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Abstract

The ubiquity of frustrating, unhelpful software interfaces has motivated decades of research

into “Human-Computer Interaction.” In this paper, I suggest that the long-standing focus on

“interaction” may be misguided. For a majority subset of software, called “information

software,” I argue that interactivity is actually a curse for users and a crutch for designers, and

users’ goals can be better satisfied through other means.

Information software design can be seen as the design of context-sensitive information

graphics. I demonstrate the crucial role of information graphic design, and present three

approaches to context-sensitivity, of which interactivity is the last resort. After discussing the

cultural changes necessary for these design ideas to take root, I address their implementation.

I outline a tool which may allow designers to create data-dependent graphics with no

engineering assistance, and also outline a platform which may allow an unprecedented level of

implicit context-sharing between independent programs. I conclude by asserting that the

principles of information software design will become critical as technology improves.

Although this paper presents a number of concrete design and engineering ideas, the larger

intent is to introduce a “unified theory” of information software design, and provide

inspiration and direction for progressive designers who suspect that the world of software isn’t

as flat as they’ve been told.

Scope and terminology

“Software,” as used here, refers to user-facing personal desktop software, whether on a native

or web platform. “Software design” describes all appearance and behaviors visible to a user; it

approaches software as a product. “Software engineering” implements the design on a

computer; it approaches software as a technology. These are contentious definitions;

hopefully, this paper itself will prove far more contentious.
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Of software and sorcery

A computational process is indeed much like a sorcerer’s idea of a spirit. It

cannot be seen or touched. It is not composed of matter at all. However, it is

very real. It can perform intellectual work. It can answer questions. It can

affect the world by disbursing money at a bank or by controlling a robot arm

in a factory. The programs we use to conjure processes are like a sorcerer’s

spells.

—Abelson and Sussman, Structure and Interpretation of Computer Programs

(1984)

Merlin had it easy—raising Stonehenge was a mere engineering challenge. He slung some

weighty stones, to be sure, but their placement had only to please a subterranean audience

whose interest in the matter was rapidly decomposing. The dead are notoriously unpicky.

Today’s software magicians carry a burden heavier than 13-foot monoliths—communication

with the living. They often approach this challenge like Geppetto’s fairy—attempting to instill

the spark of life into a mechanical contraption, to create a Real Boy. Instead, their vivified

creations often resemble those of Frankenstein—helpless, unhelpful, maddeningly stupid, and

prone to accidental destruction.

This is a software crisis, and it isn’t news. For decades, the usability pundits have devoted vim

and vitriol to a crusade against frustrating interfaces. Reasoning that the cure for unfriendly

software is to make software friendlier, they have rallied under the banner of “interaction

design,” spreading the gospel of friendly, usable interactivity to all who would listen.

Yet, software has remained frustrating, and as the importance of software to society has grown,

so too has the crisis. The crusade marches on, with believers rarely questioning the sacred

premise—that software must be interactive in the first place. That software is meant to be

“used.”

I suggest that the root of the software crisis is an identity crisis—an unclear understanding of

what the medium actually is, and what it’s for. Perhaps the spark of life is misdirected magic.

What is software design?

A person experiences modern software almost exclusively through two channels:

She reads and interprets pictures on a screen.

A good introduction to the crisis is

Alan Cooper’s The Inmates Are

Running The Asylum (1999).

Essential concepts of interactive

design are presented in Don

Norman’s Design Of Everyday

Things (2002), Jef Raskin’s The

Humane Interface (2000), and

Cooper’s About Face (2003).



She points and pushes at things represented on the screen, using a mouse as a proxy

finger.

Thus, software design involves the design of two types of artifact:

Pictures.

Things to push.

These are not brave new realms of human endeavor. We share the blood of cavemen who

pushed spears into mammoths and drew pictures of them in the living room. By now, these

two activities have evolved into well-established design disciplines: graphic design and

industrial design.

Graphic design is the art of conveying a message on a two-dimensional surface. This is a

broad field, because people have such a variety of messages to convey—identity, social status,

emotion, persuasion, and so on. Most relevant to software is a branch that Edward Tufte calls

information design—the use of pictures to express knowledge of interest to the reader.* Some

products of conventional information graphic design include bus schedules, telephone books,

newspapers, maps, and shopping catalogs. A good graphic designer understands how to

arrange information on the page so the reader can ask and answer questions, make

comparisons, and draw conclusions.

When the software designer defines the visual representation of her program, when she

describes the pictures that the user will interpret, she is doing graphic design, whether she

realizes this or not.

Industrial design is the art of arranging and shaping a physical product so it can be

manipulated by a person. This too is a broad field, because people work with such a variety of

objects—cutlery to chairs, cell phones to cars. A good industrial designer understands the

capabilities and limitations of the human body in manipulating physical objects, and of the

human mind in comprehending mechanical models. A camera designer, for example, shapes

her product to fit the human hand. She places buttons such that they can be manipulated with

index fingers while the camera rests on the thumbs, and weights the buttons so they can be

easily pressed in this position, but won’t trigger on accident. Just as importantly, she designs

an understandablemapping from physical features to functions—pressing a button snaps a

picture, pulling a lever advances the film, opening a door reveals the film, opening another

door reveals the battery.

Although software is the archetypical non-physical product, modern software interfaces have

evolved overtly mechanical metaphors. Buttons are pushed, sliders are slid, windows are

dragged, icons are dropped, panels extend and retract. People are encouraged to consider

software a machine—when a button is pressed, invisible gears grind and whir, and some

internal or external state is changed. Manipulation of machines is the domain of industrial

design.

* Edward Tufte, The Visual Display

of Quantitative Information (2001).



When the software designer defines the interactive aspects of her program, when she places

these pseudo-mechanical affordances and describes their behavior, she is doing a virtual form

of industrial design. Whether she realizes it or not.

The software designer can thus approach her art as a fusion of graphic design and industrial

design. Now, let’s consider how a user approaches software, and more importantly,why.

What is software for?

Software is for people. To derive what software should do, we have to start with what people

do. Consider the following taxonomy of human activity:*

At the present, software can’t do much for physical needs—if your avatar eats a sandwich, you

remain hungry. But people are increasingly shifting their intellectual activities to the virtual

world of the computer. This suggests three general reasons why a person will turn to software:

To learn.

To create.

To communicate.

I propose that software can be classified according to which of these needs it serves. I will call

these categories information software,manipulation software, and communication software.

Information software serves the human urge to learn. A person uses information software

to construct and manipulate a model that is internal to the mind—a mental representation of

information. Good information software encourages the user to ask and answer questions,

make comparisons, and draw conclusions. A person would use recipe software, for example, to

decide what to cook for dinner. She would learn about various dishes (where “learning” could

be as informal as a quick skim for something tasty that contains ingredients on hand),

compare her options, and make her decision. In effect, she is constructing an internal

understanding of culinary possibilities, and mentally prodding this model to reveal the optimal

choice. It’s the same effect she would hope to achieve by consulting a recipe book.

Manipulation software serves the human urge to create. A person uses manipulation

software to construct and manipulate a model external to herself—a virtual object represented

within the computer, or a remote physical object. Some examples include software for drawing,

writing, music composition, architectural design, engineering design, and robot control.

Manipulation software can be considered a virtual tool—like a paintbrush or typewriter or

bandsaw, it is used as an interface between creator and artifact.

Communication software serves the human urge to communicate. A person uses

communication software to construct and manipulate an internal model that is shared with

* There are any number of ways of

breaking down the spectrum of

human activity. I don’t claim that

the subdivision given here is

definitive, but that it’s useful.

Consider it a set of basis vectors

into the space of human activity.

Different basis sets are helpful for

reasoning about different problems,

but they all describe the same

space.



raw mechanics, communication can be thought of as creating a response to information

learned—that is, the external model manipulated by the speaker is the internal model learned

by the listener. Thus, this paper will simply treat communication software as manipulation

software and information software glued together, and mention it no further.* This design

approach is widespread—email software typically has separate reading and writing modes;

messageboards similarly segregate browsing and posting.

Manipulation software design is hard

Manipulation software generally displays a representation of an object—the model—which the

user directly manipulates with pseudo-mechanical affordances. Because manipulation is the

domain of industrial design, manipulation software emphasizes industrial design aspects.

Consider a tool for laying out a small newspaper. The user will spend most of her time

performing a number of pseudo-physical operations—writing, drawing, cutting, moving,

rotating, stretching, cropping, layering—within a virtual space. The primary design challenge,

just as with any industrial design, is to provide affordances that make these mechanical

operations available, understandable, and comfortable. However, in a physical space, each

operation would use a specialized tool. Designing a “mega-tool” that cleanly incorporates all

operations (and flattens them into two dimensions, and uses only the gestures “click” and

“drag”) is a significant challenge indeed.

Although manipulation is the focus, good manipulation software must provide superb

visualization as well. This establishes the feedback loop that is critical for all creative activity—

the manipulator must see the effects of her manipulation. Thus, manipulation software design

is also a significant graphic design challenge.

For example, the newspaper editor needs to see what a page looks like—close-up, from a

distance, and in relation to other pages—and how it would look in a variety of other

configurations. She wants to see misspelled words, lines that are poorly justified or

hyphenated, and widows and orphans. She wants to see columns that are short or overlong,

and how they can be corrected by changing column width or leading. She wants to know what

stories and ads are still on the table, their sizes, and how they can be fit in. She wants to know

how recently and how often stories about a given topic have run, and how readers have

responded. She wants to know past response to a given ad, as a function of the topics or

authors of the stories it was coupled with. Finally, the presentation of all this information must

not distract the editor from the primary task of manipulating the layout.

Furthermore, the industrial and graphic designs in manipulation software must be in intimate

synergy, since it is the graphic design which describes how the object can be manipulated—the

mechanical affordances are graphical constructs. Even more graphically challenging is

manipulation of abstract objects, such as music or financial data, where the graphical

representation must show not only what can be done with it, but what it is in the first place.*

* This dismissal is rather

disingenuous—communication

software is fundamentally unlike the

other two because its user is a

group, and a group as a whole can

have different goals than any of its

constituents individually. The

considerations of social software

design are well beyond the scope of

this paper, but see Clay Shirky’s

essays, particularly Social Software

and the Politics of Groups (2003).

* As opposed to painting software,

for instance, where the graphical

representation can be the artifact

itself. This is not a pipe, but it’s

close enough.



Because of these intertwined design challenges, the design of excellent manipulation software

is unbelievably difficult, and mustn’t be underestimated. Fortunately, for an enormous class of

software, manipulation is not only largely unnecessary, but best avoided.

Most software is information software

J.C.R. Licklider once examined how he spent his research time:

In the spring and summer of 1957… I tried to keep track of what one

moderately technical person [myself] actually did during the hours he

regarded as devoted to work… About 85 per cent of my “thinking” time was

spent getting into a position to think, to make a decision, to learn something I

needed to know. Much more time went into finding or obtaining information

than into digesting it. Hours went into the plotting of graphs, and other hours

into instructing an assistant how to plot. When the graphs were finished, the

relations were obvious at once, but the plotting had to be done in order to

make them so… Throughout the period I examined, in short, my “thinking”

time was devoted mainly to activities that were essentially clerical or

mechanical: searching, calculating, plotting, transforming, determining the

logical or dynamic consequences of a set of assumptions or hypotheses,

preparing the way for a decision or an insight.*

For Licklider and other early visionaries such as Vanevar Bush and Doug Engelbart,* the ideal

of the then-hypothetical personal computer was a brain supplement, enhancing human

memory and amplifying human reasoning through data visualization and automated analysis.

Their primary concern was how a machine could help a person find and understand relevant

knowledge. Although they were generally discussing scientific and professional work, their

prescience fully applies in the modern home.

Most of the time, a person sits down at her personal computer not to create, but to read,

observe, study, explore, make cognitive connections, and ultimately come to an

understanding. This person is not seeking to make her mark upon the world, but to rearrange

her own neurons. The computer becomes a medium for asking questions, making

comparisons, and drawing conclusions—that is, for learning.

People turn to software to learn the meaning of words, learn which countries were bombed

today, and learn to cook a paella. They decide which music to play, which photos to print, and

what to do tonight, tomorrow, and Tuesday at 2:00. They keep track of a dozen simultaneous

conversations in private correspondence, and maybe hundreds in public arenas. They browse

for a book for Mom, a coat for Dad, and a car for Junior. They look for an apartment to live in,

and a bed for that apartment, and perhaps a companion for the bed. They ask when the movie

is playing, and how to drive to the theater, and where to eat before the movie, and where to get

cash before they eat. They ask for numbers, from simple sums to financial projections. They

ask about money, from stock quote histories to bank account balances. They ask why their car

* J.C.R. Licklider, “Man-Computer

Symbiosis” (1960).

* See Bush’s paper “As We May

Think” (1945) and Engelbart’s

paper “Augmenting Human

Intellect” (1962).



isn’t working and how to fix it, why their child is sick and how to fix her. They no longer sit on

the porch speculating about the weather—they ask software.

Much current software fulfilling these needs presents mechanical metaphors and objects to

manipulate, but this is deceiving. People using this software do not care about these artificial

objects; they care about seeing information and understanding choices—manipulating a model

in their heads.

For example, consider calendar or datebook software. Many current designs center around

manipulating a database of “appointments,” but is this really what a calendar is for? To me, it

is about combining, correlating, and visualizing a vast collection of information. I want to

understand what I have planned for tonight, what my friends have planned, what’s going on

downtown, what’s showing when at the movie theater, how late the pizza place is open, and

which days they are closed. I want to see my pattern of working late before milestones, and

how that extrapolates to future milestones. I want to see how all of this information

interrelates, make connections, and ultimately make a decision about what to do when.

Entering a dentist appointment is just a tedious minor detail, and would even be unnecessary

if the software could figure it out from my dentist’s confirmation email. My goal in using

calendar software to ask and answer questions about what to do when, compare my options,

and come to a decision.

Consider personal finance software. Entering and classifying my expenses is, again, tedious

and unnecessary manipulation—my credit card already tracks these details. I use the software

to understandmy financial situation and my spending habits. How much of my paycheck goes

to rent? How much to Burrito Shack? If I give up extra guacamole on my daily burrito, will I

be able to buy a new laptop? What is my pattern of Christmas spending, and will I have to cut

back if I don’t take any jobs for a month? If I buy a hybrid car, how much will I save on gas? I

want to ask and answer questions, compare my options, and let it guide my spending

decisions.

Consider an online retailer, such as Amazon or Netflix. The entire purpose of the website—the

pictures, ratings, reviews, and suggestions—is to let me find, understand, and compare their

offerings. The experience is about building a decision inside my head. In the end, I manipulate

a shopping cart, but that is merely to put mymental process to effect, to reify the decision. At

the best retailers, this manipulation is made as brief as possible.

Even consider reading email. Most current designs revolve around the manipulation of

individual messages—reading them one-by-one, searching them, sorting them, filing them,

deleting them. But the purpose of reading email has nothing to do with the messages

themselves. I read email to keep a complex set of mental understandings up-to-date—the

statuses of personal conversations, of projects at work, of invitations and appointments and

business transactions and packages in the mail. That this information happens to be parceled

out in timestamped chunks of text is an implementation detail of the communication process.

It is not necessarily a good way to present the information to a learner.



Similar arguments can be made for most software. Ignore the structure of current designs, and

ask only, “Why is a person using this?” Abstracted, the answer almost always is, “To learn.”

So far, this categorization has just been an exercise in philosophy. But this philosophy

suggests a very practical approach to software design.

Information software design is graphic design

It might seem like I’m demanding a lot from my software. But it’s not deep magic—no

simulations of complex phenomena, no effects on the external world, certainly no sentience or

spark of life. I’m asking for software to display a complex set of data in a way that I can

understand it and reason about it. This is a well-established problem; it’s the raison d’etre of

information graphic design. My demands are perfect examples of graphic design challenges.

A well-designed information graphic can almost compel the viewer to ask and answer

questions, make comparisons, and draw conclusions. It does so by exploiting the capabilities

of the human eye: instantaneous and effortless movement, high bandwidth and capacity for

parallel processing, intrinsic pattern recognition and correlation, a macro/micro duality that

can skim a whole page or focus on the tiniest detail. Meanwhile, a graphic sidesteps human

shortcomings: the one-dimensional, uncontrollable auditory system, the relatively sluggish

motor system, the mind’s limited capacity to comprehend hidden mechanisms. A graphic

presents no mechanisms to comprehend or manipulate—it plugs directly into the mind’s

spatial reasoning centers.

For example, consider this train timetable:

This design may be adequate for commuters, whose questions mostly concern when trains

arrive at stations. But train system operators have a different set of questions: Where exactly

are the trains at any given time? How fast are they moving? Where do two trains cross? (They

better not be on the same track at that point!) Where are the trains at the start of the day, and



where do they end up at night? If a train is delayed, how do all these answers change? Like

some of the software questions above, these questions seem very difficult to answer. But

consider this revised timetable design:

Each train is represented by a distinctly-colored line, with distance along the track plotted

vertically and time horizontally. The slope of the line represents the train’s direction and

speed; horizontal sections are stops. This graphic incorporates no more data than the

previous one, yet all of the operators’ questions are answered at a glance. Important features

such as crossings are emphasized simply because the eye is naturally drawn toward line

intersections. Footnotes are unnecessary; the exceptions are no longer exceptional when seen

in context. Should a train be delayed, all revised stops and crossings can be “calculated”

simply by drawing a new line.*

Compared to excellent ink-and-paper designs, most current software communicates

deplorably. This is a problem of surface, but not a superficial problem. The main cause, I

believe, is that many software designers feel they are designing a machine. Their foremost

concern is behavior—what the software does. They start by asking: What functions must the

software perform? What commands must it accept? What parameters can be adjusted? (In the

case of websites: What pages must there be? How are they linked together? What are the

dynamic features?) These designers start by specifying functionality, but the essence of

information software is the presentation.

I suggest that the design of information software should be approached initially and primarily

as a graphic design project. The foremost concern should be appearance—what and how

information is presented. The designer should ask: What is relevant information? What

questions will the viewer ask? What situations will she want to compare? What decision is she

trying to make? How can the data be presented most effectively? How can the visual

vocabulary and techniques of graphic design be employed to direct the user’s eyes to the

solution? The designer must start by considering what the software looks like, because the user

is using it to learn, and she learns by looking at it.

* Graphical train timetables date

from the late 1800s. For the origin

of this and other classic graphical

forms, see Howard Wainer’s book

Graphic Discovery (2005).

It must be mentioned that there is a

radically alternative approach for

information software—games.

Playing is essentially learning

through structured manipulation—

exploration and practice instead of

pedagogic presentation. Despite the

enormous potential for mainstream

software, accidents of history and

fashion have relegated games to the

entertainment bin, and the stigma

of immaturity is tough to overcome.

(The situation is similar for graphic

novels.) Raph Koster’s Theory of

Fun for Game Design (2004) and



Instead of dismissing ink-and-paper design as a relic of a previous century, the software

designer should consider it a baseline. If information software can’t present its data at least as

well as a piece of paper, how have we progressed?

Demonstration: Showing the data

Edward Tufte’s first rule of statistical graphic design is, “Show the data.” All information

graphics, statistical or not, must present the viewer with enough information to answer her

questions. It seems that many software designers, in their focus on functionality, forget to

actually present the data.

Consider the information presented when searching a popular online bookstore.*

There are a number of graphic design criticisms one could make—the uniform text size and

weight results in a solid, oppressive mass; the abundance of saturated primary colors gives a

distracting, carnival-like appearance; the text is spread all over the page, giving the eye no

well-defined path to follow. However, the most egregious problem is simply that there is not

enough information to make any sort of decision.

The user’s goal is to find the best book about some particular topic. Given that the books

shown are presumably related to this topic, what questions does the user have?

Is the book appropriate? That is, what is it about, and do I care?

Is the book good? That is, what did other people think of it, and do I trust them?

James Paul Gee’s What Video

Games Have To Teach Us About

Learning and Literacy (2003) deal

directly with games as learning

tools. Salen and Zimmerman’s

Rules of Play (2003) and Chris

Crawford’s Art of Interactive Design

(2003) and Chris Crawford on Game

Design (2003) discuss learning

through play in a broader context.

* Based on amazon.com as of

January 2006.



The answers will be used to compare the available books, and decide upon one to follow up on

and possibly buy.

Unfortunately, these questions are completely unaddressed by the information provided. To

see relevant information, the user must click on each listing individually. That is, she must

navigate by hand instead of by eye, and must use her memory to compare information across

time instead of space.

The problem is that this graphic was designed as an index into a set of webpages, but is used as

a catalog for comparing a set of books. The purpose of this graphic should not be to return a

list of query matches, but to help the user learn about books related to her topic of interest.

Consider this redesign:

Is a book appropriate? A synopsis and table of contents give an overview of the book’s contents.

Is a book good? A rating and reviews indicate popular opinion. Because all of this information

is on a single page, it can be compared by eye, with no need for memory.

The standard 5-star rating system is information-weak—it gives only an average. It can be

enhanced with whiskers underneath that indicate the distribution of ratings. This allows the

viewer to differentiate between a book that was unanimously judged middling and



one that was loved and hated —these are both 3-star ratings, but have very

different meanings. The viewer can also see whether a highly-rated book got any bad reviews;

in a sea of praise, criticism often makes enlightening reading. As a whole, the whiskers give a

visual indication of the number of ratings, which reflects the trustworthiness of the average.

The whiskers are unobtrusive, and can easily be ignored by viewers who don’t care about

distribution.

Text weight and color is used to emphasize important information and call it out when

skimming. Text in grey can be read when focused upon, but disappears as background texture

when skimming. All critical information is contained in a column with the width of an eyespan,

with a picture to the left and supplementary information to the right. The viewer can thus run

her eye vertically down this column; when she spots something interesting, she will slow down

and explore horizontally.

The user wants to see books related to a topic in her head. But ideas in the head are nebulous

things, and may not translate perfectly to a concrete search term. For this reason, a mini-list of

related books is provided for each book. This is similar to a “related words” section in a

thesaurus listing—it allows the user to correct a near miss, or veer off in a tangential but

intriguing direction.

Conventional software designers will worry about functionality—how does the user interact

with this graphic? Clearly, other than the “related books” listing, a click anywhere in a book’s

section should reveal details and purchasing options. What else could the user mean by

clicking? It’s analogous to pulling the book off a physical shelf.

This is a significant redesign over the original; yet, I consider it a conservative one. A more

ambitious design could surely show even more data, perhaps allowing the user to browse

within the book or fully explore the space of related books. A world of possibilities opens up

with a simple change of mindset. This is not a list of search results—it is an information

graphic. It is for learning.

Demonstration: Arranging the data

Just as important aswhat data is shown is where it is shown. Unlike the words in a

paragraph, the elements in a graphic can be deliberately placed to encourage spatial

reasoning. Unfortunately, most software graphics are arranged to maximize aesthetics, not to

bring out useful relationships in the data. (That is, when any skilled thought is given to

appearance at all.)

Consider this excerpt of a graphic for browsing nearby movie showings:* * Based on movies.yahoo.com as of

January 2006.



If a person is in the mood for a movie, what questions might she have?

What movies are showing today, at which times?

What movies are showing around a particular time?

Where are they showing?

What are they about?

Are they good?

The user will use the answers to compare the available movie showings and decide upon one to

go see.

Although the above graphic clearly has an information deficiency (What are these movies

about? Are they good?), the worst problem is that the data is not arranged in any useful

manner. Understanding which movies are playing when involves scanning a pageful of

theaters, extracting movies of interest and mentally merging their showtimes. A viewer’s eye

might leap erratically around the screen as she compares showtimes of a givenmovie at six

theaters, trying to find the one that best fits her dinner plans.

The primary question is, “Whatmovies are showing today, at which times?” Given the two

spatial dimensions available to us, this should suggest a graphic withmovies along one axis

and times along the other.

Consider this redesign:



As with the bookstore redesign, enough information is given about each movie to determine its

content and quality, although films have enough external marketing that the intent is more to

remind than introduce. Text weight is again employed to make critical information stand out

and supplementary information disappear until focused upon.

More interesting is the chart on the right, which plots movie showings by time. To find all

movie showings around a particular time, the viewer simply scans her eye vertically down the

page. If she is only interested in a particular movie, she looks only within that movie’s range.

The current time is indicated by shading the past, providing a springboard for the viewer’s eye;

in this example, it is about 4:45.

The original design grouped movies by theater; this redesign groups theaters by movie.* The

assumption is that the viewer would rather see a particular movie at any theater than any

movie at a particular theater. However, to ease correlation of the various movies offered at a

given theater, each theater is color-coded. If the viewer prefers to avoid the Gulliver Theater

because of sticky floors, the consistent yellow background may help her filter out its

showtimes.

No theater addresses are shown. The viewer is likely to be familiar with the theaters in her

area, and if she isn’t, a simple address would be useless without a map or directions.

Presumably, a mouse click or hover over a theater’s name would reveal this information, or

perhaps it could be displayed elsewhere on the page.

This demonstration and the previous one have attempted to illustrate the power of

approaching information software as graphic design, instead of as styling the regurgitation of

a database. To design excellent software, however, this mindset is necessary but insufficient.

Something major is missing.

* I assume that Yahoo! simply

mimicked the newspapers, and

newspapers arrange by theater for

business reasons.



Very little in the above designs is software-specific. For the most part, the designs would work

almost as well on paper. Modern magic shouldn’t merely match our ancient technology—it

should surpass it. We’ve seen how graphic design can improve software, but how can software

improve graphic design?

The answer lies with context.

Context-sensitive information graphics

Print has one supreme flaw: ink is indelible. An ink-and-paper design is static—it must display

all its data, all the time. However, a reader typically only cares about a subset relevant to her

current situation. The designer is faced with the challenge of organizing the data so that

hopefully mutually-relevant subsets are grouped together, and the reader has the challenge of

visually or physically navigating through the entire data space to find the group of interest.

For example, a rider consulting a bus schedule must comb through a matrix of times and

stations to find the single relevant data point—the time of the next bus.* Any driver who’s been

lost in an unfamiliar city knows the frustration of locating the immediate vicinity on a

roadmap. And a reader consulting an encyclopedia must not only find the right entry on the

page and the right page in the book, but even the right book on the shelf! These are

consequences of static graphics. Because ink is permanent, the reader must navigate through

lots of paper.

The modern computer system provides the first visual medium in history to overcome this

restriction. Software can:

infer the context in which its data is needed,

winnow the data to exclude the irrelevant, and

generate a graphic which directly addresses the present needs.

Liberating us from the permanence of publication is the undersung crux of the computer—the

dynamic display screen. Its pixels are magic ink—capable of absorbing their context and

reflecting a unique story for every reader. And the components surrounding the display—CPU,

storage, network, input devices—are its peripherals for inferring context.

Information software design, then, is the design of context-sensitive information graphics.

Unlike conventional graphics, which must be suitable for any reader in any situation, a

context-sensitive graphic incorporates who the user is and what exactly the user wants to

* And then, she must consult her

watch and do some arithmetic to

calculate the information she

actually cares about—how long she

will be waiting.



learn at the moment. Context allows software to winnow its data space to the subset of

information that the user cares about, and present the data in such a way that the user’s

current questions can best be answered.

All information software consists of context-sensitive graphics, whether the designer realizes it

or not. For example, the list of query results from an internet search engine is a context-

sensitive information graphic. The software’s data space consists of all the websites in the

world. This is winnowed down to a dozen, using context that is inferred entirely from the

search term contributed by the user.* Despite its enormous data space, this software restricts

itself to a meager scrap of context, impersonal and imprecise.

There are, in fact, three sources from which software can infer context:

Environment involves sensing the current state of the world.

History involves remembering the past.

Interaction involves soliciting input from the user.

Inferring context from the environment

A person determines her surroundings through the five human senses. Software doesn’t

operate in a vacuum, either; through connections to hardware and other software, it can sense

much about the user’s situation. Some examples of context clues in the software’s environment

include:

Date and time. Time is one of fundamental dimensions along which we organize our

lives, and in any data space with a temporal dimension, “now” is almost always the

prime landmark. Because users often seek information on demand, information related

to “now” or “soon” is often the most relevant. Fortunately, every general-purpose

computer knows when “now” is. A person using a software bus schedule, for example,

should never have to hunt for the next bus.

Geographical location. Similarly, the most interesting spatial landmark is usually

“here.” Unfortunately, this currently can be harder to determine automatically, but the

payoff is enormous.* Obviously, a software roadmap needs to know the user’s location,

but so does the bus schedule, as well as business listings, transportation planners, travel

guides, and much other information software.

Physical environment. Given a time and location, many details of the physical

environment, such as the weather, are just a network connection away. Consider a

travel guide that suggests parks when sunny and museums when rainy.

Other information software, such as open websites. By reading some information,

the user is indicating a topic of interest. All other information software should take

heed. Consider a person reading the website of an upcoming stage play. When she

opens her calendar, the available showings should be marked. When she opens a map,

she should see directions to the playhouse. When she opens a restaurant guide, she

* Clicking a “next” button

contributes further context—

dissatisfaction with the first set of

results.

* I believe that location is such vital

context, Powerbooks should come

with GPS receivers pre-installed,

with an easy software API.

Developers would then write

software to take advantage of it,

and other computer makers would

follow suit. Someday, a computer

without GPS might seem as silly as

a computer without a clock.



should see listings nearby, and unless the play offers matinees, they shouldn’t be lunch

joints.

Documents created with manipulation software. Creating some information

indicates an even stronger topic of interest. Consider a person who requests

information about “cats” while writing a paper. If the paper’s title is “Types and

Treatment of Animal Cancer,” the information should skew toward feline medical data.

The title “History of Egypt” indicates interest in ancient feline worship instead. And if

the paper contains terms related to building construction, “cats” probably refers to the

decidedly non-feline Caterpillar heavy machinery.*

Email. Names, addresses, and phone numbers in recent email clearly constitute

valuable hints. A recipient who opens a calendar should find the sender’s schedule

juxtaposed with her own. When she opens a map, addresses in the email should be

marked. But beyond that, recent correspondence can indicate current activities, and an

email archive as a whole can describe the user’s characteristics and interests. Consider

a person who requests information about “racing.” The fields of running, bicycles, and

cars have distinct sets of terminology; if one set regularly shows up in the person’s

conversations, “racing” isn’t so ambiguous.

All software lives within an environment, rich with evidence of context. Using software that

doesn’t look outside itself is like conversing with a blind person—constantly describing what is

plainly visible.*

On the other hand, the power of the environment is multiplied when it is correlated with the

past—that is, when the software makes use of history.

Inferring context from history

A human doesn’t just use her senses to recognize her situation; she also uses memories of past

situations. Software, too, can use its memory to understand the present. The current context,

or a good approximation, can often be predicted from a history of past environments and

interactions.

Last-value predictors represent the simplest form of prediction. They simply predict the

current context to be the same as the previous one. This is reasonable in many situations

where the user’s context is fairly static, changing slowly over the short term. For example, if

yesterday, the user looked for one-bedroom apartments in North Berkeley, she is is probably

still interested in one-bedroom apartments in North Berkeley today. If nothing else, the

software should present this information immediately, without asking for details.

Last-value prediction is frequently thought of and implemented as manipulation of explicit

state—that is, the context is a persistent object that remains as is unless changed by the user,

so the software always appears as the user left it.* This stateful conceptual model mimics

physical reality, and can be comfortable if the user cares enough about the software’s state to

* This example is from Budzik and

Hammond’s paper User Interactions

with Everyday Applications as

Context for Just-in-time Information

Access (2000).

* Some of the suggestions given

here may seem daunting (or

infeasible) to an engineer.

Implementation will be discussed

later in the paper.

* The engineering challenge then

becomes merely persisting across

invocations of the program. Often,

not even this is bothered with.



keep her ownmental state in sync. However, this is often not the case with information

software, especially software that is consulted intermittently. (If you put down a newspaper for

a few hours, you won’t be distressed to find it on a different page when you return. You

probably won’t even notice. On the other hand, you would be delighted if you often came back

to find it on exactly the page you wanted to read.) By thinking of this as context prediction

instead of state maintenance, the door is opened to more sophisticated predictors.

Learning predictors attempt a deeper understanding of the user. They construct a model to

explain past contexts, and use the inferred relationships to predict the current context.

One simple approach to learning is to discover a common attribute of recent contexts, and

narrow the current context along that attribute’s dimension. For example, in a music library,

as the user chooses several bluegrass songs in a row, the software can graphically emphasize

other songs in this genre. With further confidence, it might consider de-emphasizing or

omitting songs outside of the genre. As another example, consider a user who requests

information about “Lightwave,” then about “Bryce,” then “Blender.” These terms have many

meanings individually, but as a group they are clearly names of 3D rendering software

packages. A subsequent search for “Maya,” another 3D package, should not display

information about the ancient civilization. In fact, information about Maya could be presented

automatically.

Another simple approach is to establish the user’s velocity through the data space. If a person

asks a travel guide about the Grand Canyon on one day, and Las Vegas the next day, the

following day the software might suggest attractions around Los Angeles.*

In general, the problem is one of inferring a pattern that explains the user’s interests as a

function of the environment, and extrapolating along the pattern to classify the current

environment. As an example of general pattern modeling, consider a person who, as a

byproduct of traveling to work, always checks the train schedule from Berkeley to San

Francisco in the morning, and San Francisco to Berkeley in the evening. If the software can

discover and model this pattern, it can present the appropriate information at each time

without the user having to request it. When she looks in the morning, she sees by default the

San Francisco-bound schedule; in the evening, the Berkeley-bound schedule.*

Large histories can enable some very sophisticated predictors, especially if it is possible to

reach into the environment and correlate with other users’ histories. For example, by asking

their users to rate each movie they return, Netflix is able to infer some enormously valuable

context—each user’s taste. This allows them to winnow an enormous dataset (their catalog of

movies) down to a dozen data points (movies the user hasn’t seen, which were enjoyed by

people with similar taste), which can be presented in a single, navigation-free graphic. The

winnowing is impressively on-target—two-thirds of users’ selections come from

recommendations.* TiVo similarly uses a collaborative predictor to infer which television

programs the user would be interested in. These are presented on a “suggestions” page, and

recorded automatically when possible.*

* A better travel guide would

suggest skipping Los Angeles.

* Again, this may sound daunting to

an engineer. Implementation will be

discussed later in the paper.

* Laurie J. Flynn, Like This? You’ll

Hate That. New York Times, Jan.

23, 2006.

* For technical details, see Ali and

van Stam’s paper TiVo: Making

Show Recommendations Using a



Amazon, iTunes, and an increasing number of other online retailers are currently

incorporating similar schemes. However, with the exception of the lowly junk-mail filter, non-

retail information software that learns from history is still rare. Typically, users can only hope

for last-value prediction, if that. Most software wakes up each day with a fresh case of amnesia.

Unfortunately, software that doesn’t learn from history dooms users to repeat it. And repeat it

they will—tediously explaining their context, mouse click by mouse click, keystroke by

keystroke, wasted hour by wasted hour. This is called interactivity.

Interactivity considered harmful

Chris Crawford defines interaction as a three-phase reciprocal process, isomorphic to a

conversation: an interactant listens to her partner, thinks about what was said, and speaks a

response. Her partner then does the same.* For manipulation software, interaction is perfectly

suitable: the user views a visual representation of the model, considers what to manipulate

next, and performs a manipulation. The software, in turn, inputs the user’s manipulation

request, updates the model, and displays the updated representation. With good feedback and

an effective means of “speaking” to the software, this process can cycle smoothly and rapidly.

It mimics the experience of working with a physical tool.

Information software, by contrast, mimics the experience of reading, not working. It is used

for achieving an understanding—constructing a model within the mind. Thus, the user must

listen to the software and think about what it says… but any manipulation happens mentally.*

The only reason to complete the full interaction cycle and speak is to explicitly provide some

context that the software can’t otherwise infer—that is, to indicate a relevant subset of

information. For information software, all interaction is essentially navigation around a data

space.

For example, Amazon’s data space consists of their catalog of items. For a yellow pages

directory, the data space contains all business listings; for a movie guide, all showtimes and

movie information; for a flight planner, trips to and from all airports. In all of these cases,

every interaction, every click and keystroke, search term and menu selection, simply serves to

adjust the user’s view into the data space. This is simply navigation.

Alan Cooper defines excise in this context as a cognitive or physical penalty for using a tool—

effort demanded by the tool that is not directly in pursuit of a goal. For example, filling a gas

Distributed Collaborative Filtering

Architecture (2004).

* See Crawford’s book The Art of

Interactive Design (2003), or his

essay Fundamentals of Interactivity

(1993).

* Except possibly for signaling a

decision, such as clicking a “buy”

button, but that concludes, not

constitutes, a session.



tank is done to support the car, not the goal of arriving at a destination. Cooper goes on to

assert that software navigation is nothing but excise:

…the most important thing to realize about navigation is that, in almost all

cases, it represents pure excise, or something close to it. Except in games

where the goal is to navigate successfully through a maze of obstacles,

navigation through software does not meet user goals, needs, or desires.

Unnecessary or difficult navigation thus becomes a major frustration to users.

In fact, it is the authors’ opinion that poorly designed navigation presents the

number-one problem in the design of any software application or

system…*

If all interaction is navigation, and navigation is the number-one software problem,

interactivity is looking pretty bad already. However, when compared with the other two

sources of context, interactivity has even worse problems than simply being a frustrating waste

of time:

The user has to already know what she wants in order to ask for it. Software that infers

from history and the environment can proactively offer potentially relevant information

that the user wouldn’t otherwise know to ask for. Purely interactive software forces the

user to make the first move.

The user has to know how to ask. That is, she must learn to manipulate a machine.

Donald Norman’s concept of determining a user’s “mental model” has become

widespread in the software usability community, and is now considered a core design

challenge.* However, Norman described this concept in the context ofmechanical

devices. It only applies to software if the software actually contains hidden mechanisms

that the user must model. A low-interaction, non-mechanical information graphic

relieves both user and designer from struggling with mental models.

Navigation implies state. Software that can be navigated is software in which the user

can get lost. The more navigation, the more corners to get stuck in. The more

manipulable state, the more ways to wander into a “bad mode.” State is the primary

reason people fear computers—stateful things can be broken.*

Beyond these cognitive problems are physical disadvantages of interaction. The hand is much

slower than the eye. Licklider described spending hours plotting graphs and seconds

understanding them. A user who must manually request information is in a similar situation—

given the mismatch between mousing and reading speeds, most of her time may be spent

navigating, not learning. Further, the user might prefer to learn information while using her

hands for other purposes, such as writing or eating or stroking a cat. Each time software

demands the user’s hands, this activity must be interrupted. Finally, the growing prevalence of

computer-related repetitive stress injuries suggests that indiscriminate interactivity may be

considerably harmful in a literal, physical sense.

* Alan Cooper and Robert Reimann,

About Face (2003), p143.

* See Donald Norman’s book The

Design of Everyday Things (2002),

p9.

* The only state kept by a book is

which page it is open to, which is

why “getting lost in a book”

describes a pleasurable experience!



Unless it is enjoyable or educational in and of itself, interaction is an essentially negative

aspect of information software. There is a net positive benefit if it significantly expands the

range of questions the user can ask, or improves the ease of locating answers, but there may be

other roads to that benefit. As suggested by the above redesigns of the train timetable,

bookstore, and movie listings, many questions can be answered simply through clever,

information-rich graphic design. Interaction should be used judiciously and sparingly, only

when the environment and history provide insufficient context to construct an acceptable

graphic.

It is unfortunate that the communities concerned with human factors of electronic artifacts

have latched onto the term “interaction.”* For information software, the real issue is context-

sensitivity. Interaction is merely one means of achieving that. And as long as “speaking” is

constrained to awkwardly pushing metaphors with a mouse, interaction should be the last

resort.

The working designer might protest that interaction is unavoidable in practice, and may even

consider my ideal of interaction-free software to be a scoff-worthy fantasy. This is only because

the alternatives have been unrecognized and underdeveloped. I believe that with the invention

of new context-sensitive graphical forms and research into obtaining and using environment

and history, the clicking and dragging that characterizes modern information retrieval will be

made to seem laughably archaic. But every condonation of “interactivity,” from the annals of

academia to the corporate buzzvocabulary, postpones this future.

Reducing interaction

When the user is forced to interact, the software assumes the form of manipulation software.

The external model, manipulated through navigation, is the software’s model of the context.

However, unlike genuine manipulation software, the user does not care about this model—it is

merely a means to the end of seeing relevant information.

The designer’s goal is to let the user adequately shape the context model with as little

manipulation as possible. Assuming that graphic design, history, and the environment have

been taken as far as they will go, there are a few techniques that can lessen the impact of the

remaining interaction:

Graphical manipulation domains present the context model in an appropriate,

informative setting.

Relative navigation lets the user correct the model, not construct it.

Tight feedback loops let the user stop manipulating when she’s close enough.

Graphical manipulation. Command-line systems are criticized for forcing the user to learn

the computer’s language. Modern GUIs may be easier to use, but they are not much different

in that respect. The GUI language consists of a grammar of menus, buttons, and checkboxes,

each labeled with a vocabulary of generally decontextualized short phrases. The user “speaks”

* Most professional communities

and academic programs use the

term Human-Computer Interaction,

or HCI; the ACM special-interest

group is CHI, the converse. Many

practitioners, following Cooper,

refer to their profession as

“interaction design.”



by selecting from a tiny, discrete vocabulary within an entirely fixed grammatical structure—a

bizarre pidgin unlike any human language, unexpressive and unnatural.*

As an alternative, consider a child describing his toy at “Show and Tell”:*

Because the child’s “telling” skills are underdeveloped, he communicates complex concepts

through showing. Similarly, a GUI’s stunted grammar makes telling tedious, but software’s

dynamic display is ideal for showing. A user can specify context by pointing somewhere on an

information graphic and saying, “There!”

Two of the most fundamental context dimensions are where and when. For millennia, people

have described these concepts with specialized information graphics. But much modern

software abandons this tradition, as seen on the website of a popular moving company:*

* One might wonder what Sapir and

Whorf would conclude.

* From Scott McCloud’s book

Understanding Comics (1994),

p138.

* Based on uhaul.com as of January

2006.



These drop-down menus are awkward and uninformative. Geographical locations belong on

maps, and dates belong on calendars. Consider this redesign:

As an example of more application-specific context, a prominent online flower shop lets the

user narrow the view via a set of drop-down menus.* Compare it with a simple visually-

oriented redesign:

Many types of context can be naturally expressed in some informative graphical domain,

relieving the user from manipulating information-free general-purpose controls. Several more

examples will be given in the case study below.

Even this is not ideal. Locations and

dates should be chosen from the

user’s own map and calendar. But

until platforms that enable such a

thing are widespread, software can

at least provide temporary ones.

* Based on teleflora.com as of

January 2006.



Relative navigation. If the software properly infers as much as possible from history and the

environment, it should be able to produce at least a reasonable starting point for the context

model. Most of the user’s interaction will then consist of correcting (or confirming) the

software’s predictions. This is generally less stressful than constructing the entire context from

scratch.

For example, Google Maps offers both absolute navigation (typing in an address) and relative

navigation (panning and zooming the current map). However, it initially displays by default

the entire continent; this effectively demands that the user type in an absolute location to get

started.* A better design might start at the last place the user looked (last-value prediction),

with a nearby list of locations predicted by history (recently visited or manually bookmarked)

and the environment (addresses extracted from email, open websites, and calendar software).

A reasonable starting point would almost always be a click away, and from there, the user

could use relative navigation (dragging and zooming) or simply “navigate” by eye if the

graphic is detailed enough.

An even better design would recognize the prediction list as information software in its own

right, and would take steps to show the data (such as annotating the predictions with driving

times to and from common locations, taking current traffic conditions into account) and

arrange the data (perhaps spatially arranging the predictions on their ownmap). This might

answer most of the user’s questions without any interaction at all.

Tight feedback loops. Salen and Zimmerman offer a game design perspective on a principle

that is crucial for all interactive software:

If you shoot an asteroid while playing a computer game and the asteroid does

not change in any way, you are not going to know if you actually hit it or not.

If you do not receive feedback that indicates you are on the right track, the

action you took will have very little meaning. On the other hand, if you shoot

an asteroid and you hear the sound of impact, or the asteroid shudders

violently, or it explodes (or all three!) then the game has effectively

communicated the outcome of your action.*

This principle is universal. If the user clicks a checkbox and nothing happens, her action is

rendered ambiguous or even meaningless. She cannot evaluate a response and let it guide her

next action. In terms of Crawford’s conversation metaphor, the software is failing to speak

back—she is shouting into the wind.

For information software in particular, all interaction specifies context. Thus, each interaction

can and should result in a discernible change to a context-sensitive information graphic.

Providing immediate feedback reduces the amount of manipulation the user must do before

either reaching an adequate view or recognizing a wrong turn and backtracking.

Any web form with a “submit” button or dialog box with an “accept” button fails this point.

Google Maps offers reasonable feedback during relative navigation, but none during absolute

navigation, such as typing in an address. Even a simple predictive auto-complete would be

* The user can manually specify an

initial location, but she will

presumably set this to her home.

Ironically, her own neighborhood is

the least likely place she’ll need

mapped.

Conceptually, a prediction list might

itself be considered relative

navigation, as a set of “shortcuts”

through the data space.

* Katie Salen and Eric Zimmerman,

Rules of Play (2003), p35.



helpful, but consider the possibilities suggested by Ben Fry’s zipdecode applet. (First click

“zoom” in the lower-right, then type in numbers.) Imagine honing in on familiar areas simply

by typing the first few digits of a zip code—type “9” to immediately zoom into the US west

coast, followed by “4” to zoom into the SF bay area and then “5” for the east bay. Because of

the immediate feedback, the user can stop typing when she gets close enough, and use relative

navigation from there.

How did we get here?

Much current software is interaction-heavy and information-weak. I can think of a few reasons

for this.

First, our current UI paradigm was invented in a different technological era. The initial

Macintosh, for example, had no network, no mass storage, and little inter-program

communication. Thus, it knew little of its environment beyond the date and time, and memory

was too precious to record significant history. Interaction was all it had, so that’s what its

designers used. And because the computer didn’t have much to inform anyone of, most of the

software at the time was manipulation software—magic versions of the typewriter, easel, and

ledger-book. Twenty years and an internet explosion later, software has much more to say, but

an inadequate language with which to say it.*

A second reason why modern software is dominated by mechanical metaphors is that, for the

people who create software, the computer is a machine. The programmer lives in manipulation

mode; she drives her computer as if it were a car. Thus, she inadvertently produces software

that must be operated like a machine, even if it is used as a newspaper or book. Worse, the

people who design platforms and GUI toolkits are even more prone to this perspective, since

they work at a lower level. The application software designer is then almost forced into a

mechanical model by the design environment.*

Even software that starts out information-rich and interaction-simple tends to accumulate

wasteful manipulation as features are added over successive versions. It’s easier on both the

designer and the programmer to plug in another menu item and dialog box than to redesign a

dynamic graphic, and sometimes it’s justified as a less jarring change for the user. After ten

versions, the software can grow into a monstrosity, with the user spending more time pulling

down menus than studying and learning information.

Software doesn’t have to be this way, but the solution will require a significant re-thinking of

both the design process and the engineering platforms. After a detailed case study of one

recent design, I will discuss what’s needed to usher in the information software revolution.

* Make no mistake, I revere GUI

pioneers such as Alan Kay and Bill

Atkinson, but they were inventing

rules for a different game. Today,

their windows and menus are like

buggy whips on a car. (Although

Alan Kay clearly foresaw today’s

technological environment, even in

the mid-’70s. See “A Simple Vision

of the Future” in his fascinating

Early History of Smalltalk (1993).)

* Apple’s Interface Builder, for

example, makes it simple to place

buttons, sliders, and blocks of text.

Dynamic graphics, the cornerstone

of information software, must be

tediously programmed with low-

level constructs.



Case study: Train schedules

I recently created a program for planning trips on BART, the San Francisco bay area subway

system, in the form of a “Dashboard widget” (mini-application) for the Apple Macintosh. The

widget went through five iterations over the course of five months. There were no bugs in any

released version; the iterations added improvements based on user feedback.

The design has clearly been successful. Even though the target audience is fairly small (SF bay

area public transportation riders with the latest Mac OS and knowledge of how to customize

it), hundreds of users have sent in wildly enthusiastic praise,* and the widget was given a rare

perfect rating in Macworld magazine. If you are unfamiliar with the widget, you can

watch a one-minute demo movie:

As information software, the widget was approached primarily as a graphic design project. I

will discuss how its design exemplifies the viewpoints in this paper, and also point out where it

falls short and could be improved.* I will also compare it to the trip planner on the official

BART website, which follows the typical mechanical paradigm of drop-down menus, “submit”

button, and table of results.

* “Amazing” and “awesome” seem

to be the top adjectives.

* The widget originally inspired this

paper, not vice-versa. Thus, the

widget does not reflect new ideas

conceived while writing this. (Yet!)



The BART widget was designed around three classical forms of graphical communication: the

timeline, the map, and the sentence.

Showing the data

Information software allows the user to ask and answer questions, make comparisons, and

draw conclusions. In the case of trip planning, some questions are:

When is the next train leaving? How long is that from now?

When is that train arriving? How long is that from now?

Which line is that train on?

Does that trip have a transfer? Is so, when, where, and for how long?

What about the train after that? And after that?

How frequently do the trains come?

What about trains around 7:00 am on Tuesday?

Users use the answers to compare the available trips, and draw a conclusion about which to

take. Naturally, it must be possible for that conclusion to take the form of a plan: “Which train

will I take? I will take the 7:32 train.” However, the plan then becomes a mental burden on the

user. A good design would also allow for a series of quick boolean conclusions over time:

“Should I start walking to the station now? No… no… no… okay, let’s go.”

The choice of graphical representation depends on what sort of data space is left after context-

based winnowing. What context can be inferred?

The user is expecting to leave around a particular time; thus, the graphic can exclude trips

outside of some narrow time window. Furthermore, the most common time is “soon”; thus,

the software can initially assume that the time window is “the near future.” Also, notice that all

of the questions implicitly refer to a single route—a particular origin and destination pair. That

is, the user wants to compare trips along the time dimension, but not the space dimensions.

Thus, the graphic need only concern itself with a single route, which we last-value predict to be

“the same as last time.”*

After winnowing the data, we are left with a handful of trips—ordered, overlapping spans of

time. We need a graphical construct that allows the viewer to compare the start, end, and

length of each span. A natural choice is a time bar graph, which allows for important

qualitative comparisons at a glance: When does each span start and end? How long is each

span? How close together are they?

* A learning predictor for the route

is presented later in the paper.

The time bar graph may have been

invented by proto-chemist Joseph

Priestly in 1765 to compare the

lifespans of various historical

figures. Priestly’s chart inspired

William Playfair to invent the

modern statistical bar graph.

Howard Wainer claims to have

uncovered a bar graph from 3000

years earlier, plotting population

changes in the tribes of Isreal after



The most important context, the current time, can be emphasized by shading the past. The

most important data point, the next train, can be emphasized by keeping it in a constant

location, the second row. This answers the most important qualitative questions: Is the next

train coming soon? Did I just miss a train? For an experienced viewer, the conclusive question,

“Should I start walking to the station now?”, can be answered literally at a glance.

The graphic can then be unobtrusively annotated with quantitative information, so closer

inspection answers all of the questions precisely:

Transfers can be regarded as segmentation of the overall trip. The question that must be

answered exactly is where to transfer. The questions of when and how long should be

answered qualitatively; the exact times would be irrelevant clutter.*

the exodus. See Graphic Discovery

(2005), p18.

* A better design would probably

place the transfer station name

closer to the graphical

representation of the transfer,

instead of over to the side.



And that’s about it. Although there clearly is more to the widget than this, most of the “user

experience” is represented by the picture above. That is, this software is normally “used” by

simply looking at it, with no interaction whatsoever. In contradiction to the premise of

interaction design, this software is at its best when acting non-interactively.

Accordingly, all interactive mechanisms—the buttons and bookmarks list—are hidden when

the mouse pointer is outside the widget. Unless the user deliberately wants to interact with it,

the widget appears as a pure information graphic with no manipulative clutter.*

Of course, if the predicted context is wrong, the user must interact to correct it. This involves

navigation in the usual two dimensions, time and space.

Navigating through time

The widget initially assumes a time window of “the near future.”* There are two cases in which

this context is incorrect:

The user wants to see even later trips.

The user wants to plan for some other time entirely.

Relative navigation. To see earlier or later trips, the user can simply drag the graphic

around. A cursor change suggests this, as well as a brief message when the widget is first

started.* The mouse scrollwheel and keyboard arrow keys also serve to navigate through time.

The “underlying” graphic is infinite—the user can scroll forever. Thus, a GUI scrollbar would

be inappropriate.

Absolute navigation. To plan around an arbitrary time, the user clicks a button to reveal the

hours of the day, from morning to night, laid out linearly. The user can then click anywhere on

the mechanism to jump to that time.

The mechanism’s labeling is intentionally vague, so the user will click approximately in the

right area, and then continue to drag left or right until the correct information is displayed on

the chart of train schedules. This forces the user to keep her eyes on the information graphic,

instead of wasting effort precisely manipulating the navigation mechanism.* Unlike the time of

* Tufte uses the term

“administrative debris.”

* This window changes over time,

of course. The widget naturally

stays in sync, always displaying

relevant information. A button to

manually “refresh” the display

would be almost obscenely

mechanical.

*

* This is the same concept

suggested by the Google Maps



day, the predicted date (today) is probably close—few people plan subway trips weeks in

advance. Thus, the date control is relative.

Navigating through space

The assumed context includes where the user is coming from and where she is going. The

assumption is “the same as last time”; that is, this appears as explicit state. There are three

cases for which the context is incorrect.

The most common case is that the user is making a round trip, and wants to come home. The

“reverse route” button serves this case.*

The second case is that the user is making a common trip, and knows exactly where she wants

to go. The bookmarks feature serves this case. When the user clicks the heart button , the

trip is added to a bookmarks list. From then on, that trip and its reverse can be selected with a

click. No manipulation is needed to bring up the bookmarks list—it slides out when the mouse

is over the widget.*

The most interesting case is the least common, but the most stressful for the user—selection of

an unfamiliar station. The user needs information to decide which station to travel to; thus,

this can be approached as an information software problem in itself. Some questions the user

might have:

Where are the stations?

What are the lines?

What order are the stations on a particular line?

Which stations are near a particular area?

These questions involve orientation and navigation in a physical two-dimensional space. The

standard graphical device for this situation is the map. The map allows the user to ask and

answer the above questions, make comparisons among the available stations, and decide

which station she’s looking for.

prediction list above. Instead of

precise, tedious absolute navigation,

offer quick ballpark navigation,

followed by relative navigation in a

tight feedback loop.

* A better design could probably

eliminate this interaction with a

predictor as described above (and

implemented below), or a graphic

that somehow incorporates both

directions at once.

* A better design might further

reduce interaction by annotating

each bookmarked trip with its next

depart time. In many cases, that

would eliminate the need to even

click on the bookmark. Another

improvement would be to

automatically infer “bookmarks”

from recent trips or environmental

clues.

This map courtesy of

newmediasoup.



Once the user has decided, she must indicate her selection to the software. This manipulation

can be done in the same graphical domain as the information. “From” and “To” markers

appear directly on the map; these are dragged to the desired station. Instead of having to

name the station, the user effectively points at the map and says, “There!” Although it is less

important in this case, the feedback loop remains tight; the train chart updates as the markers

are moved.* * Widgets are expected to have a

small screen footprint, which is why

the map can be hidden. Ideally, the

map would always be visible. A

better design might then overlay

dynamic information on the map,

such as the positions of the trains

and arrival times at stations.



Configuring notifications

Instead of the user continually asking “Should I start walking to the station now?”, she might

prefer the software to notify her directly: “Start walking to the station now!” Audio works well

for infrequent, asynchronous notifications. The widget can speak announcements of upcoming

trains. (Hear a sample.)

The design challenge is allowing the user to express if and when she wants announcements.

For example, if the user is about ready to go home and it’s a twelve-minute walk to the BART

station, she would want the software to announce trains departing in twelve minutes. But if

she’s meeting a friend at the station, she would want to hear about trains arriving in twelve

minutes. Normally, of course, she doesn’t want to hear anything at all.

A typical design would use a preference dialog or form that the user would manipulate to tell

the software what to do. However, an information design approach starts with the converse—

the software must explain to the user what it will do. It must graphically express the current

configuration.

For presenting abstract, non-comparative information such as this, an excellent graphical

element is simply a concise sentence.*

Vocal announcements were

originally a semi-hidden Easter Egg,

but they got enough of a user

response that they were moved up

to first-class feature.

* Chris Crawford discusses the

relative merits of pictorial and

textual representation in his essay



As with the map, once the information graphic is established, manipulation can be

incorporated. In this case, some words are colored red, and the user can click on these words

to change them.*

The user always sees the software presenting information, instead of herself instructing the

software. If the information presented is wrong, the user corrects it in place. There is no “OK”

or confirmation button—the sentence always represents the current configuration. The

graphic fades out when the mouse is clicked outside of it or the mouse leaves the widget.

This approach scales well to more complex configuration. The widget allows spoken

announcements to be associated with a bookmark and a particular time. This is useful for daily

trips, such as to and from work. The user thinks, “It takes me 15minutes to drive to BART, it

takes ten minutes to walk from the station to work, and I have to be at work by 8.” This

graphic represents her thought precisely, as well the trip home:

Representation Versus Depiction

(1994).

* Numerical and time parameters

transform into edit controls when

clicked—the idea for this was

inspired by Jeremy Ruston’s

wonderful TiddlyWiki.



Sentence-based configuration scales so well because parameters are givenmeaning by the

surrounding textual context, which can itself consist of other parameters. A typical

configuration dialog box attempts to express each parameter in isolation, resulting in

intimidating (or bewildering) verbosity:*

Some additional graphical touches help bring the design together. The sentence is contained

within a cartoon speech bubble which, beyond simply looking cute, implies that the activity

pertains to speech, and points via the tail to the button which spawned it and the trip to which

it refers. More importantly, if a voice announcement is activated, the button’s icon changes to

an active speaker. This avoids a “hidden mode” problem by providing a clear visual

indication of where the voice is coming from and how to turn it off.

* Some people claim that no

interface can be fundamentally

more “intuitive” than another,

because intuition is simply a result

of familiarity. But surely these

people were parsing and producing

complete sentences long before

they could manage a dialog box.

The human brain actually does have

some hard-wiring.



Comparison

The trip planner on the official BART website refuses to divulge any information whatsoever

without a sequence of menu selections and a button-push.*

Because the BART system is two-dimensional, no linear arrangement of the stations can

convey useful information. Instead, the stations are listed alphabetically, but because many

stations go by several names (“Berkeley” or “Downtown Berkeley”? “Oakland City Center /

12th St.,” “City Center / 12 St.,” or “12th St”?) the selection is difficult even for those familiar

with the system. The user can click a link to see a map, but the map graphic is static; the

selection must be made through drop-down menus. Information and navigation are

completely segregated, and the feedback loop is enormous.

The results screen shows no useful information at a glance:

* Based on bart.gov as of January

2006.



The starting and ending stations, always the same, clutter the results. Transfers are treated as

two separate trips, and the relevant times (the start and end of the entire trip) are in opposite

corners, with distracting clutter in between. Not only does the information not stay in sync

with the current time, there is no relative time information at all. Other than a “later times”

link (which leads to a page with only an “earlier times” link!) navigation through time or space

requires hitting the back button and working a drop-down menu.

For all its interactivity, the information here is sparse, poorly presented, and hard to get to.

Yet, this sort of design is so typical of software on all platforms, it has almost become an

accepted norm. For many people, this is “how computers work.”

Conclusion

Ironically, the BART widget appears so fresh because its underlying ideas are so old. The time

bar graph was invented about 250 years ago. The map and the written sentence are both about

5000 years old. They are beautiful, venerable forms of visual communication. The bugs have

been worked out. They are universally, intuitively understood.



The pulldown menu, the checkbox, and the bureaucracy-inspired text entry form were

invented 25 years ago, desperation devices to counter inadequate technology. They were

created for a world that no longer exists.

Twenty-five years from now, no one will be clicking on drop-down menus, but everyone will

still be pointing at maps and correcting each others’ sentences. It’s fundamental. Good

information software reflects how humans, not computers, deal with information.

Demonstration: Trip planning redux

BART’s official planner is somewhat of a straw man, since BART has little competitive

pressure to provide a quality website. The airline industry, on the other hand, has every

incentive to give customers a smooth decision-making experience. However, planning a trip

through the sky is almost identical to planning one underground.*

First, a mechanical, information-free configuration screen:

Followed by a table of textual results:

* This example is based on

southwest.com as of January 2006,

but I checked ten other airline

websites and found them (almost

eerily) similar.



The actual information is squeezed into a few columns on the left, with most of the screen a

monument to Southwest’s intricately stratified pricing structure. (Additional columns to the

right are not shown.)

What questions might a user have?

What cities does this airline fly out of? Where are they?

What flights are available on the days I want to travel?

When do they depart and arrive?

How long are they? (This can get confusing across time zones.)

How many stops are there? How many transfers?

Consider this redesign:





The times and lengths of the flights, and the count, times, and lengths of stops and transfers,

can be compared visually. Trips without transfers stand out because they are entirely blue;

non-stop flights would appear unbroken. Anomalies, such as the 6:50 from Hartford which

arrives later than the 7:20, stand out literally. Times can be converted into either time zone

simply by referencing the appropriate header bar.

There is some attempt to use color symbolically. On the map, the calendar, and the flight

chart, green represents “home,” and yellow the destination. However, it is not critical that the

user notice this.

Interaction is simplified to the point where a short, instructive sentence can describe each and

every click. At the most, the user will click twice on the map, drag across the calendar, and click

twice on the ticket prices, possibly with some page scrolling. Last-value prediction

(automatically selecting the last route purchased, and displaying a list of recent trips) may

eliminate or reduce the map clicks for many travelers. A learning predictor, capable of

inferring that the user always spends the first Monday through Friday of the month in

Baltimore and selecting that range on the calendar automatically, could eliminate all context-

establishing interaction, leaving only the decision-conveying interaction of clicking ticket

prices. Of course, since everything is on the same page and feedback loops are tight, the user

can explore different dates and cities, and see the available flights immediately.

With air travel in a slump for the past few years, airlines have been desperate for any

passengers they can get. Unsuccessful ones have even faced bankruptcy. With so much at

stake, why hasn’t any airline attempted to improve the ticket-buying experience through

better software design?

The problem is primarily cultural. Asking “Why doesn’t Southwest design better software?” is

challenging the symptom, not the disease. The real question is, “Does software design exist

yet?” Before we can expect better airline websites, we may need to change a worldview.

Designing the information software revolution

Mass production of machines emerged at the start of the 20th century. Henry Ford’s assembly

line methods spread throughout the manufacturing world, dramatically lowering production

costs and making a variety of machines affordable for the average person. But many of these

products were unpleasant to interact with. Between the businessman’s specifications and the



engineer’s implementation, there was no design. Within a few decades, a new profession arose

to fill the gap—industrial design.

The next revolution in the mass production of machines was software. The late 1970s saw the

rise of the personal computer, a device capable of behaving as any machine—typewriter,

adding machine, filing cabinet, arcade game—when given the right instructions.

Manufacturing a “machine” was now just a matter of printing its instructions onto a disk, and

production costs plummeted. But much of this software was unpleasant to interact with.

Between the businessman’s specifications and the engineer’s implementation, there was no

design. Within a couple decades, a new profession arose to fill the gap—interaction design.

The mass production of information has a very different history than the mass production of

machines. Industrial design brought art to existing mass-produced technology, but printing

brought mass-producing technology to an existing art.

Before the 15th century, books were precious and extremely rare, for each had to be copied by

hand. A single book might cost as much as a farm. Books were also exquisite works of art,

carefully lettered in calligraphy, lavishly illustrated and decorated. In the 1440s, Johann

Gutenberg’s movable type press boosted book production over a thousand-fold, making books

affordable (and literacy worthwhile, and political awareness possible) for the average person

for the first time. Fortunately, Gutenberg and contemporary printers were exceptionally

devoted to the art form, and took great pains to preserve the quality of the hand-lettered

page.* The explosion of new books of all kinds, as well as the rise of the broadside (precursor

to the poster and the newspaper), created a great demand for artists in the new medium, many

of whom transitioned from the old medium. The art of laying out a page eventually became

known as graphic design.

The next revolution in the mass production of information was the web. Unlike early printers,

unfortunately, early web technologists cared little for the artistic qualities of their predecessor,

but the capabilities eventually evolved to approximate the printed page on the computer

screen. Publishing was now just a matter of sending bits through a wire. The explosion of

websites created a great demand for artists in the new medium, many of whom transitioned

from the old medium. The art of laying out a webpage became known as web design.

These parallel evolutions have produced designers for interactive machines (conventional

software) and designers for static page layouts (conventional websites). From this viewpoint,

the chimeric effects of convergence are almost to be expected. The emerging “interactive web”

embraces a ludicrously mixed metaphor ofmachines on pages, a monstrous hybrid of virtual

mechanical affordances printed on virtual paper. Information is trapped behind interactive

mechanisms and presented in static layouts—it is the worst of both worlds.

Good context-sensitive information graphics are neither interactive nor static, neither

machines nor page layouts. Design has not evolved to produce them. The culture is blind to

the possibilities.

Who will draw information software? And how?

* Gutenberg’s emulation of

calligraphy was so accurate, his

bibles were sold as handmade

manuscripts in Paris. When people

noticed the quantity and similarity

of the books, they did not suspect

printing, but witchcraft! See Philip

Meggs’s superb History of Graphic

Design (2005).

For related historical allegories, see

Peter Drucker’s fascinating essay

The Next Information Revolution

(1998).



same standards that they hold print. People constantly settle for ugly, clunky software, but

demand informative, professionally-designed books, newspapers, magazines, and—ironically—

brochures, ads, and manuals for that very software.* Though once justified by technological

limitations, this double standard is now dangerously obsolete. It is the first and largest

obstacle to revolution. Without consumer demand, design appears to give no return on

investment.

Prominent usability pundits have claimed that the public is becoming more discriminating,

but since this claim underlies their consultancies’ sales pitch, it is far from an unbiased

observation. I see the opposite—as technology races ahead, people are tolerating increasingly

worse design just to use it. The most beautifully-designed DVD player will go unsold if the

competition costs the same and has S-Video output, or plays MP3s from memory sticks. Good

design makes people happy, but feature count makes people pay.

I don’t know the solution to cultivating a culture of good taste, but I believe lessons can be

learned from the emergence of industrial design, about seventy years ago.* At a time when

many products competed on ornamentation, the simplified, functional creations of industrial

designers were too untraditional to sell on looks alone. The salesman made inroads by directly

touting the tangible benefits of good design, such as comfort and safety. He would

demonstrate to a homemaker how his vacuum cleaner or iron was designed to reduce fatigue

and cramping. He would demonstrate to a farmer how his machinery was designed to

eliminate the finger-severing accidents that were, to that point, distressingly common.

Explicitly informed of the benefits, people gradually came to demand, then expect, such

conscientious design in their everyday products.

Today, software consumers demand technological features because software marketing

presents features. Consumers ignore design because marketing ignores design. The cycle is

vicious, but perhaps vulnerable too—some brilliant new software with engineering, design, and

marketing all in sync may raise the bar for everyone.

The second step toward the information software revolution is finding people with talent for

visual communication. Currently, almost all software is designed by people who are very

comfortable with computers; their interest in technology motivated them to enter the field.

This suggests an enormous exclusion of potential talent—imagine if all graphic designers had

to be comfortable running a print shop!* I believe that ideal candidates for software design are

those who have achieved mastery of information graphics in other mediums. There may be

multitudes of artists, currently drawing business graphics or maps or comics, who could excel

at information software design if they had any idea that it was a legitimate artistic field. Recent

years have brought a wealth of beautiful amateur websites, created by visually-oriented people

dabbling in the only sort of software design accessible to them. But because full-fledged

software is seen as an artifact of arcane technology, a product of “programmers,” these people

lack the confidence to consider life beyond HTML.

The third step is complementing the designer’s talent with skill. Skill is achieved through

education and practice, but dearth of the former has given aspiring designers no entry point—

* As brochures have become

websites, this duality has veered

into absurdity: “Let’s design

beautiful software to sell our ugly

software!” The wrapper tastes better

than the candy.

* See the chapter “Through the

Back Door” in Henry Dreyfuss’s

recently rereleased autobiography

Designing for People (1955).

Other factors that boosted industrial

design were fashion (top designers

were promoted as celebrities) and

price (good design often lowered

manufacturing and materials costs).

See Raymond Loewy’s

autobiography Industrial Design

(1979). Both factors can be applied

to software.

* One might argue that the entire

next generation will be comfortable

with computers. But comfort with

today’s “computers” may prove

irrelevant—who can say what a

“computer” will be in twenty years?

It is better to look for interest and

talent in communicating with

people, not with technology, since

people don’t change nearly as fast.



they are expected to learn the art through osmosis and guesswork. Effective education can

entail any, but ideally all, of: classes, books, and examples.

Classes. The renowned Art Center College of Design in Pasadena offers forty courses

in industrial design. Students learn art theory, draftsmanship, and visual

communication theory. They learn about form, and the visual and tactile properties and

constraints of materials. They learn about cognitive and behavioral psychology, and

explore how users experience products. They follow the entire production process:

researching the needs of the target markets; sketching ideas and proposals; drawing

detailed renderings; designing virtual 3D models; constructing physical models out of

clay, plastic, and fiberglass; constructing a functional mechanical solution; designing

logos and retail packaging. They learn to devise artistic solutions to problems, to think

creatively and think critically, to invent concepts and critique those of others. They

interact with industry representatives and do team projects under corporate

sponsorship.

Art Center offers only five courses that could be somewhat related to information

software.* For the most part, students learn to make websites. There is nowhere near

the breadth or depth offered to designers of physical products. Art Center clearly knows

how to put together an applied arts curriculum. What’s missing is the understanding of

software as an applied art.

There are other schools that offer specializations in “information architecture,”

“usability,” and other recently-coined areas, but these subjects approach software

design from a scientific perspective, neglecting the essentially artistic aspect of visual

communication and the creative and critical techniques used by art schools for

centuries. Experimental analysis can be valuable, but only if an artist has created a

design worth analyzing.

Books. Information software design will need a body of pedagogical literature, once

enough theory is developed to make pedagogy possible. Until that point, the student has

little recourse—the closest established areas, information graphic design and “user

interface design,” are both severely underserved.

The paucity of literature on information graphic design is bewildering. Edward Tufte’s

books are highly acclaimed, and deservedly so, but they almost win their titles by

default. In a typical bookstore, they are lost amidst a sea of fashion rags masquerading

as graphic design guides, or perhaps submerged in a “computer” section overflowing

with the latest engineering fads. They have too little company to define a category.*

The shortage of good books on user interface design is more understandable, since

pedagogy requires a working paradigm—the status quo must be at least acceptable.

Accordingly, I haven’t yet found a textbook that is at all helpful for software design; the

only books I’ve found worthwhile are the few that challenge the status quo and present

fresh, progressive ideas. For the field to progress, we need less recycled platitudes and

more cutting-edge research.

* All five use “interactive” as a

synonym for “software”: Interactive

Structures, Information and

Interactivity, Branding and

Interactivity, Interactive Design 1,

and Interactive Design 2. The intent

of this example is not to malign Art

Center’s curriculum, but to

demonstrate the lack of resources

for the aspiring software designer.

* Their best company is probably

William Cleveland’s The Elements of

Graphing Data and Visualizing Data.

I doubt you will find either in a

bookstore.

The industrial design literature,



usually mean that they learned purely from examples.) Much has been written about

the failure of software engineering schools to provide examples of great works,

expecting students to somehow derive style from first principles.* Since software

design isn’t yet recognized as an artistic field in the first place, its situation is even

worse—the very concept of a gallery of software designs will seem absurd to most

people. But a corpus is crucial for the development of any artistic field. Outstanding

designs must be recognized, collected, and explicated. Furthermore, outstanding

designers should be recognized and encouraged to teach, instead of hidden behind a

corporate label.

The fourth step is supplementing the designer’s talent and skill with tools and platforms.

These two terms are vague in common usage. I will define a tool as a communication device

that a designer has control over, and a platform as a communication device that a recipient is

expected to provide. This is best demonstrated with Claude Shannon’s communication model:

A tool encodes mental information into physical data, which can travel in a physicalmedium.

A platform decodes the physical data into the mind of the recipient. Because all information

transfer short of telepathy requires some medium, this model is universal. If I write you a

letter, my tools are pen and paper, and your platform is knowledge of my written language. If I

broadcast a radio signal, my tools are a microphone and transmitter, and your platform is a

radio receiver. In general, my tools are whatever I use to make the thing I hand off to you.

Your platform is whatever I’m counting on you to already have.

To deliver her message most effectively, the visual designer needs as much control as possible

over what the viewer sees. But, by definition, the designer only has direct control over the tool.

She is at the mercy of whatever platform implementation the recipient happens to supply. This

implies that a good platformmust be as simple and as general as possible.

Simplicity. From a practical (and historical) standpoint, we can assume that no

complex specification will be implemented exactly. This, in itself, is not a problem.

However, multiple, decentralized implementations of a complex specification will be

incorrect in different ways. A platform consisting of the union of all possible

incidentally, seems to consist

primarily of photographs of chairs. I

don’t know what this means.* This is true in most other

engineering disciplines as well,

though less discussed. I can think

of only one exception from my own

schooling in electrical engineering—

David Rutledge’s innovative

introduction to analog electronics,

taught through gradual construction

and analysis of a commercial radio

transceiver. Engineering study

typically focuses on how something

should be done, not how it has

been done, to the detriment of the

culture.

* Adapted from Claude Shannon, A

Mathematical Theory of

Communication (1948), p2.

“I conclude that there are two ways

of constructing a software design:

One way is to make it so simple

that there are obviously no

deficiencies, and the other way is

make it so complicated that there



implementations is thus arbitrarily unreliable—the designer can have no assurance of

what a recipient actually receives. For a platform to be reliable, it must either have a

single implementation, or be so utterly simple that it can be implemented uniformly. If

we assume a practical need for open, freely implementable standards, the only option is

simplicity.*

Generality. If we think of a computer as a machine that runs software, then in some

sense, all data handled by a computer platformmust be “software.” The data making up

a JPEG image, for example, can be thought of as the encoding of a program that

describes a picture. (This is sometimes called the “data is code” equivalence.) But the

limitations of the JPEG platform result in severely lobotomized “programs”—they

cannot animate, respond to context, incorporate new compression techniques, or

otherwise take any advantage of the computer beyond what JPEG explicitly allows. A

crippled platform cripples a designer’s means of expression.

In order for a designer to take full advantage of the medium, a good platformmust

provide safe access to everything that is technologically possible. A platform for

information software must offer: inputs from the environment (that is, communication

with other software and physical sensors), from history (that is, storage), and from the

user (that is, interaction); computational resources with which to respond to inputs;

and unrestricted graphical output. Anything less robs information software of its full

potential. The proper way to prevent destructive behavior is a well-designed security

model, not arbitrarily amputating the computer’s capabilities.

Alarmingly, the latest platforms forgo both of these virtues. CSS, a language for specifying

visual appearance on the web, is a particularly egregious example. It is so complex that it has

never been implemented correctly; yet, successive versions specify even more complexity. At

the same time, it is so underpowered that many elementary graphic designs are impossible or

prohibitively difficult, and context-sensitivity (or anything computational) must be addressed

externally. Most CSS lore is dedicated to describing the tangles of brittle hacks needed to

circumvent incompatibilities or approximate a desired appearance.

One cause of the CSS mess is the eschewing of elegant, flexible abstractions for “1000 special

cases,” a detrimental approach which precludes simplicity and generality in any domain.

However, the larger and more germane fault is the language’s attempt to serve as both tool

and platform, thereby succeeding as neither.

For universal reliability, the ideal platformmust be optimized for ease of implementation. For

artistic expressiveness and exploration, a toolmust be optimized for the designer’s

manipulation. Thus, the tool and platform cannot be the same—we must expect a layer of

translation between what the designer works with and what the platform interprets.*

A simple and general platform shifts complexity to this translation layer—the tool’s “back end”

—where the designer has control over it. If a particular tool is implemented incorrectly, the

designer can work around its particular idiosyncrasies, or switch to a different tool. (It is much

are no obvious deficiencies.” C.A.R.

Hoare, The Emperor’s Old Clothes

Turing Award lecture (1980), p81.

* POSIX, Java, and newer web

standards (DOM, CSS) are some

attempts at universal platforms (for

various domains) that have proven

too complex to implement

uniformly. In each case, the power

of the platform is effectively

constricted to some simple, reliable

subset, and enormous time is

wasted designing around

incompatibilities. By contrast, JPEG,

MP3, and modern CPU instruction

sets are universally dependable,

because much of the complexity is

placed at the encoding tool, not the

decoding platform. (Almost a

century ago, a similar justification

was used to reject single-sideband

public radio.) The complex Perl and

Flash platforms are dependable only

because they have centralized

implementations.

* There is a direct analog with RISC

computer processors, whose

simplified instruction sets are

targeted at compilers, not

programmers. This considerably

eases implementation of the

processor, although the motive in



easier for a designer to switch or upgrade tools than for a sea of users to switch or upgrade

platforms.) Meanwhile, the tool’s “front end”—that which the designer interacts with—can be

simple or complex, general or domain-specific, according to the designer’s needs and skill

level.

The platformmust make it possible to create information software. The tool must make it

easy. A specific look at some tools and platforms for information software will be offered in

the next few sections.

The fifth and final step into the information software revolution is an environment where

experimentation, evolution, and interplay of ideas can thrive. Much like our geological

environment, a creative environment can become fatally polluted by short-sighted business

interests.

Before 1786, authors invariably presented quantitative data as tables of numbers. In this year,

an economist namedWilliam Playfair published a book called The Commercial and Political

Atlas.* In order to illustrate his economic arguments, Playfair single-handedly invented the

line graph, the bar graph, and the pie chart, and thereby the entire field of statistical graphics.

Within years, his inventions had spread across Europe, transforming the landscape of visual

communications and heralding an age of discoveries in data made visible. Today, children take

these graphical forms for granted; they seem as obvious and fundamental as written language.

Imagine if Playfair had patented his invention and prosecuted his imitators, suppressing the

crucial period of initial excitement and growth. Would we today be staring at tables of

numbers, unable to apply our visual cortex to unlocking their patterns?

This path is inevitable, for it is the path of all artistic media. Books, newspapers, and the

static visual arts have already completed it, or almost so. Movies, television, and published

music are struggling at step five, but completion is only a matter of time. For information

software as well, it is only a matter of time. But a decade or a century?

Of course, design is nothing without implementation. If information software is to consist of

dynamic graphics that infer from history and the environment, it must be possible and easy to

create such things. The following sections will discuss a design tool for dynamic graphics, and

engineering approaches to inferring from history and the environment.

Designing a design tool

Software tools for drawing static graphics or composing static animations have long been

commonplace. But the designer who wants to create dynamic graphics—graphics whose

properties are data-dependent—currently has two undesirable options:

She can learn some sort of programming language. Many designers are intimidated by

engineering and may lack the talent or desire to program. They are completely justified

—drawing is a visual activity, and working with textual abstractions is entirely

inappropriate. Painters, illustrators, and sculptors manipulate the artifact directly—

this case is more performance than

reliability.

* Remarkable recent efforts have

brought this classic back into print,

as Playfair’s Commercial and

Political Atlas and Statistical

Breviary (2005).



there is no abstraction, and visual feedback is immediate. Would we have any of our

great works of art if the creators had to work with “rectangle.width = 17” instead of

visible brushstrokes?*

Alternately, a designer can draw a series ofmockups, snapshots of how the graphic

should look for various data sets, and present these to an engineer along with a verbal

description of what they mean. The engineer, who is skilled in manipulating textual

abstractions, then implements the behavior with a programming language. This results

in ridiculously large feedback loops—seeing the effect of a change might take a day

instead of a second. It involves coordination and communication between at least two

people, and requires that the designer justify herself—she must convince the engineer

and possibly layers of management that each change is worth the engineer’s time. This

is no environment for creative exploration.

There is nothing wrong with the concept of drawing mockups. It is a natural, visual way to

work, and is ubiquitous across many artistic disciplines, from architecture to industrial design.

The problem lies with engineering the behavior the mockups describe. But, consider what

exactly the engineer does. From a set of mockups, the engineer infers the pattern they conform

to—how the graphic changes as a function of the data—and codifies this inferred pattern in a

computer program.

Is a human really necessary? Couldn’t this pattern be inferred by a software tool instead?

Going down this path leads to a computer science discipline known as “programming by

demonstration” (PBD) or “programming by example.”* This field is concerned with teaching

behavior to a computer implicitly, through a series of examples, rather than with explicit

instructions. Researchers have created systems (with varying degrees of success) for

constructing interactive GUI widgets, defining parameterized graphical shapes, moving and

renaming files, performing regular expression-like text transformation, and other domain-

specific tasks. With these systems, the user typically performs a few iterations of a repetitive

task manually, and the system then performs the rest according to an inferred generalization,

perhaps asking for clarification or confirmation.

This section outlines a hypothetical but plausible tool to allow designers to create dynamic

data-dependent graphics with no conventional programming. These dynamic graphics would

serve as the user-facing visible representation of information software. In a sense, this is a tool

for “drawing information software.”

The tool can be considered an extension of a conventional vector-oriented drawing program.*

Using the same drawing process as with a conventional tool, the designer draws a mockup of

the graphic—how the graphic should look for some particular set of data. She then takes a

snapshot of this graphic, and indicates the data set that it corresponds to. She then modifies

the graphic to correspond to a slightly different data set, takes another snapshot, and so on.

Each snapshot serves as an example. With well-chosen examples, the tool will infer how to

generate a graphic for arbitrary data.

* Early music composers typically

worked in silence, with pen and

paper, and did not actually hear

their compositions until they were

presented to musicians. Composers

who couldn’t handle this abstraction

were belittled. With the growing

popularity of the clavier and

harpsichord, and then the piano, it

became acceptable for composers to

hear their creations as they

composed. Most of our classical

masterpieces were composed in this

way. Today, not only is every

composer expected to work at an

instrument, illiteracy is even

becoming acceptable!

* See Allen Cypher (ed.), Watch

What I Do (1993, available online)

and Henry Lieberman (ed.), Your

Wish Is My Command (2001). Both

are compendia of research projects,

not textbooks.

* Popular examples of drawing tools

are Adobe Illustrator and

Macromedia Flash. The necessary

feature is the representation of

graphical elements as objects with

variable properties, rather than as

arrays of pixels.

The concept of snapshots may have

been introduced by David

Kurlander’s Chimera (1991), which



This tool is significantly less ambitious than many in the literature, for several reasons:

Many systems use “programming by demonstration” as a means toward end-user

programming, typically to allow novices to automate repetitive tasks. This tool is

intended for professional designers with specialized skills and training, and thus can

assume a higher level of user sophistication.

Many systems attempt to infer a full computational procedure, and have the most

difficulty with computational concepts such as conditionals and iteration. As we will

see, this tool mostly has to infermappings from some set or numerical range to

another—functions in themathematical sense rather than the (imperative)

computational sense. This may be significantly easier.

Similarly, many systems attempt to infer stateful programs. This introduces enormous

complexity, because the user must teach an output that depends on both the input and

a potentially large hidden state. A graphic is stateless; its appearance is only a function

of the input data. Examples require no context.

Demonstration. I will demonstrate how we might use this tool to design the BART widget

described above.

Train component.We start by modeling a single train bar. This graphic

has a number of dynamic aspects: position, length, color, and label. For now, we will just

handle the color and label. We draw a picture, take a snapshot, and indicate the data properties

that it corresponds to:

This is what a Train should look like if the “Line” property is “Orange” and the “Destination”

property is “Fremont.” With only a single example, of course, the tool cannot infer anything

dynamic. Let’s teach it how to change the label.

Compare these two snapshots. The graphics are exactly the same, except a label has changed

from “Fremont” to “Richmond.” The data is exactly the same, except the “Destination”

used common features in a set of

snapshots to infer constraints while

drawing a static graphic.



property has changed from “Fremont” to “Richmond.” The simplest inference is that the

“Destination” property should be used as the label text. The tool will learn and use this rule,

provided no other example contradicts it.

We now teach the tool how to respond to the “Line” property.

The graphics in the new snapshots are exactly the same as the orange-line Richmond-bound

example, except for hue adjustments. The data is exactly the same, except for the “Line”

property. Thus, the tool infers that each given value of the “Line” property corresponds to a

particular hue adjustment.

At this point, the tool should understand how to draw a Train for any arbitrary data set, as

long as “Line” is within the provided domain. (How we know that it has learned correctly will

be discussed below.)

If we want to clarify the model for posterity, we can add visual comments simply by drawing

outside the snapshots:

When component. Now, we’ll model the time-related text that appears to the left and right

of a Train. We will use two data properties. “Now” refers to the current time, and “Time”

refers to the start or end of the trip. Here are our first two snapshots:

In these examples, “Now” stays constant while “Time” varies. The tool will easily infer that the

first row corresponds to “Time” (again, as long it doesn’t contradict further examples). The

second row is more problematic. The tool infers linear relations when given two points, so our

examples indicate this relation:



The correct relation actually depends on “Now,” but we haven’t yet demonstrated variance

with respect to “Now.” Our third snapshot does so:

The simplest non-trivial relation now depends on the difference between “Now” and “Time”,

which is correct:*

Now, let’s teach the tool how to present larger time differences:

This gives us the following relation, with interpolation in black and two possible extrapolations

in red and blue.

The blue extrapolation is desired. The tool can probably infer it, since it results in an arguably

simpler relation. (The red interpretation makes “in 2 hours” a special case, whereas the blue

interpretation understands it as part of a general rule.) But if the tool infers incorrectly, the

designer can easily correct it. (How so will be discussed below.)

* To understand how the tool might

figure this out, let us take f(x,y) to

be the number in the text label,

and x and y to be our two data

properties (here expressed as

minutes since 3:00, although any

units and origin will work). The

three snapshots give us these

constraints:

f(0,1) = 1

f(0,119) = 119

f(-60,-59) = 1

One of the simplest and most

naturally-occurring functions of two

variables is linear combination:

f(x,y) = ax + by + c

Solving for the coefficients gives us

a = -1, b = 1, c = 0

Because linear combination results

in such simple coefficients, the tool

will have high confidence in this

inference, and will use it unless

contradicted by some other

example.



We now provide snapshots to cover earlier times.

Timeline component. Time extends infinitely; thus, the timeline is conceptually an

infinitely-wide bar. Of course, only a portion of this bar is actually visible at any given instant.

Dealing directly with infinite graphics will be discussed below. Here, I will demonstrate how

this can be easily simulated with a normal graphic.

The red box indicates the clipping region of the graphic. The section within the box is the

portion that will actually be visible. These snapshots differ from each other in only two aspects:

the position of the clipping region and the text labels. The inferred position of the clipping

region is shown below as a function of “Now,” with the interpolation in black and extrapolation

in blue:

Because the graph above is somewhat abstract, it may easier to view images of the Timeline

itself (rotated sideways) as a function of “Now”:



We can see that the clipping region slides rightward with time, snapping back to the left on the

half hour. The cyclic extrapolation can either be inferred by the tool or specified by the

designer, as will be explained below.

The first text label’s value as a function of “Now”:

That is, the text label is “rounded down” to a multiple of fifteen minutes. The rest of the labels

will be inferred similarly. With a little thought, it is clear that this graphic, when cropped to

the red rectangle, appears to scroll boundlessly with respect to “Now.”

Row component. Next, we combine some of the components created above to form a

compound component:

Adjacent pairs of snapshots describe how to adjust, respectively, the end point of the Train,

the start point of the Train, and the clipping region:

Notice that adjustments were made within individual components. The length of the Train

was changed, and the secondWhen was right-justified.* The tool allowed “Depart Time” to be

explicitly linked to the firstWhen’s “Time” property, and “Arrive Time” to the second, so

these relationships did not need to be inferred. (These links are not shown here.)

Title component.We are almost done. We have to put the title together:

No inference is used here; we explicitly link the properties to the appropriate labels. (Again,

not shown.)

* Thus, modeled components are

not black boxes, only adjustable

through data properties, but can be

modified at any level in the

hierarchy.



Trip Planner component. Finally, we are ready to lay out the top-level component. We

draw the background picture and place the components created above.

Our final graphic and its data properties look like so:

No inference is used here. We explicitly link the top-level properties to the appropriate

component properties.

Our dynamic graphic is complete. The final program would consist of this graphic and a data

source that fills in the properties. Of course, this small example does not entirely emulate the

actual BART widget, but it is easy to see how additional features can added, simply with

models and snapshots.* It is also easy to see how a completely different design, such as the

tables on the official BART website, could be composed on top of the exact same data source.

Editing snapshots. The essence of this process is elimination of abstraction. The designer

works with concrete, visible examples.

However, this raises a concern about editing. An advantage of abstraction is that it localizes

common properties, so widespread changes can be made with a single edit. What if the

designer decides that a Train should have square corners instead of rounded? Having to

individually edit each of the snapshots is unacceptable—such a burden would squelch

experimentation.

* Except for animation, interaction,

and state.



Instead, the designer simply selects the snapshots she wants changed, and proceeds to edit one

of them. The changes propagate to all selected snapshots. This is possible because the tool

treats the snapshots as variations on a single graphic, rather than independent graphics.

Editing curves. A more quantitatively-oriented designer may prefer to manipulate inferred

relations directly. Mapping curves can be shown graphically, and the designer can move

anchor points around, add new anchor points, and introduce curvature by stretching the

interpolation curves. This allows for non-linear or nuanced behavior that would be difficult to

specify purely with examples.

The curves are an abstraction, but because it is purely visual, designers may find it

comfortable. To lessen the abstraction, abundant concrete examples from along the curve are

shown, and a designer can point anywhere in the plane to see an example that corresponds to

that point.

Curve editing may also allow for better control over extrapolation:



In the above, we are essentially using “drawing by example” to specify the extrapolation curve.

Feedback through examples. Conventional software engineers will be worried by the

rampant ambiguity in this design process. In the demonstration above, the snapshots are

visible but the inferred relations tying them together are not. How does a designer know if the

tool’s understanding matches her own?

Unlike a programmer typing into a text editor, the designer does not create these snapshots in

isolation. The tool provides a design environment that actively communicates the dynamics of

the graphic.

One approach is for the tool to directly ask the designer about ambiguous cases. The tool can

present the designer with a data set that would disambiguate an unclear relation, and the

designer would then draw a snapshot for that particular data set. We might imagine the design

process becoming inverted, driven by the tool—the designer would create a few representative

examples, and then let the tool explicitly ask for all of the examples necessary to fill out the

model.*

However, visual art has traditionally been composed actively, not reactively, and this approach

may feel unnatural and stifling. A more natural and information-oriented approach uses

continuous peripheral feedback. The tool adorns the screen with an array of its own examples

that represent the inference it currently understands. As the designer works, she can visually

verify that the inferred relations are correct:

The tool can graphically emphasize feedback examples according to how little confidence it

has in them. If one is incorrect, the designer creates a new snapshot simply by clicking on it

and correcting it.

Feedback through curves. In addition to feedback through examples, the mapping curves

described above also provide feedback. As the designer creates snapshots, she can see the

inferred curves. If an inference is incorrect, she can either create more snapshots, or directly

edit the curve (as long as the tool has correctly inferred which variables are involved in the

mapping).

If the tool feels an extrapolation is ambiguous, it can display all of the candidate

extrapolations on the curve, and the designer can select one with a click:

* There are a number of

Programming By Demonstration

research systems that take a similar

interactive approach to

disambiguation.



Hints. If necessary, the designer can add hints to encourage the tool to prefer certain

inferences. There are two types of hints: dependencies and constraints.

A dependency hint suggests that a particular graphical aspect is related to a particular data

property. The specific mapping between the twomust be specified through examples or

curves, but this hint tells the tool which variables are involved.

A constraint hint suggests that a particular graphical aspect is related to some other graphical

aspect.* A “hard” constraint specifies an invariant relationship, such as two components that

must always be aligned or parallel. In the example below, we ensure that the train cannot

shrink smaller than the text label, by constraining the right edge of the train to lie to the right

of the label:

A “soft” constraint specifies a goal that should be fulfilled as well as possible, given the other

constraints. The example below models a character whose eyes will watch the train, wherever

it goes. The eyeball is hard-constrained to lie within the eye, and soft-constrained to move as

close as possible to the train.

Hints may allow a designer to specify complex relationships that would be difficult to describe

purely through snapshots.

Recursion. In the demonstration above, an infinitely-wide timeline bar was modeled by

cyclicly panning over a finite graphic whose labels change on each cycle. This corresponds to

the computational concept of iteration. An alternative for modeling infinite graphics is

recursion. Consider this layout:*

* Drawing with constraints is as old

as drawing on computers—both

originated with Ivan Sutherland’s

seminal Sketchpad (1963).

Contrained drawing was further

explored in a number of research

projects (of note are David

Kurlander’s Chimera (1991) and

Michael Gleicher’s Briar (1993)) but

has rarely appeared in general-

purpose commercial tools.

* The approach shown here is

precisely how infinite data

structures are represented in lazy



This Timeline component contains a Timeline component, shifted right by 100 pixels. The

graphic nowmust be infinitely wide, because it is 100 pixels wider than itself. The tool draws

this graphic by continuously “copying” the entire Timeline graphic, and “pasting” it into the

yellow box:

With each paste, the yellow box shifts over by 100 pixels, and the pasting could go on forever.

Now, we edit the text labels in the first paste (indicated by red arrows):

As we do so, the tool infers a linear relation between the top-level label (12:00) and the pasted

one (12:30), and that relation is used to generate the labels in subsequent pastes (1:00, 1:30,

etc.). That is, the tool learns to add a half hour each time it pastes. The result is a timeline

whose labels increment forever.

For the final component, we need just two snapshots, to show how “Now” should pan across

the graphic:

Some may claim that recursion is inappropriate for graphic designers. I would argue that

recursion’s reputation for abstruseness is due to the textual abstractions used in mathematics

and programming, and especially because expansion is rarely shown explicitly. I believe that,

with training, any designer who appreciates MC Escher can learn to make powerful use of

visual recursion.

Insulation from engineering. One of the primary benefits of this tool is the freedom it

gives designers in composing the appearance of information software. The engineer’s job is to

create a data source, and possibly spot-optimize the tool’s inferences if any are prohibitively

programming languages such as

Haskell.

In fact, if we think of a component

model as a function definition, and

the placement of a component as a

function call, this tool can be seen

as an editor for an underlying

functional “language.” Intriguing

features include purity (evaluating a

component has no side effects),

laziness (components placed outside

a clipping region need not be

evaluated), and a combination of

applicative evaluation (via mapping

curves, whether explicit or inferred

by the tool) and constraint-solving

(via constraint hints). If we allow a

component’s parameters (the

function’s “arguments”) to

themselves be dynamic graphics

instead of merely text, and provide

a means of graphically extracting

part of a parameter and recursing

on the rest, this language should be

as expressive and powerful as any

textual functional language.



inefficient. Unless complex behavior is necessary, the engineer is completely uninvolved with

graphical presentation, to the relief of both designer and engineer.

For example, in the actual BART widget, the ending times become left-justified if the trip is too

short:

Excellent software is characterized by this sort of attention to detail. However, if a designer

were to request that this minor feature be implemented, she would probably be rebuffed by

both engineer and management. This tool allows a perfectionist designer to add this feature on

her own, just by taking a couple additional snapshots.*

Engineering inference from history

The section “Inferring context from history” presented the need for software to learn from the

past. Good information software will attempt to predict current context by discovering

patterns in past contexts. Although such application software is rare, there is nothing novel or

exotic about the algorithms required. The computer science discipline devoted to this subject is

called “machine learning” or “learning systems,” and several decades of research have

produced a variety of algorithms for modeling and predicting behavior.*

Consider the example presented earlier of a train trip planner that predicts the route that the

user wants to see. There are typically daily or weekly patterns to a person’s local travel

schedule. A planner that models these patterns could automatically present the user with

appropriate information, eliminating most interaction.

As a demonstration, I implemented this behavior with the very simple probabilistic algorithm

described below:*

History collection. Each time the user indicates interest in a particular route, it is recorded

in a history with the date and time. The user indicates interest either by explicitly switching

the planner to display a route, or by looking at the planner and then looking away, indicating

that the shown route is still interesting.

Prediction.When the user looks at the planner, each history entry “votes” for its route with a

certain weight, and the route with the largest total weight is displayed. Each entry’s weight is a

product of three factors, which depend on the time, the day of the week, and the age of the

history entry.

Time. If the time is 9:00, the user’s route at 9:10 yesterday is very relevant. What the

user did at 10:00 is not quite so relevant, and her 12:00 activity is probably unrelated.

Thus, each vote is weighted by a window around the time of the history entry.

Typically, if the user is preparing to catch a train, she won’t just look once at the

planner and memorize the time. She will glance at the planner frequently over a span of

* Implementation of the inferencing

described here may involve

algorithms that are unfamiliar to

many engineers. Interested (or

skeptical) engineers are encouraged

to read the two machine learning

books cited immediately below, as

well as the two Programming By

Demonstration books cited above.

* Tom Mitchell’s book Machine

Learning (1997) gives a good

introductory overview to the basic

algorithms. Russell and Norvig’s

book Artificial Intelligence: A

Modern Approach (2003) covers

learning within a much broader

context, but is less focused and

concise.

* You can see the Lua source code

for the algorithm and test

simulator.



time. Each of these looks should not count as an individual vote. Instead, the entire

span of checking is coalesced into a single history entry, with a widened time window.

(Also, throughout these frequent check-ups, the user sees only last-value prediction.

Learning prediction is only used if some time has passed since the previous look.)

Day of the week. A user will typically exhibit a superposition of daily patterns, such

as going to and from work, and weekly patterns, such as cello practice every Tuesday.

To allow for both, history entries from a different weekday are allowed to vote, but have

a smaller weight. The bleed across days allows the algorithm to learn daily patterns

faster, but because other days are penalized, weekly patterns can be learned as well.

Saturday and Sunday are independent from weekdays and from each other.

Age. Older history entries are given less weight, and eventually are forgotten. This

makes the algorithm adaptive. If the user adopts a new pattern, such as switching jobs

or joining the Thursday-night knitting circle, the algorithm is able to keep up, instead of

having to be manually reset.

Finally, the most recent route is given a bonus vote. This causes the algorithm to default to

last-value prediction if there is no compelling reason to do otherwise.

Results. I tested this algorithm with user models that simulate a variety of schedules. Various

trade-offs are possible through choices of weights and window widths; the results below are

intended to convey a qualitative idea of the algorithm’s performance.

For a user who simply uses the planner to go to and from work, the algorithm learns the

pattern flawlessly within a week. When the user switches schedules, the algorithm adapts

within a couple weeks.*

More complicated schedules are also learned quickly and almost flawlessly.

Up to a certain level, random (unscheduled) behavior can be added without the algorithm

losing the pattern.*

* Of course, humans won’t check

the planner at exactly the scheduled

time, and neither does the model.

The simulated times are normally

distributed around the base time

shown in the schedule, with a

standard deviation of half an hour.

* This graph plots mispredicted

scheduled views. Obviously, the

random views are always

mispredicted.



In conclusion, it appears that this algorithm would successfully be able to infer the context of a

regular user, allowing relevant information to be presented with little or no interaction.

Sowhat? As an ad-hoc solution to a particular problem, this algorithm seems to work quite

well. As a general solution, it is no solution at all.

This simple, understandable example was intended to demonstrate that learning prediction is

not science fiction—it is a viable and powerful approach to context inference, one that every

software designer must keep on her palette. However, the best learning algorithms are

considerably more complex than this one. Currently, machine learning is considered an

experts-only area, where the fruits of research are restricted to specialists. Implementing

learning behavior typically involves calling in an expert, not assigning it to the application

programmer.

Unfortunately, an algorithm that can only be wielded by a master is almost worthless. There

are far more applications than experts; if application programmers cannot make use of

learning, learning applications will remain rare and exotic.

This predicament has been overcomemany times before. All software today performs an

intricate dance of feeding a processor primitive machine-level instructions, repolarizing tiny

magnets in hard drives, transmitting bits reliably across wires, and lighting up specific pixels

on a screen. The algorithms behind these operations are unimaginably complex, requiring

years of study. Yet, even novice programmers have no trouble with these operations. The

complexity has been hidden behind abstractions.

Programmers write to “files,” read from “sockets,” draw with “fonts” and “images,” and think

in “programming languages.” Behind each abstraction are experts who devote their entire

careers to their particular niche, following cutting-edge research and participating in the

community. In front of the abstractions are armies of application programmers, blessedly able

to take all this for granted.Without these abstractions, our modern software landscape

simply wouldn’t exist.

As I see it, the primary challenge for the machine learning community is not the generation

and tuning of yet more algorithms, but the design of simple abstractions. Learning magic must

be packaged. Like a “file,” the abstraction must be usable by any engineer working in any

domain. It must be so simple that it can be taken for granted.

Today, a Perl programmer needs just four letters to invoke decades of research into filesystems

and physical media: “open.” A finely-tuned mergesort is available with the word “sort,” and

even more finely-tuned hashing algorithms require just a pair of brackets. Until machine



learning is as accessible and effortless as typing the word “learn,” it will never become

widespread.

One small step for trip planners gets mankind nowhere.

Engineering inference from the environment

The section “Inferring context from the environment” presented a number of environmental

sources from which information software could infer context. The hardware-related sources,

such as clocks and location sensors, might have seemed obvious. The software-related sources,

such as other information software and documents created with manipulation software, might

have seemed so far-fetched as to be implausible. This section will present the information

ecosystem, a software architecture which might allow for such behavior.

Consider this scenario:

I receive an email from a friend.

After reading the email, I open mymap software to find that nearby pizza restaurants

are prominently marked.

How might such behavior be implemented?

One approach is to build a system that directly performs the desired behavior. In this case,

perhaps one would design an email program with a built-in map. If the current email contains

the word “pizza,” the program would perform an internet search for pizza places and display

them on its map.

There are several reasons why the system-based approach is unappealing:

Monolithic systems don’t scale. The system described is a trivial solution to a general

problem. What about information from a website showing up on my calendar? What

about seeing encyclopedia entries related to the paper I’m writing? The possibilities

grow combinatorially—it is impossible to deliberately handle them all.

Monolithic systems are bad for users. Email and maps are distinct concepts. There is no

reason why a user should turn to the same software package for two unrelated

purposes.* Also, the components of integrated systems tend to be of lower quality than

their dedicated counterparts. You could chop your vegetables and assemble your

furniture with a Swiss Army knife, but you probably don’t.

Monolithic systems are bad for software providers. In a healthy marketplace, whether of

groceries or auto parts, individual providers offer components which combine with

Other information software, such

as open websites. By reading some

information, the user is indicating a

topic of interest. All other

information software should take

heed. Consider a person reading the

website of an upcoming stage play.

When she opens her calendar, the

available showings should be

marked. When she opens a map,

she should see directions to the

playhouse. When she opens a

restaurant guide, she should see

listings nearby, and unless the play

offers matinees, they shouldn’t be

lunch joints.

Documents created with

manipulation software. Creating

some information indicates an even

stronger topic of interest. Consider

a person who requests information

about “cats” while writing a paper.

If the paper’s title is “Types and

Treatment of Animal Cancer,” the

information should skew toward

feline medical data. The title

“History of Egypt” indicates interest

in ancient feline worship instead.

And if the paper contains terms

related to building construction,

“cats” probably refers to the

decidedly non-feline Caterpillar

heavy machinery.

* For that matter, email and

calendars are distinct concepts as

well.



others for a complete solution. A small software provider could provide an excellent

email program, or an excellent map. But only a large corporation has the resources to

develop an integrated package. Once small companies can’t compete, progress

stagnates.

What we need, then, is not a system that implements this behavior, but a platform that

enables such a system to grow organically, via small contributions from diverse providers.

In forsaking integration, however, we forsake designed coordination between components.

The email program and the map will be designed by two different software providers, oblivious

to one another. The programs must somehow exchange information without knowing

anything about each other—without even knowing the other exists.

As it happens, such a mechanism has long existed formanipulation software—copy-and-paste.

This mechanism uses the platform as an intermediary. When the user “copies” a picture in a

drawing program, the program hands data off to the platform. When the user then “pastes” the

picture into a word processing document, the program requests data from the platform, and

handles it according to its type. The drawing and word processing programs know nothing of

each other—they know only of the platform and standard data exchange formats.

Extending this concept to information software involves two additional concerns:

Autonomy. As befitting manipulation software, copy-and-paste requires explicit

manipulation by the user. Information software must be able to share information

implicitly and autonomously, with no user interaction.

Translation. An email is not a map location. Nor is a website a calendar event, nor a

word processing document an encyclopedia entry. The information must be translated

from one form to another.

Given that this platform exists to promote inference from the environment, let us take some

inspiration from a biological environment. The very essence of a biological environment is

autonomous translation. Plants translate sunlight into fruit, large animals translate fruit into

dung, small animals translate dung into soil, plants translate soil into fruit. An ecosystem is a

network of individual components which consume nutrients and translate them to an enriched

form consumed by others, autonomously and with no knowledge of the system as a whole.

If we adopt this process in software, considering our “nutrients” to be information, we have an

information ecosystem. Consider this system:



The components above the platform are views. This is the software that the user sees and

interacts with. Views interact with the platform in two ways:

Views nominate a topic of interest. For example, if the user is reading an email, she is

probably interested in information related to the contents of the email. The email

program would give the email to the platform as a topic. This is analogous to “copying,”

but happens implicitly.

Views request topics of interest, of some particular type. The map, for example, would

request topics that have a geographical location associated with them. If a restaurant

were a topic, the platform would give it to the map, and the map would display it. This

is analogous to “pasting,” but again is implicit.

The components below the platform are translators. The platform gives them information

objects, which they convert from one type to another and return to the platform. Sometimes

this involves decomposing an object into constituent parts (“digesting” it); other times, it

involves enriching the object with additional information.

The platform itself acts as an intermediary between components, attempting to fulfill requests

by constructing a chain of translators to convert topics into the requested types.

This is how the behavior in the original example might come about:



Although it is clearer to visualize the process as described, an actual implementation would

have to be lazy, driven by demand. That is, the process would start at the end with the map’s

request, and the platform would then construct the chain back toward the email program,

according to the types and properties of the objects each component claims to consume and

produce. This is necessary for efficiency reasons, but also explains how EpicurioCity knows the

area to look for restaurants—the map actually requests objects with locations around a

particular area, and EpicurioCity then attempts to produce objects that match this type. It

also explains how EpicurioCity knows howmany objects to produce from its almost infinite



in response to Joe’s email. Now, consider what would happen if, instead of receiving an email,

I were to type the word “pizza” into a document. Surely the last word typed would be

nominated as a topic. It would then get picked up by EpicurioCity and translated into

restaurants, and these would show up on the map. Thus, we have the remarkable emergent

behavior of being able to look up pizza places simply by typing the word “pizza” anywhere on

the computer.

This sort of emergent, non-designed behavior is the overall goal of the platform. Through topic

nomination, the system models the user’s immediate interests, and through translation, every

view can attempt to serve these interests in any way possible.

Confidence. At this point, the biggest problem concerns the question, “Justwhat should be a

topic?” If every component nominated everything that could possibly be relevant, the map

would become so cluttered as to be useless. The problem is addressed by recasting the

question more fuzzily: “Howmuch is something a topic?”

Every topic is nominated with a level of confidence.* An email that I’m reading right

nowwould be nominated with high confidence. When I finish reading it and move on

to something else, its confidence diminishes. The title of a paper I’m currently typing in

would have high confidence; the title of a paper I haven’t touched for a few minutes is

lower. The paragraph that I’m working on has higher confidence than surrounding

paragraphs.

Translators produce dilution of confidence. As they translate, they multiply the object’s

confidence level by their own confidence in the translation. The text digester will have

more confidence in unusual, prominent words, and words that seem related to other

topics or the context in which topics were found. Partial or tenuous matches can be

translated with low confidence instead of omitted. For example, a movie translator

from CelluDroid.commight translate “pizza” into the film “Pizza Cato: The String

Cheese Connection,” but because the name is only partially matched and the context of

the consumed object contains no references to movies, the confidence would be low.

Views, such as the map, use confidence to determine the graphical emphasis of

displayed objects. This is a critical part of the graphic design. Beyond simply adjusting

size, emphasis can involve all sorts of standard graphical techniques—contrast, color

saturation, shading, shadowing, grouping, or placement on a different graphic entirely.

Objects with confidence below some threshold will probably be discarded.

As events cause confidence levels to change, the changes propagate through the chain of

translators, adjusting the emphasis of displayed objects.

Feedback. The next problem with this system is inappropriate translations. Consider again

my friend’s email. The text digester might pick out the word “dude,” which would go through

the business listings at AgoraBiblia.com, resulting in the neighborhood dude ranch showing up

on mymap. This would be a nuisance if it occurred every time I received an email from my

friend.

* I will consider confidence levels to

lie between 0 and 1, so that

multiplication makes sense.



The problem is addressed through backpropagation of feedback. Feedback can be either

explicit or implicit. Explicitly, I can indicate to the map that I am uninterested in dude

ranching. This negative feedback is returned to the AgoraBiblia.com translator, resulting in

low confidence in future dude ranchmatches. The feedback may even propagate back to the

text digester, slightly lowering the confidence that the word “dude” indicates a topic of interest.

Implicitly, simply looking at the map without indicating interest in the dude ranch will cause a

slight negative feedback, resulting in its de-emphasis over time. On the other hand, if I

frequently click on pizza places, positive feedback will backpropagate through the chain of

translators, increasing confidence in all things pizza-related and resulting in their emphasis on

the map.

In effect, the entire environment becomes a learning system, tailoring itself to the individual

user. While topics model the user’s immediate interests, the history acquired through feedback

allows the system to model the user’s long-term characteristics.

Protocol. The last problem I will consider here is the political issue of protocol creation. Just

what is a Restaurant object, and who decides that? Standards, especially premature ones, stifle

invention and progress, but anarchy results in incompatibility. It may be possible to address

this problem through namespacing and published proprietary protocols.

To answer the above question, there is no Restaurant object. Instead, EpicurioCity produces a

com.EpicurioCity.Restaurant object,* whose protocol is defined and managed by

EpicurioCity.com. This proprietary object can be composed of other proprietary objects, as

well as some standard objects defined by the platform, such as Text, Keyword, and

Location. Note that this proprietary Restaurant is not hindered from showing up on the

map, since the map will accept anything with a Location (and presumably some other standard

properties such as a name and description).* A restaurant guide view, on the other hand,

would be written to take advantage of the extra information that

com.EpicurioCity.Restaurant offers—ratings, reviews, and such.

When another provider, CuisineCousins.com, develops a competing restaurant translator, it

can follow EpicurioCity’s published protocol and produce com.EpicurioCity.Restaurant

objects. This makes their new translator immediately compatible with existing views.

Meanwhile, the translator can simultaneously offer their own objects, such as a

com.CuisineCousins.Eatery, with whatever advantages over EpicurioCity’s protocol.

View providers can then update their software to also accept CuisineCousins’s protocol, if

CuisineCousins offers a compelling enough advantage.

If a de facto standard emerges and stabilizes, it might eventually get canonized as the official

Restaurant object. Even then, though, providers will be able to add proprietary namespaced

extensions to it.

Modularity. An obvious benefit to this platform is that it enforces modularity between data

and views. Unlike current systems, in which almost all data and functionality is locked up

behind a user interface, every service on this system is available to every view. More subtly but

* Or however namespacing is

spelled in the implementation

language.

* In object-oriented terminology,

com.EpicurioCity.Restaurant

conforms to the Mappable interface,

and the map requests Mappable

objects. However, this “interface”

can be very informal, and even

unknown to the Restaurant. If the

Restaurant happens to define

enough standard properties, it can

be mapped.



just as importantly, the fact that translators have no end-user interface means they can be

created by engineers. Only the views must be designed for users. Meanwhile, a designer who is

dissatisfied with a view can simply create and release a replacement, with no engineering

worries about data acquisition. Because the system can be easily improved without cross-

disciplinary concerns, creativity and invention should flourish.

Information and the world of tomorrow

Today’s ubiquitous GUI has its roots in Doug Engelbart’s groundshattering research in the

mid-’60s. The concepts he invented were further developed at Xerox PARC in the ’70s, and

successfully commercialized in the Apple Macintosh in the early ’80s, whereupon they

essentially froze. Twenty years later, despite thousand-fold improvements along every

technological dimension, the concepts behind today’s interfaces are almost identical to those

in the initial Mac. Similar stories abound. For example, a telephone that could be “dialed” with

a string of digits was the hot new thing ninety years ago. Today, the “phone number” is

ubiquitous and entrenched, despite countless revolutions in underlying technology. Culture

changes much more slowly than technological capability.*

The lesson is that, even today, we are designing for tomorrow’s technology. Cultural inertia will

carry today’s design choices to whatever technology comes next. In a world where science can

outpace science fiction, predicting future technology can be a Nostradamean challenge, but the

responsible designer has no choice. A successful design will outlive the world it was designed

for.

With what artifact will the people of tomorrow learn information? I believe that in order for a

personal information device to be viable in the long term, it must satisfy two conflicting

criteria: portability and readability.

Portability. Consider today’s ubiquitous information device—the book. We have the

technology to manufacture 5000-page desk-sized tomes, but despite the high

information content, such books are rare. The reason is simply that they can’t be

carried around. As people increasingly expect information on demand, portability will

become ever more critical. Today, people can talk to anyone on the planet by reaching

into a pocket; tomorrow’s information device must be just as accessible. Like a wallet

and keys, the computer will be dropped into the pocket or purse before leaving the

house.* This implies light weight and small volume.

Readability. Consider again the book. We have the technology to produce books

smaller than a business card, but despite the improved portability, such books are also

rare. The supremely-portable postage-stamp-sized book is non-existent. The catch:

Although technology miniaturizes, the human eyespan remains a fundamental

constant. In order to compete with the book, tomorrow’s information device must

provide a book-sized surface area. Anything less cannot be read and skimmed

comfortably, and cannot support spatially-distributed information graphics.

* Other obsolete but entrenched

designs: the QWERTY key layout

(intentionally sub-optimal to reduce

typewriter jams), the von Neumann

architecture (see John Backus, Can

Programming Be Liberated from the

von Neumann Style?, 1978); C and

UNIX (see Richard Gabriel, The Rise

of “Worse is Better”, 1991).

* Ideally, it will even supplant both

wallet and keys.



To resolve these contrasting size constraints, I predict a computer the size and thickness of a

sheet of paper. Like paper, its entire surface is a graphical display. When in use, it is rigid;

when not in use, it collapses and can be folded or rolled up (or crumpled!) and tucked into a

pocket or purse.

Regardless of whether I’ve guessed its form accurately, we can predict the device’s expected

characteristics by extrapolating technological trends. Consider the capabilities relevant to

context-sensitive information graphics: graphical output, history, environment, and user

interaction.

Graphical output. To serve as a book, the device must have a sufficiently large

reading area and high pixel resolution. To serve as a computer, the device must produce

dynamic color graphics. In matching each of today’s devices, tomorrow’s device will

overcome the shortcomings of the other. Dynamic graphics with print resolution will

open up a world of possibilities for detailed information graphics which are impossible

today in either medium.

Environment. Because the user will carry this device everywhere, the device’s

environment will literally be the user’s own. Assuming a sufficient networking model,

the device will be able to sense an enormous amount of information from the

environment—geographical location, physical surroundings (streets, stores,

transportation options, entertainment options), social surroundings (friends, strangers

with interests in common, strangers who can serve a need), and more. The device will

have a far better sense of the user’s environment than the user herself.

History. Since its inception, electronic storage has exponentially increased in density

and decreased in cost. We can fully expect tomorrow’s device to have onboard

capacities that stagger modern sensibilities. But, perhaps more importantly, ubiquitous

network access will make memory effectively unlimited. The device will have the means

to remember everything the user has ever done and every environment in which she did

it. With such a tremendous history and sense of the environment, software will have an

unprecedented potential to predict the user’s current context.

Interaction. Touch or motion-based manipulation is somewhat more efficient than

the mouse. Eye-tracking and speech may be better still, although even these are

unlikely to match the order-of-magnitude improvements predicted for the capabilities

above. But none of these mechanisms will ever approach the sheer amount of

information that can be absorbed by the eye. No matter what new interactive

technology comes along, the bandwidth between the device and the user will remain not

merely asymmetric, but utterly lopsided.

Interaction is already a bottleneck. It will get much worse as graphics, environment, and

history experience their expected breakthroughs. To me, the implication is clear—the

principles of information software and context-sensitive information graphics will become

critical as technology improves.



The future will be context-sensitive. The future will not be interactive.

Are we preparing for this future? I look around, and see a generation of bright, inventive

designers wasting their lives shoehorning obsolete interaction models onto crippled, impotent

platforms. I see a generation of engineers wasting their lives mastering the carelessly-designed

nuances of these dead-end platforms, and carelessly adding more. I see a generation of users

wasting their lives pointing, clicking, dragging, typing, as gigahertz processors spin idly and

gigabyte memories remember nothing. I see machines, machines,machines.

I expect that designers who cling to these models will appear to the next generation like

classical physicists as the world turned quantum, like epicycle-plotters as Kepler drew ellipses,

like Aristotelians as Galileo stood atop the tower at Pisa. No matter how hard they work or how

much they invent, these designers will not be revered as pioneers. They are blazing trails

through a parking lot.

Our pioneers are those who transcend interaction—designers whose creations anticipate, not

obey. The hero of tomorrow is not the next SteveWozniak, but the next William Playfair. An

artist who redefines how people learn. An artist who paints with magic ink.

Summary

Software design consists of graphic design (drawing pictures) and industrial design (allowing

for mechanical manipulation).

Information software is for learning an internal model. Manipulation software is for creating

an external model. Communication software is for communicating a shared model.

Manipulation software design is hard, but most software is information software.

Information software design is the design of context-sensitive information graphics.

Information software is not a machine, but a medium for visual communication.

Context can be inferred from the environment, which can include physical sensors, other

information software, documents created with manipulation software, and data such as email

which acts as a user profile.



Context can be inferred from a history of past environments and interactions. Last-value

predictors provide a rudimentary approach. Learning predictors can infer patterns and make

dynamic predictions.

Context can be inferred from user interaction, but only as a last resort. The best way to reduce

or eliminate interaction is through information-rich graphic design that uses the environment

and history. Remaining interaction can be reduced with graphical manipulation, relative

navigation, and tight feedback loops.

The information software revolution will require public recognition that information software

is a medium of visual communication, designers with talent, skill, and tools, simple and

general platforms, and an environment that encourages creativity and sharing.

A design tool for dynamic graphics that infers behavior from mockups may allow for natural-

feeling creative design with no engineering-related distractions.

Learning predictors exist and are effective. For them to become widespread, simple

abstractions must be invented.

An information ecosystem of views and translators may be able to offer relevant information

of all forms with minimal interaction. Key aspects include topic nomination and translation,

confidence levels, learning through feedback, and a fine-grained modular structure wherein

small software providers can thrive.

As technology related to graphics, the environment, and history undergoes revolutionary

improvements, interaction will become even more of a critical bottleneck. The best approach is

to work towards eliminating it.

Two centuries ago, Playfair invented statistical graphics and changed the world. The time is

ripe for another designer to invent the fundamental context-sensitive graphical forms, and

change the world again.

Recommended reading

Most of the works cited in this paper are recommended—just skim up the sidenotes. The

following landmark books deserve special mention:

Edward Tufte. The Visual Display of Quantitative Information (2001), Envisioning

Information (1990), Visual Explanations (1997). The three testaments of the information

design bible. (A fourth is on the way.) If you’ve already read them, read them again.

Scott McCloud. Understanding Comics (1994). Like information graphics, comics convey

information through arrangements of words and pictures—they are Tufte’s “small multiples”

applied to storytelling. McCloud’s analysis of how people read and understand the visual

language of comics is essential reading for all information graphic designers.



Thomas Kuhn. The Structure of Scientific Revolutions (1962). The only purpose of incremental

improvement to a status quo is to reveal its flaws. Progress occurs when the status quo is

replaced.
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Epilogue

In the early days, I was solving one problem after another after another; a

fair number were successful and there were a few failures. I went home one

* Have you been to your public

library? It’s like Starbucks, but free

of charge, noise, and corporate

branding.

I actually have no interest

whatsoever in the design of online

retailers. It just makes for good

examples.



Friday after finishing a problem, and curiously enough I wasn’t happy; I was

depressed. I could see life being a long sequence of one problem after another

after another. After quite a while of thinking I decided, “No, I should be in the

mass production of a variable product. I should be concerned with all of next

year’s problems, not just the one in front of my face.” By changing the question

I still got the same kind of results or better, but I changed things and did

important work. I attacked the major problem—How do I conquer machines

and do all of next year’s problems when I don’t know what they are going to

be? How do I prepare for it? How do I do this one so I’ll be on top of it? How

do I obey Newton’s rule? He said, “If I have seen further than others, it is

because I’ve stood on the shoulders of giants.” These days we stand on each

other’s feet!

You should do your job in such a fashion that others can build on top of it, so

they will indeed say, “Yes, I’ve stood on so and so’s shoulders and I saw

further.” The essence of science is cumulative. By changing a problem slightly

you can often do great work rather than merely good work. Instead of

attacking isolated problems, I made the resolution that I would never again

solve an isolated problem except as characteristic of a class.

—Richard Hamming, You and Your Research (1986)

Before I release v1.0 of the BART widget, I’d like to write a little paper about

its design…

—Bret Victor (2005)

Epilogue 2

When I first prepared this particular talk … I realized that my usual approach

is usually critical. That is, a lot of the things that I do, that most people do, are

because they hate something somebody else has done, or they hate that

something hasn’t been done. And I realized that informed criticism has

completely been done in by the web. Because the web has produced so much

uninformed criticism. It’s kind of a Gresham’s Law—badmoney drives the

good money out of circulation. Bad criticism drives good criticism out of

circulation. You just can’t criticize anything.

—Alan Kay, How Simply and Understandably Could The "Personal Computing

Experience" Be Programmed? (2006)


