said to be prime if there is no codeword 
that can be added to the set with the set remaining a clique.  (It 
does not imply that it is the largest clique; it simply means that it 
has no room to grow.) 
 
Theorem 5:  There is no clique larger than dn. 
Proof: (sketch)  First, we will enumerate all possible prime 
cliques.  It can be shown that every bit boundary in a prime 
clique is either “01-type” or “10-type”.  To say a boundary is 01-
type implies that in the clique, there are codewords with 00, 01, 
and 11 across that boundary, but no codewords with 10 across 
the boundary.  Similarly, across a 10-type boundary, codewords 
in the clique may have 00, 10, and 11, but not 01.  Since each of 
the n-1 boundaries in a prime clique can be one of two types, 
there are 2n-1 prime cliques.  It can be shown that the number of 
codewords in a given prime clique can be calculated using the 
following algorithm: 
  
 
 

Algorithm 3: 
 x = y = 1 
 For each boundary, from 1 to n - 1: 
  If the boundary is 01-type, y = x + y 
  If the boundary is 10-type, x = x + y 
 Prime clique size = x + y 
 
We wish to construct a clique to maximize x + y at the end of the 
algorithm.  It can be seen that the optimal decision at each step 
of the algorithm, in order to maximize the running total of x and 
y, is to place a 01-type when x < y and a 10-type when x > y.  
The choice of the first pair type is arbitrary, because at that 
point, x = y.  Thereafter, the optimal choice alternates between 
the two types, and thus the largest clique consists of alternating 
01-type, 10-type boundaries.  We see that a class 1 codeword is 
a member of this clique (with the polarity of the class 1 
codeword determined by the choice of the initial boundary).  By 
Theorem 4, the size of this largest clique is dn.     
 
 We have now determined the maximum performance of 
a memoryless self-shielding code:  log2(dn) bits per wire.  Notice 
that this code, like the pruned code with memory, comes with a 
specific set of codewords to use.  The sets found by the pruning 
algorithms provide additional performance beyond dn, whereas 
the set found in this section (the neighbor set of a class 1 
codeword) gives no additional performance, but instead provides 
a code property that may considerably ease implementation. 
 Because the maximum performance of a memoryless 
code is the same as that of an unpruned code with memory, the 
results can be viewed in Figure 5.  Again, adding a physical wire 
allows for 0.69 more information bits, and a 32-bit bus would 
require 46 wires.  But the encoder and decoder could be purely 
combinational, and there would be a single, fixed codebook. 
 
6.  Implementation Issues 
 
 Although the primary thrust of this paper is theoretical, 
we will now take a brief look at some issues related to the 
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Figure 6a:  Unpipelined Circuit Model for Code with Memory 

Figure 6b:  Pipelined Circuit Model for Code with Memory 



logical and physical implementation of self-shielding codes. 
 
Encoder and Decoder Circuit Models 
 Figure 6a shows a block diagram of an encoder and 
decoder that can implement a self-shielding code with memory.  
It is easy to recognize the encoder as a simple finite state 
machine (a Mealy machine), and the decoder is a function only 
of the current and immediately previous input, with no feedback 
at all.  However, with this architecture, a combinational path 
exists from the input of the encoder to the output of the decoder, 
which adds the logic delay to the delay of the channel.  A 
pipelined circuit model, shown in Figure 6b, gives the data 
almost the full clock cycle to travel across the channel, in 
exchange for two extra clock cycles of latency.  The encoder is 
now a Moore machine, and the decoder uses two memory 
elements. 
 Figures 7a and 7b show unpipelined and pipelined 
circuit models respectively for a memoryless coder.  Because a 
memoryless code depends only on the current input, these 
models are almost trivially simple. 
 
Partial Coding 
 The results in the previous sections give the theoretical 
maximum performance for a code of a given width.  However, it 
may be infeasible to design a circuit to encode 32 or more bits of 
data at once.  In such a case, the bus can be broken into sub-

nto 

simply as a current return path. 
 Figure 8 shows the number of wires required, including 
shield wires, for encoding a 32-bit bus when the individual sub-
buses are no wider than a given number of bits.  Note that the 
number of wires required drops off sharply even when the sub-
buses are small.  For example, a very simple 3-bit to 4-wire 
memoryless code requires a channel width of only 53 wires.  A 
code with memory using one 4-bit and four 7-bit sub-buses 
requires only 46 wires. 
 
Design Example 
 Figure 9 gives gate-level schematic diagrams of a 
sample encoder and decoder that implement a 3-bit to 4-wire 
memoryless code.  The mapping between data words and 
codewords is shown as well.  Notice that, indeed, the set of 
codewords used is the neighbor set of a class 1 codeword.  Using 
the partial coding technique described above, an array of ten of 
these simple coders could be used to implement a crosstalk-
immune 32-bit bus with 53 wires.  When compared to a 63-wire 
shielded channel, this amounts to cutting ten wires from the 
channel for the cost of a handful of gates. 
  
7.  Comparison to Other Techniques  
 
 In the literature, there are a number of other techniques 
designed for combating crosstalk. Many of them, such as those 
described in [1], [2] and [3], employ creative routing strategies 
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Figure 7b:  Pipelined Circuit Model for Memoryless Code Figure 9:  Example 4-Bit to 3-Wire Coder 
buses of smaller width which could be encoded individually o

sub-channels.  Each sub-channel would then have to be shielded 
from its neighbor with a dedicated ground wire.  But it should be 
noted that, in practice, such a wire might be needed anyway 

in order to minimize crosstalk delay within a datapath or logic 
block.  Our technique. on the other hand, is intended for use with 
long, straight buses, and thus these routing schemes are not 
applicable to our domain of interest.  [4] and [5] mention some 
techniques that are more relevant, such as skewing the timing of 
signals on adjacent wires, interleaving mutually exclusive buses, 
and precharging the bus.  However, skewing requires careful, 
technology-dependent circuit design and brings up tricky timing 
issues, whereas our technique is technology-independent and 
fully synchronous, with the crosstalk immunity “correct by 
construction.”  Interleaving is a useful technique, but it cannot 
be used with buses that are allowed to transition on any and 
every clock cycle.  Precharging a long bus can incur detrimental 
power costs, and is usually not an option. 
 Probably the most common technique is simply using 
large repeaters to drive the Miller capacitance through brute 
force [6].  A quantitative comparison between our technique and 
optimally-sized repeaters is technology- and implementation-
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dependent, and will not be given.  However, conceptually, using 
large repeaters is a power-hungry technique, and shielding is an 
area-hungry technique.  Crosstalk-immune bus encoding avoids 
crosstalk delay with a modest impact on either area or power. 
 
 
8. Conclusion 
 
 In this paper, we have introduced the concept of using 
data encoding to mitigate crosstalk delay on buses, and we 
presented a theoretical framework for understanding crosstalk-
immune coding.  We determined the fundamental limits on 
performance, in terms of required channel width versus data bits, 
for codes with and without memory, and found them to be very 
satisfactory.  Future work will include designing codes such that 
the coding circuitry can be implemented efficiently and 
exploring hybrid code designs.  The latter would involve codes 
that eliminate crosstalk delay as well as reduce average power 
consumption, perform error detection or correction, or 
accomplish some other task that is well suited to bus encoding. 
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