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NEWS AND VIEWS

Hermann Grassmann was right

from lan Stewart

THE late nineteenth century witnessed
many attempts to develop an algebra of
n—dimensional space, by analogy with the
representation of the plane by complex
numbers. Prominent among them was
Hermann Grassmann’s Die lineale Aus-
dehnungslehre (The Calculus of Exten-
sion), published in 1844. Grassmann had
the misfortune to write in a discursive,
philosophical and obscure style at the time
when axiomatic presentation was becom-
ing de rigeur in the mathematical world.
Further, he was a high-school teacher with
no formal training in mathematics. Not
surprisingly, his ideas were at first not
taken very seriously — but later, Elie Car-
tan used Grassmann’s ‘exterior algebra’ as
the basis of his theory of differential
forms. This work proved highly influential
and established the importance of Grass-
mann’s work. But, as Marielena Bar-
nabei, Andrea Brini and Gian-Carlo Rota
write in a recent paper (J. Algebra 96, 120;
1985) “In the process Cartan paid a price
of omission from which we are yet to re-
cover.” They argue that mathematicians
have still not fully understood what Grass-
mann was trying to say, and propose a
formulation of his ideas in modern terms
which provides a natural language for the
study of invariants.

In Grassmann’s original work the same
notation was used to denote two different
operations performed on vectors, called
the progressive and regressive products.
This was not an oversight, but a deliberate
choice. Every mathematician knows that
what Bourbaki calls “abuse of notation”
can, when wielded with care, greatly illu-
minate what would otherwise be a confus-
ing situation. Unfortunately Grassmann
managed to confuse greatly what might
otherwise have been an illuminating situa-
tion. The tale has two main threads: dif-
ferential forms and invariants.

Cartan’s theory of differential forms
attempts to make sense of the idea that
expressions such as dx and dy in calculus
can have a perfectly sensible meaning.
The intuitive idea of ‘a very tiny bit of x’
runs into severe difficulties, and is not
very helpful; but the basic idea that the
derivative dy/dx satisfies an equation
dy=(dy/dx)dx is crucial. So is the idea
that an integral [dx can be thought of as
an operation | applied to a differential
form dx . The fundamental observation is
that products of differential forms, such as
dx.dy, do not obey the usual laws of alg-
ebra. This is because the double integral
[[dx.dy represents a signed area, posi-
tive or negative; and interchanging x and y
turns a left-handed coordinate system into

a right-handed one, multiplying all areas
by —1. In other words, one must set up the
formation to make dx.dy=-dy.dx.
Grassmann’s progressive product obeys
the same kind of law. Cartan found that
the regressive product added nothing to
his theory, and he quietly abandoned it.
Until now, its demise has gone un-
mourned.

The new work of Barnabei et al. is part
of an extensive programme of research
that Rota has carried out for more than a
decade, applying combinatorial methods
to invariant theory. Classical invariant
theory is the study of expressions that
remain unchanged when their variables
are transformed in particular ways. A
simple example arises in connection with
quadratic equations ax’+bx+c=0, for
which there is a well-known formula
involving square roots of b’—4ac. This
quantity is called the discriminant, be-
cause it vanishes precisely when the two
roots of the equation are equal. Suppose
the variable is changed from x to x+h.
Then the quadratic becomes (x+h)*+b(x
+h)+c, or ax’ + (2ah+b)x + (ah’+bh
+c). Write this as Ax’+ Bx+C. Now com-
pute the new discriminant: B°—4AC =
(2ah+b) —4a (alk’+bh+c)=b"—4ac. Thus
the formula for the discriminant does not
change, although the variable x does. It is
called an invariant of the transformation.

Invariant theory was invented around
1850 by Arthur Cayley and James Joseph
Sylvester. It considers more complicated
expressions than only quadratics, and
more complicated transformations than
x — x+h. The fundamental problem in
the theory is to prove that, in any particu-
lar case, the full system of invariants can
be expressed in the terms of a finite sub-
system, called a basis. The main classical
method is to describe explicitly all in-
variants and to exhibit such a basis. By
such methods Paul Gordan, the ‘king of
the invariants’, proved in 1868 that for any
expression in two variables, a finite basis
exists. Limited extensions were proved by
Gordan and others, but progress became
painfully slow as ideas were overwhelmed
by a swelling mountain of calculation.

In 1888 David Hilbert created a
tremendous stir by proving that a finite
basis always exists — and he did it without
calculating any invariants at all. He used
only very general abstract properties of
systems of polynomials. “This is not
mathematics”, Gordan complained, “it is
theology”. But theology won the day, and
explicit computation of invariants went
out of fashion, being replaced by a much
more abstract, higher level approach that
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gave conceptual ideas pride of place. But
history tends to run in spirals; and in re-
cent decades there has been something of
a classical revival, inspired in part by the
needs of other branches of mathematics,
and by applications. Explicit formulas,
rather than existence results, are often de-
sirable. Rota, an expert in combinatorics,
has developed a powerful approach to
such problems: his methods manage to be
both conceptual and computational at
once. How does one achieve such a bal-
ancing act? By making the notation reflect
the concepts. As a result Rota has become
the Edgar Allen Poe of mathematics, ex-
huming Grassmann’s regressive product
from its premature burial.

Barnabei er al. motivate their ideas in
terms of three important types of trans-
formation: orthogonal transformations
are essentially rotations in a multidimen-
sional space; symplectic transformations
arise from mechanics; and a general linear
transformation is, as its name implies, the
most general transformation that keeps
straight lines straight. Barnabei et al. sum-
marize the standard results in the first two
cases as follows: (1) a Hilbert space is a
vector space having a symmetric form
(x,y). That is, (x.y)=(y.x). A transform-
ation 7 is orthogonal if it preserves this
form, that is, (7x,7y)=(x.,y). Invariants
under orthogonal transformations are
polynomials in the symmetric form. Com-
putations in Hilbert space are carried out
in a naturally associated algebra, the Clif-
ford algebra; (2) a symplectic space is a
vector space having an antisymmetric (or
symplectic) form [x,y], that is, one such
that [yx]=—[x,y]. A transformation is
symplectic if it preserves this form. Invari-
ants under symplectic transformations are
polynomials in the symplectic form. Com-
putations occur in a naturally associated
algebra, the Weyl algebra.

The parallel between these two theories
is striking, and it suggests a fruitful ques-
tion: is there an analogous setting for the
general linear group? Barnabei er al. show
that the answer is yes. They define a
Peano space to be a vector space having a
bracket [x,y,z...]. Invariants under the
general linear group are polynomials in
the bracket. Computations are carried out
in a naturally associated algebra, the
double algebra. It is so called because it
has two operations (rather than the usual
one). They are, of course, modern ver-
sions of Grassmann’s regressive and pro-
gressive product. Plus ¢a change...

Ideas that are ahead of their time do not
always find immediate favour, and those
that are not appreciated tend to be for-
gotten. But it is hard to keep a really good
idea down. It was Grassmann'’s tragedy to
be ahead of his time, but it is a mark of his
genius that his ideas are now coming to full
flower. d
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