

Forth - The Early Years

Chuck Moore

chipchuck@colorforth.com
1991

mailto:chipchuck@colorforth.com

 2

To avoid any copyright issues I asked for
permission, and kindly Chuck did allow
the posting:

chipchuck@colorforth.com

Looks good.

Early Years reads well. You're welcome to
post it.

 3

Contents

Page

5 Abstract

5 Forward 1999

5 Contents

6 Forth

8 MIT, SAO, 1958

10 Stanford, SLAC, 1961

11 Free-lance, 1965

13 Mohasco, 1968

17 NRAO, 1971

20 Moral

21 References

22 Summary

 4

 5

Abstract

Forth is a simple, natural computer language. It has achieved

remarkable acceptance where efficiency is valued. It evolved in

the 1960s on a journey from university through business to

laboratory. This is the story of how a simple interpreter expanded

its abilities to become a complete programming

language/operating system.

Forward 1999

This paper was written for the HOPL II (History of programming

languages) conference. It was summarily rejected, apparently

because of its style. Much of the content was included in the

accepted paper [Rather 1993].

This HTML version was reformatted from the original typescript.

Minimal changes were made to the text. Examples of source code

were suggested by reviewer Phil Koopman. They've not yet been
added.

Contents

Forth

MIT, SAO, 1958

Stanford, SLAC, 1961

Free-lance, 1965

Mohasco, 1968

NRAO, 1971

Moral

 6

Forth

Forth evolved during the decade of the 60s, across America,

within university, business and laboratory, amongst established

languages. During this period, I was its only programmer and it

had no name until the end. This account is retrieved from

memory, prompted by sparse documentation and surviving

listings.

Forth is hardly original, but it is a unique combination of

ingredients. I'm grateful to the people and organizations who

permitted me to develop it - often unbeknownst to them. And to
you, for being interested enough to read about it.

Forth is a simple, natural computer language. Today it is accepted

as a world-class programming language. That it has achieved this

without industry, university or government support is a tribute to

its efficiency, reliability and versatility. Forth is the language of

choice when its efficiency outweighs the popularity of other

languages. This is more often the case in real-world applications

such as control and communication.

A number of Forth organizations and a plethora of small

companies provide systems, applications and documentation.

Annual conferences are held in North America, Europe and Asia. A

draft ANSI standard will soon be submitted [ANS 1991].

None of the books about Forth quite capture its flavor. I think the

best is still the first, Starting Forth by Leo Brodie [Brodie 1981].

Another window is provided by JFAR's invaluable subject and
author index [Martin 1987].

The classic Forth we are discussing provides the minimum

support a programmer needs to develop a language optimized for

his application. It is intended for a work-station environment:
keyboard, display, computer and disk.

Forth is a text-based language that is essentially context-free. It

combines 'words' separated by spaces, to construct new words.

About 150 such words constitute a system that provides (with
date of introduction)

 7

 SAO 1958 Interpreter

 SLAC 1961 Data stack

 RSI 1966 Keyboard input

 Display output, OK

 Editor

 Mohasco 1968 Compiler

 Return stack

 Dictionary

 Virtual memory (disk)

 Multiprogrammer

 NRAO 1971 Threaded code

 Fixed-point arithmetic

Such a system has 3-8K bytes of code compiled from 10-20

pages of source.

It can easily be implemented by a single programmer on a small

computer.

This account necessarily follows my career. But it is intended to

be the autobiography of Forth. I will discuss the features listed

above; and the names of the words associated with them. The

meaning of many words is obvious. Some warrant description and
some are beyond the scope of this paper.

That portion of the Forth dictionary to be mentioned is
summarized here:

Interpreter

 WORD NUMBER INTERPRET ABORT

 HASH FIND ' FORGET

 BASE OCTAL DECIMAL HEX

 LOAD EXIT EXECUTE (

Terminal

 KEY EXPECT

 EMIT CR SPACE SPACES DIGIT TYPE DUMP

Data stack

 DUP DROP SWAP OVER

 + - * / MOD NEGATE

 ABS MAX MIN

 AND OR XOR NOT

 8

 0< 0= =

 @ ! +! C@ C!

 SQRT SIN.COS ATAN EXP LOG

Return stack

 : ; PUSH POP I

Disk

 BLOCK UPDATE FLUSH BUFFER PREV OLDEST

Compiler

 CREATE ALLOT , SMUDGE

 VARIABLE CONSTANT

 [] LITERAL ." COMPILE

 BEGIN UNTIL AGAIN WHILE REPEAT

 DO LOOP +LOOP IF ELSE THEN

MIT, SAO, 1958

October, 1957 was Sputnik - a most exciting time. I was a

sophmore at MIT and got a part-time job with SAO (Smithsonian

Astrophysical Observatory, 14 syllables) at Harvard.

SAO was responsible for optical tracking of satellites - Moonwatch

visual observations and Baker-Nunn tracking cameras. Caught

off-guard by Sputnik, they hired undergraduates to compute

predictions with Friden desk calculators. John Gaustad told me

about MIT's IBM EDPM 704 and loaned me his Fortran II manual.
My first program, Ephemeris 4, eliminated my job [Moore 1958].

Now a Programmer, I worked with George Veis to apply his

method of least-squares fitting to determine orbital elements,

station positions and ultimately the shape of Earth [Veis 1960].

Of course, this part-time job was at least 40 hours, and yes, my
grades went to hell.

At MIT, John McCarthy taught an incredible course on LISP. That

was my introduction to recursion, and to the marvelous variety of

computer language. Wil Baden has noted that LISP is to Lambda
Calculus as Forth is to Lukasewcleicz Postfix.

 9

APL was also a topical language, with its weird right-left parsing.

Although I admire and emulate its operators, I'm not persuaded
they constitute an optimal set.

The programming environment in the 50s was more severe than

today. My source code filled 2 trays with punch cards. They had

to be carried about to be put through machines, mostly by me.

Compile took 30 minutes (just like C) but limited computer time
meant one run per day, except maybe 3rd shift.

So I wrote this simple interpreter to read input cards and control

the program. It also directed calculations. The five orbital

elements each had an empirical equation to account for

atmospheric drag and the non-spherical Earth. Thus I could

compose different equations for the several satellites without re-
compiling.

These equations summed terms such as P2 (polynomial of degree

2) and S (sine). 36-bit floating-point dominated calculation time

so overhead was small. A data stack was unnecessary, and
probably unknown to me.

The Forth interpreter began here with the words

 WORD NUMBER INTERPRET ABORT

They weren't spelled that way because they were statement

numbers.

INTERPRET uses WORD to read words separated by spaces and

NUMBER to convert a word to binary (in this case, floating-point).

Such free-format input was unusual, but was more efficient

(smaller and faster) and reliable. Fortran input was formatted into

specific columns and typographic errors had caused numerous
delays.

This interpreter used an IF ... ELSE IF construct, coded in Fortran,

finding a match on a single character. Error handling consisted of

terminating the run.

 10

Then, as now, ABORT asked the user what to do. Since input

cards were listed as they were read, you knew where the error
was.

Stanford, SLAC, 1961

In 1961 I went to Stanford to study mathematics. Although

Stanford was building its computer science department, I was

interested in real computing. I was impressed that they could

(dared?) write their own Algol compiler. And I fatefully

encountered the Burroughs B5500 computer.

I got another 'part-time' job at SLAC (Stanford Linear Accelerator

Center, 12 syllables) writing code to optimize beam steering for

the pending 2-mile electron accelerator. This was a natural

application of my least-squares experience to phase-space. Hal

Butler was in charge of our group and the program, TRANSPORT,

was quite successful.

Another application of least-squares was the program CURVE,

coded in Algol (1964). It is a general-purpose non-linear

differential-corrections data-fitting program. Its statistical rigor

provides insight into agreement between model and data.

The data format and model equations were interpreted and a

push-down stack used to facilitate evaluation. CURVE was an

impressive precursor to Forth. It introduced these words to

provide the capability to fit models much more elaborate than

simple equations:

 + - * NEGATE

 IF ELSE THEN <

 DUP DROP SWAP

 : ; VARIABLE ! (

 SIN ATAN EXP LOG

Spelling was quite different:

 NEGATE was MINUS

 DROP ;

 SWAP .

 ! <

 11
 VARIABLE DECLARE

 ; END

 (...) COMMENT ...;

The interpreter used IF ... ELSE IF to identify a 6-character input

word called ATOM (from LISP). DUP DROP and SWAP are 5500

instructions; I'm surprised at the spelling change. The word : was

taken from the Algol label format, flipped for left-right parsing (to

prevent the interpreter encountering an undefined word):

 Algol - LABEL:

 CURVE - : LABEL

In fact, : marked a position in the input string to be interpreted

later. Interpretation was stopped by ; . A version of : was named

DEFINE.

The store operator (!) appeared in connection with VARIABLE .

But fetching (@) was automatic. Note the input had become

complex enough to warrant comments. The sometime-criticised
postfix conditional dates from here:

 Algol - IF expression THEN true ELSE false

 CURVE - stack IF true ELSE false THEN

True is interpreted if stack is non-zero. THEN provides unique

termination, the lack of which always confused me in Algol. Such

expressions were interpreted: IF would scan ahead for ELSE or

THEN.

The word < introduces the convention that relations leave a truth

value on the stack, 1 for true and 0 for false. The transcendental
functions are, of course, library calls.

Free-lance

I left Stanford in 1965 to become a free-lance programmer in the

New York City area. This was not unusual, and I found work

programming in Fortran, Algol, Jovial, PL/I and various

assemblers. I literally carried my card deck about and recoded it

as necessary.

 12

Minicomputers were appearing, and with them terminals. The

interpreter was ideal for teletype input, and soon included code to
handle output. So we aquire the words

 KEY EXPECT

 EMIT CR SPACE SPACES DIGIT TYPE

EXPECT is a loop calling KEY to read a keystroke. TYPE is a loop

calling EMIT to display a character.

With the TTY came paper-tape and some of the most un-friendly

software imaginable - hours of editing and punching and loading

and assembling and printing and loading and testing and

repeating. I remember a terrible Sunday in a Manhattan

skyscraper when I couldn't find splicing tape (nothing else works)
and swore that 'There must be a better way'.

I did considerable work for Bob Davis at Realtime Systems, Inc

(RSI). I became a 5500 MCP guru to support his time-sharing

service (remote input to a mainframe) and wrote a Fortran-Algol

translator and file editing utilities. The translator taught me the
value of spaces between words, not required by Fortran.

The interpreter still accepted words with the first 6 characters
significant (the 5500 had 48-bit words). The words

 LIST EDIT BEGIN AGAIN EXIT

appear, with BEGIN ... AGAIN spelled START ... REPEAT and used

to bracket the editor commands

 T TYPE I INSERT D DELETE F FIND

later used in NRAO's editor. The word FIELD was used in the

manner of Mohasco and Forth, Inc's data-base management.

One of Forth's distinctive features comes from here. The rule is

that Forth acknowledge each line of input by appending OK

 13

when interpretation is complete. This may be difficult, for when

input is terminated by CR a blank must be echoed, and the CR

included with OK. At RSI, OK was on the next line, but it still

conveyed friendly reassurance over an intimidating
communications line:

 56 INSERT ALGOL IS VERY ADAPTABLE

 OK

This postfix notation suggests a data stack, but it only had to be

one deep.

Mohasco, 1968

In 1968 I transformed into a business programmer at Mohasco

Industries, Inc in Amsterdam NY. They are a major home-

furnishing company - carpets and furniture. I had worked with

Geoff Leach at RSI and he persuaded me to follow him up-state. I

had just married, and Amsterdam has a lovely small-town

atmosphere to contrast with NYC.

I rewrote my code in COBOL and learned the truth about business

software. Bob Rayco was in charge of Corporate data processing

and assigned me two relevant projects:

He leased an IBM 1130 minicomputer with a 2250 graphic

display. The object was to see if computer graphics helped design

patterned carpets. The answer was 'not without color' and the

1130 went away.

Meanwhile I had the latest minicomputer environment: 16-bit

CPU, 8K RAM, disk (my first), keyboard, printer, card

reader/punch, Fortran compiler. The reader/punch provided disk

backup. I ported my interpreter again (back to Fortran) and

added a cross-assembler to generate code for the 2250.

The system was a great success. It could draw animated 3-D

images when IBM could barely draw static 2-D. Since this was my
first real-time graphics, I coded Spacewar, that first video game.

 14

I also converted my Algol chess program into Forth and was duely

impressed how much simpler it became.

The file holding the interpreter was labeled FORTH, for 4th (next)

generation software - but the operating system restricted file
names to 5 characters.

This environment for programming the 2250 was far superior to

the Fortran environment, so I extended the 2250 cross-assembler

into an 1130 compiler. This introduced a flock of words

 DO LOOP UNTIL

 BLOCK LOAD UPDATE FLUSH

 BASE CONTEXT STATE INTERPRET DUMP

 CREATE CODE ;CODE CONSTANT SMUDGE

 @ OVER AND OR NOT 0= 0<

They were still differently spelled

 LOOP was CONTINUE

 UNTIL END

 BLOCK GET

 LOAD READ

 TYPE SEND

 INTERPRET QUERY

 CREATE ENTER

 CODE the cent symbol

The only use I've ever found for the cent symbol. The loop index

and limit were on the data stack. DO and CONTINUE were meant

to acknowledge Fortran.

BLOCK manages a number of buffers to minimize disk access.

LOAD reads source from a 1024-byte block. 1024 was chosen as

a nice modular amount of disk, and has proven a good choice.

UPDATE allows a block to be marked and later rewritten to disk,

when its buffer is needed (or by FLUSH). It implements virtual

memory and is concealed in store (!) words.

 15

BASE allows octal and hex numbers as well as decimal. CONTEXT

was the first hint of vocabularies and served to isolate editor

words. STATE distinguished compiling from interpreting. During

compilation, the count and first 3 characters of a word were

compiled for later interpretation. Strangely, words could be

terminated by a special character, an aberration quickly

abandoned. The fetch operator (@) appeared in many guises,

since fetching from variables, arrays and disk had to be
distinguished. DUMP became important for examining memory.

But most important, there was now a dictionary. Interpret code

now had a name and searched a linked-list for a match. CREATE
constructs the classic dictionary entry:

 link to previous entry

 count and 3 characters

 code to be executed

 parameters

The code field was an important innovation, since an indirect

jump was the only overhead, once a word had been found. The

value of the count in distinguishing words, I learned from the

compiler writers of Stanford.

An important class of words appeared with CODE . Machine

instructions followed in the parameter field. So any word within

the capability of the computer could now be defined. ;CODE

specifies the code to be executed for a new class of words, and
introduced what are now called objects.

SMUDGE avoided recursion during the interpretation of a

definition. Since the dictionary would be searched from newest to

oldest definitions, recursion would normally occur.

Finally, the return stack appeared. Heretofor, definitions had not

been nested, or used the data stack for their return address.

Altogether a time of great innovation in the punctuated evolution
of Forth.

 16

The first paper on Forth, an internal Mohasco report, was written

by Geoff and me [Moore 1970]. It would not be out of place
today.

In 1970 Bob ordered a Univac 1108. An ambitious project to

support a network of leased lines for an order-entry system. I

had coded a report generator in Forth and was confident I could

code order-entry. I ported Forth to the 5500 (standalone!) to add

credibility. But corporate software was COBOL. The marvelous

compromise was to install a Forth system on the 1108 that
interfaced with COBOL modules to do transaction processing.

I vividly recall commuting to Schenectady that winter to borrow

1107 time 3rd shift. My TR4-A lacked floor and window so it

became a nightly survival exercise. But the system was an
incredible success. Even Univac was impressed with its efficiency

(Les Sharp was project liason). The ultimate measure was

response time, but I was determined to keep it maintainable

(small and simple). Alas, an economic downturn led Management

to cancel the 1108. I still think it was a bad call. I was the first to
resign.

1108 Forth must have been coded in assembler. It buffered input

and output messages and shared the CPU among tasks handling

each line. Your classic operating system. But it also interpreted

the input and PERFORMed the appropriate COBOL module. It

maintained drum buffers and packed/unpacked records. The

words

 BUFFER PREV OLDEST

 TASK ACTIVATE GET RELEASE

date from here. BUFFER avoided a disk read when the desired

block was known empty. PREV (previous) and OLDEST are

system variables that implement least-recently-used buffer

management. TASK defines a task at boot time and ACTIVATE

starts it when needed. GET and RELEASE manage shared

resources (drum, printer). PAUSE is how a task relinquishes

control of the CPU.

 17

It is included in all I/O operations and is invisible to transaction

code. It allows a simple round-robin scheduling algorithm that

avoids lock-out.

After giving notice, I wrote an angry poem and a book that has

never been published. It described how to develop Forth software

and encouraged simplicity and innovation. It also described

indirect-threaded code, but the first implementation was at
NRAO.

I struggled with the concept of meta-language, language that

talks about language. Forth could now interpret an assembler,

that was assembling a compiler, that would compile the

interpreter. Eventually I decided the terminology wasn't helpful,
but the term Meta-compile for recompiling Forth is still used.

NRAO, 1971

George Conant offered me a position at NRAO (National Radio

Astronomy Observatory, 15 syllables). I had known him at SAO

and he liked Ephemeris 4. So we moved to Charlottesville VA and

spent summers in Tucson AZ when the radio-telescope on Kitt

Peak was available for maintainance.

The project was to program a Honeywell 316 minicomputer to

control a new filter-bank for the 36' millimeter telescope. It had a

9-track tape and Tektronix storage-tube terminal. George gave

me a free hand to develop the system, though he wasn't pleased

with the result. NRAO was a Fortran shop and by now I was

calling Forth a language. He was right in that organizations have

to standardize on a single language. Other programmers now
wanted their own languages.

Anyhow, I had coded Forth in assembler on the IBM 360/50

mainframe. Then I cross-compiled it onto the 316. Then I re-

compiled it on the 316 (Although I had a terminal on the 360,

response time was terrible). The application was easy once the

system was available. There were two modes of observing,

continuum and spectral-line. Spectral-line was the most fun, for I

could display spectra as they were collected and fit line-shapes
with least-squares [Moore 1973].

 18

The system was well-received in Tucson, where Ned Conklin was

in charge. It did advance the state-of-the-art in on-line data

reduction. Astronomers used it to discover and map inter-stellar
molecules just as that became hot research.

Bess Rather was hired to provide on-site support. She had first to

learn the Forth system and then explain and document it, with

minimal help from me. The next year I reprogrammed the DDP-

116 to optimize telescope pointing. The next, Bess and I replaced
the 116 and 316 with a DEC PDP-11.

The development that made all this possible was indirect-

threaded code. It was a natural development from my work at

Mohasco, though I later heard that DEC had used direct-threaded

code in one of their compilers. Rather than re-interpret the text of
a definition, compile the address of each dictionary entry.

This improved efficiency for each reference required only 2 bytes

and an address interpreter could sequence through a definition

enormously faster. In fact, this interpreter was a 2-word macro
on the 11:

 : NEXT IP)+ W MOV W)+) JMP ;

Now Forth was complete. And I knew it. I could write code more

quickly that was more efficient and reliable. Moreover, it was

portable. I proceeded to recode the 116 pointing the 300' Green

Bank telescope, and the HP mini that was inaugurating VLBI

astronomy. George gave me a ModComp and I did Fourier

transforms for interferometry and pulsar search (64K data). I

even demonstrated that complex multiply on the 360 was 20%
faster in Forth than assembler.

NRAO appreciated what I had wrought. They had an arrangement

with a consulting firm to identify spin-off technology. The issue of

patenting Forth was discussed at length. But since software

patents were controversial and might involve the Supreme Court,

NRAO declined to pursue the matter. Whereupon, rights reverted

to me. I don't think ideas should be patentable. Hindsight agrees

that Forth's only chance lay in the public domain. Where it has

flourished.

 19

Threaded-code changed the structure words (such as DO LOOP IF

THEN). They acquired an elegant implementation with addresses
on the data stack during compilation.

Now each Forth had an assembler for its particular computer. It

uses post-fix op-codes and composes addresses on the data

stack, with Forth-like structure words for branching. The

manufacturer's mnemonics are defined as word classes by ;CODE

. Might take an afternoon to code. An example is the macro for
NEXT above.

Unconventional arithmetic operators proved their value

 M* */ /MOD SQRT SIN.COS ATAN EXP LOG

M* is the usual hardware multiply of 2 16-bit numbers to a 32-bit

product (arguments, of course, on the data stack). */ follows that

with a divide to implement rational arithmetic. /MOD returns both

quotient and remainder and is ideal for locating records within a

file. SQRT produces a 16-bit result from a 32-bit argument.

SIN.COS returns both sine and cosine as is useful for vector and

complex arithmetic (FFT). ATAN is its inverse and has no

quadrant ambiguity. EXP and LOG were base 2.

These functions used fixed-point arithmetic - 14 or 30 bits right of

a binary point for trig, 10 for logs. This became a characteristic of

Forth since it's simpler, faster and more accurate than floating-

point. But hardware and software floating-point are easy to
implement.

I'd like to applaud the invaluable work of Hart [Hart 1978] in

tabulating function approximations with various accuracies. They

have provided freedom from the limitations of existing libraries to

those of us in the trenches.

The word DOES> appeared (spelled ;:). It defines a class of

words (like ;CODE) by specifying the definition to be interpreted

when the word is referenced. It was tricky to invent, but
particularly useful for defining op-codes.

 20

Nonetheless, I failed to persuade Charlottesville that Forth was

suitable. I wasn't going to be allowed to program the VLA. Of any

group, 25% like Forth and 25% hate it. Arguments can get

violent and compromise is rare. So the friendlies joined forces
and formed Forth, Inc. And that's another story.

Moral

The Forth story has the making of a morality play: Persistant

young programmer struggles against indifference to discover

Truth and save his suffering comrades. It gets better: Watch

Forth. Inc go head to head with IBM over a French banking

system.

I know Forth is the best language so far. I'm pleased at its

success, especially in the ultra-conservative arena of Artificial

Intelligence.

I'm disturbed that people who should, don't appreciate how it

embodies their own description of the ideal programming
language.

But I'm still exploring without license. Forth has led to an

architecture that promises a wonderful integration of software

and silicon. And another new programming environment.

 21

References

[ANS 1991] Draft Proposed ANS Forth, document number

X3.215-199x, available from Global Engineering Documents,

2805 McGaw Ave., Irvine CA 92714.

[Brodie, 1981] Brodie, Leo, Starting FORTH, Englewood Cliffs NJ:

Prentice-Hall, 1981, ISBN 0 13 842930 8.

[Hart, 1968] Hart, John F. et al, Computer Approximations.

Malabar FL: Krieger, 1968; (Second Edition), 1978, ISBN 0 88275

642 7.

[Martin, 1987] Martin, Thea, A Bibliography of Forth References,

3rd Ed, Rochester NY: Institute for Applied Forth Research, 1987,

ISBN 0 914593 07 2.

[Moore, 1958] Moore, Charles H. and Lautman, Don A.,

Predictions for photographic tracking stations - APO Ephemeris 4,

in SAO Special Report No. 11, Schilling G. F., Ed., Cambridge MA:

Smithsonian Astrophysical Observatory, 1958 March.

[Moore, 1970] --- and Leach, Geoffrey C., FORTH - A Language

for Interactive Computing, Amsterdam NY: Mohasco Industries,

Inc. (internal pub.) 1970.

[Moore, 1972] --- and Rather, Elizabeth D., The FORTH program

for spectral line observing on NRAO's 36 ft telescope, Astronomy

& Astrophysics Supplement Series, Vol. 15, No. 3, 1974 June,

Proceedings of the Symposium on the Collection and Analysis of

Astrophysical Data, Charlottesville VA, 1972 Nov. 13-15.

[Moore, 1980] ---, The evolution of FORTH, an unusual language,

Byte, 5:8, 1980 August.

[Rather, 1993] Rather, Elizabeth D., Colburn, Donald R. and

Moore, Charles H., The Evolution of Forth, in History of

Programming Languages-II, Bergin T. J. and Gibson, R. G., Ed.,

New York NY: Addison-Wesley, 1996, ISBN 0-201-89502-1.

[Veis, 1960] Veis, George and Moore, C. H., SAO differential orbit

improvement program, in Tracking Programs and Orbit

Determination Seminar Proceedings, Pasadena CA: JPL, 1960

February 23-26.

 22

Charles H Moore

Education:Born in McKeesport Pennsylvania,

near Pittsburg, in 1938. He grew up in Flint
Michigan and was Validictorian of Central High
School (1956). Granted a National Merit
scholarship to MIT where he joined Kappa Sigma
fraternity. Awarded a BS in Physics (1960) with a
thesis on data reduction for the Explorer XI
Gamma Ray Satellite. Then went to Stanford
where he studied mathematics for 2 years (1961).

Programmer: He learned Lisp from John McCarthy. And Fortran II for the IBM 704

to predict Moonwatch satellite observations at Smithsonian Astrophysical
Observatory (1958). Compressed this program into assembler to determine satellite
orbits (1959). On the other coast, he learned Algol for the Burroughs B5500 to
optimize electron-beam steering at Stanford Linear Accelerator Center (1962). As
Charles H Moore and Associates, he wrote a Fortran-Algol translator to support a
timesharing service (1964). And programmed a real-time gas chromatograph on his
first minicomputer (1965). Learned Cobol to program order-entry network at
Mohasco (1968).

Forth: Chuck invented Forth (1968) and collected his personal software library onto

an IBM 1130 which was connected to the first graphics terminal he'd seen (IBM
2250). Soon he used Forth to control the 30ft telescope at Kitt Peak for the National
Radio Astronomy Observatory (1970).
 And then helped found Forth, Inc (1973) with $5,000 from an angel investor. For
the next 10 years, he ported Forth to numerous mini, micro and main-frame
computers. And programmed numerous applications from data-base to robotics.
 In 1980, Byte magazine published a special issue on The Forth Language.
Gregg Williams editorial (2.5MB) provides a rare view of Forth from the outside.

Chips: Finally, he determined to build a Forth chip to realize the architecture

intrinsic to Forth. He was a founder of Novix, Inc and implemented the C4000
(1983) as a gate array. He developed and sold kits to promote the chip. A derivative
was eventually sold to Harris Semiconductor who marketed it as the RTX2000 for
space applications (1988).
As Computer Cowboys, he designed the standard-cell Sh-Boom chip (1985), a
derivative still being marketed. Then he developed his own design tools for the
MuP21 (1990), which has multiple specialized processors. And the F21 (1993)
featuring a network interface. He was a founder of the iTv Corp, and designed the
i21, a similar architecture with enhanced performance (1996) aimed at internet
applications.
 Back as Computer Cowboys, Chuck invented colorForth, ported his VLSI design
tools to it and designed the c18 microcomputer (2001), a simple core that can be
replicated many times on a chip. Each of his chips has emphasised high
performance and low power.
The latest enterprise: http://www.greenarraychips.com/ and a 144 core controller.

http://forth.com/
http://colorforth.com/byte.htm
http://ultratechnology.com/
http://itvc.com/
http://www.greenarraychips.com/

