
CS 252 COMPUTER ARCHITECTURE MAY 2000

V

Variable Word Width Computation for Low Power
Sayf Alalusi and Bret Victor

Abstract— Today’s mobile processors must often times
tackle a multitude of computing applications, many of which do not
require the full 32-bit data word for their computations. In light of
this, it is possible to restrict the computations for these applications to
a reduced width data word to minimize power consumption. A
modification to a standard RISC architecture is presented to reduce
the overall power consumption of these reduced-width applications.
The processor is modified to allow computations to be performed on
either 32-bit or 16-bit wide data. Instructions remain 32 bits, and 32-
bit memory calculations can be interspersed with 16-bit data
operations. An analysis is presented of the approximate power
savings of a processor employing these modifications over the same
processor without these modifications.

I. INTRODUCTION

IRTUALLY all general-purpose processors today use 32-bit
data words. This is for many reasons, not the least of which is

the efficient and quick access to much larger memory areas than are
available with 16-bit data words. Another trend today is toward
mobile computing solutions that must often tackle general purpose
computing applications, as well as multi-media processing
applications.

A major constraint on mobile computing platforms is their
reliance on an internal power supply, i.e. a battery. This means that
energy is at a premium, and should not be wasted. Energy
consumption can be reduced through circuit and architecture
techniques, such as lowering the supply voltage and removing higher
performance functionality that is not necessary.

The goal of this project was to explore whether further
energy savings are possible by considering the word width
requirements of the application. Even though a 32-bit data word is
required in general, certain applications may not require that
computation be performed on the full 32-bit data word. For example,
image processing applications will never require more than 24 bits
(and commonly only 16 bits), audio processing typically only requires
16 bits, text processing only requires 8 bits, and Boolean logic only
requires 1 bit. We sought to discover the energy savings possible if
the processor can gain and then exploit this knowledge.

Energy is consumed in a processor when a node that has an
associated capacitance makes a transition from one voltage level to
another, or equivalently in this case, from one logic level to another.
The energy consumed by a node is directly proportional to the
capacitance at the node in question. So to minimize power
consumption, nodes should be prevented from switching
unnecessarily. The energy consumption can be calculated by
summing all the capacitance that is switching.

II. DESIGN DESCRIPTION

The goals were to develop a fairly simple and general set of
modifications that could be applied to an architecture in order to save
power in applications where the data words are not 32-bit, and to

understand how much savings is possible and where it comes from.
Our design was based around the standard MIPS instruction set and
five-stage pipeline, which is a typical 32-bit RISC architecture. We
were faced with many possibilities at each step of the design phase.
Our design decisions will be explained in this section, and the energy
analysis of the design in the next section.

The design consists of two classes of modifications to the
standard architecture. The first class is the modifications needed
simply to communicate the current data word width to the processor.
This can be done dynamically, with the processor somehow sensing
how many data bits are “active”, or statically, through the compiler or
programming language. A dynamic scheme would require no
modification to the instruction set or decode and could be “smarter”
than a static scheme. However, it would incur a large overhead in
hardware area, complexity, and power, and since we sought a solution
that was simple and consumed little extra energy itself, we chose
static.

The possibilities at this point were supplying additional
instructions to set the processor word width in a modal fashion, or
adding a field to the instruction encoding so that the width would be
set on an instruction-by-instruction basis. The second possibility
entails a much more drastic modification to the ISA, either expanding
the instruction width or recoding the instructions. However, all
memory accesses and pointer arithmetic require the full 32 bits, so a
typical application needs to switch frequently between word widths.
Having to issue extra instructions to do so would incur a large
overhead. Also, specifying width on an instruction-by-instruction
basis leads to a much cleaner solution than using a global mode,
because the word width information can easily travel down the
pipeline with the instruction itself. Therefore, we decided to specify
data width directly in the instruction word.

Finally, we had to choose which word widths to support.
We decided on supporting only 16-bit and 32-bit instructions,
primarily to simplify the control and decode logic, and for ease of
analysis. (However, supporting more than two word widths, while
more complicated, would not require a major change to our design.)
Differentiation between word widths can be accomplished with a
single flag bit in the instruction word. We now have two versions of
many instructions – add16 and add32, for example. The compiler
can easily choose which version to use through a programming
language mechanism, such as “short int” versus “int” in C.

The second class of modifications is what actually saves
energy, now that the data word width is known. The underlying
philosophy behind this class is that we only drive the lines than we
need to drive, we only clock the registers that need to be clocked, and
we keep the control logic simple. This minimizes the amount of
capacitance transitioning in the system, and thus the energy
consumption. The downside of this approach is that it introduces
internal indeterminacy – unused data lines and register bits will have
“garbage” values, left over from previous operations. In most cases,
however, this is not a problem.

In the following discussion, we step through the pipeline as
shown in Figure 1 as we discuss the modifications made to each stage.
The low-level details and energy analysis of the modifications will be
presented in Section III.

ALALUSI AND VICTOR: VARIABLE WORD WIDTH COMPUTATION FOR LOW POWER

The first stage is Instruction Fetch. Since this stage deals
only with instruction words and address words, no energy-saving
modifications can be applied.

The second stage is Instruction Decode, which includes
register file reads. Several modifications can be applied. One
modification, which we will see in subsequent pipeline stages as well,
is clock gating of the following pipeline register. This not only saves
on energy dissipated in switching the clock line and changing the
contents of the register, but also prevents the output of the register
from switching, which in turn minimizes the switching activity in later
stages. However, one must apply clock gating with care, because it
can lead to skew. Also, we are attempting to gate the clock of the
following pipeline register using a result stored in the previous
pipeline register, which brings up some tricky timing issues. The
circuit in Figure 2 attempts to address both of these concerns. The
buffering stages illustrate how the gated clock can be fit into the clock
distribution network. The buffers can be sized appropriately in order
to match the arrival times of the clocks at the registers. The flip-flop
is used to sample the width flag on the falling edge of the clock, and
sidestep the second concern above. We partition the pipeline register
so the upper 16 bits (“high word”) of each register file output is only
latched into the pipeline register if the processor is executing a 32-bit
operation, using the WidthGatedClock Additionally, we use another
gated clock, ImmedGatedClock, to store the immediate field of the
instruction word only if the instruction requires an immediate operand.
However, we are not assuming that this information is encoded in a
single bit like the width, so it may require some decode logic to
determine whether the immediate operand is required. We could
further use this information to not latch any of register B if the

immediate operand is used, since in such a case, register B is
discarded in the next stage. However, instructions without immediate
operands are issued more frequently than instructions with
immediates, so the savings from such a modification would be
smaller, and not worth the control and complexity overhead.

Other modifications to the Instruction Decode stage are
preventing the register file from driving the high bit lines of its outputs
if the word width is 16-bit, and ensuring that the comparitor, which is
used for branch decisions, only does a 16-bit compare in such a case.
The first modification provides an energy savings, whereas the second
one is simply required so the processor behaves correctly when
branching on 16-bit results.

The third pipeline stage is Execute, where the ALU is the
big player. We first modify the multiplexors to ensure that on 16-bit
operations, the high words of their outputs cannot change, which
prevents the ALU inputs from transitioning unnecessarily. We also
modify the ALU to internally perform 16-bit operations and only drive
the low word of the output on short width instructions. The following
pipeline register is gated as well. The registers storing the high word
output of the ALU are not clocked if the word width is short, and the
registers storing the direct output of register B are only clocked if the
instruction is a “store word” operation, which is the only case in which
this data is needed.

The fourth pipeline stage is Memory Access, where the data
cache is read and written. Our cache design “packs” 16-bit words into
the memory, allowing them to be accessed on 16-bit boundaries as
well as 32-bit boundaries. This is unlike our policy everywhere else in
the system, where we transport 16-bit data along the existing 32-bit
architecture with no packing or realignment. There are numerous
reasons for packing in the memory: the control overhead is small, it
avoids exposing internal indeterminacies to the external system, it
allows arrays of C “short int”s to be used without modification,
and it increases cache block size, better exploiting spatial locality with
no relative increase in miss penalty. The data cache is segmented such
that a 16-bit access only drives the word line across the necessary bits,
which results in significant energy savings. In addition, control is
added so that if the instruction is not a memory operation, no word
line is driven at all.

The final stage is Write Back, where the computation results
are written into the register file. Modifications here include ensuring
that the multiplexer does not drive the high word on a 16-bit
instruction, and only writing the low word into the destination register
in such a case. However, as we will see, the second modification is
optional because it does not result in a significant energy savings.

III. ANALYSIS OF DESIGN

Models and Assumptions
To determine the energy savings from our design, the

capacitance at each node must be determined. Due to the large
number of nodes and the complex connections at each one, a simple
device parasitic model needs to be utilized. We model a transistor as
having equal input and output capacitances (as calculated in [3]),
equal to a basic unit, “C.” We can then easily approximate the amount
of capacitance at a given node, and perform our calculations in terms
of C. Energy consumption at that node is then the product of its
capacitance and switching frequency. The numerical value of C is
unimportant because our energy calculations are inherently relative.

Another assumption that is needed in order to perform our
analysis is the relative frequencies of different classes of instructions.
These are calculated from the instruction mix breakdown given in [1]FIGURE 2: GATED CLOCK GENERATION

+4

M
U
X

PC I
$

32

32

32
dest
data

outA
outB

+

=

immed: 16

dest reg: 5

32

32

branch address: 32

PC+4: 32

M
U
X

reg A
fwd from MEM

fwd from WB

M
U
X

reg B
fwd from MEM

fwd from WB
immed

A
L
U

32

32

dest reg: 5

SW data: 32

32
addr

wr data
rd data

32

32

dest reg: 5

ALU result: 32

32

M
U
X

32

32 32

5
5

5
32

5

32

IF/ID ID/EX

EX/MEM MEM/WB

srcA
srcB

5

ImmedGatedClock

 D
Q C

Clock

Width

UngatedClock

WidthGatedClock

(from decode logic)
 D

Q C
Immed

(from instruction word)

FIGURE 1: PIPELINE OVERVIEW

CS 252 COMPUTER ARCHITECTURE MAY 2000

for the SPEC benchmarks and are summarized in Table 1. We apply
these numbers and Amdahl’s law to our design in order to calculate
the energy savings of the system as a whole.

HWTE
When comparing our design to an unmodified processor, we

must be careful to assess our design's energy savings relative to a
processor running the same type of application, specifically one in
which the data being operated upon is 16-bit. It is important to note
that if the processors were operating only on 16-bit values, our design
would show control savings relative to the conventional processor, but
in general, no savings along the datapath. The reason is that once the
high word along the datapath were set to zero, as it would be for 16-bit
data, it would remain that way, and no transitioning along the high
half of the datapath would occur in either processor.

However, a 16-bit application does not deal solely with 16-
bit data values, because the address space is still 32 bits. Thus, all
memory accesses and pointer arithmetic, which make up a significant
fraction of the instruction stream, are full 32-bit operations. We will
model a 16-bit application as having two types of data.
“Computational data” is 16-bit; the high word is zero. “Address data”
is 32-bit, and the high word is approximately constant. This is
equivalent to saying that most memory accesses occur within a 64
Kbyte block of the address space, which, while not entirely correct, is
a reasonable enough model.

When dealing with one of these data types, a conventional
processor does not consume more energy along the datapath than our
design, because the high half of the data path does not transition.
However, when the program switches from one type of data to another
(a computational data instruction followed by an address instruction,
for example), the processor must drive the high word of the data bus to

the high word of the data type, and the consequences ripple all the way
down the datapath. Our design, on the other hand, always has the high
word of the address data “sitting” on the high word of the data bus,
and simply chooses to use it or not depending on what type of
instruction is requested. Thus, in this model, our design never
expends the energy required for a “32-bit operation”, whereas a
conventional processor must expend the full 32-bit operation energy
when switching between data types. We therefore define a concept
called the High Word Transition Energy (HWTE). It is the amount of
energy that the conventional processor consumes switching the high
word of the datapath, and is also the amount of datapath energy that
our design saves over that processor.

()
N

EE
HWTE 1632 −=

where E32 is the energy required for a 32-bit operation, E16 is the
energy required for a 16-bit operation, and N is the average number of
consecutive instruction that use the same data type. You can see that
the HWTE is proportional to the frequency at which the program
switches between data types.

The datapath blocks where the HWTE effect must be taken
into account are the register file, the adder, and logic units. The
multiplier and shifter are not affected because they would never be
used on address data. Energy consumption in the data cache is
dominated by the control. Clock energy, determined by the gating of
the pipeline registers, is dependent on the ratio of 32-bit instructions to
16-bit instructions, but not the switching frequency.

Register file
The modified register file read port is shown in Figure 3. It

is implemented similar to standard register file read port, where the
register name enters a decoder, which tells one of the registers to drive
the output bus. The control logic necessary to prevent the high word
from being driven unnecessarily consists of one AND gate per
register. On a given read cycle, one AND gate transitions, which can
prevent up to 16 output lines from transitioning. Since each output
line is wired to 32 register outputs, they carry a very large capacitance
which dominates that of the AND gate. The energy loss from the
control overhead is negligible in comparison to the datapath savings,
and we can say that a 16-bit register read takes 50% less energy than a
32-bit read. Taking the HWTE effect into account, our design thus
provides an energy savings of 33%.

The modified register file write port is shown in Figure 4.
The register name enters a decoder, and the select signal is ANDed
with the write control signal to clock the register. The logic necessary
to prevent the high word from being written on 16-bit operations
consists of one AND gate per register, plus one to generate the
HiWrite signal. It turns out that the energy required for this extra
logic is about equal to the energy saved by not transitioning the high
16 clock lines, so there are no control line energy savings for 16-bit
operations (and indeed, a relative energy loss on 32-bit operations).
Furthermore, there are little datapath savings resulting from not
writing the high word into the register, because the high words of the
register file are unlikely to change in a 16-bit application. Unlike a
common data bus, which must be driven to every data word that
comes down the pipe, registers are special purpose, and the type of
data stored in an individual register will not change for relatively long
periods of time. Thus, for the register file write port, control overhead
cancels out clock line savings, and datapath savings are negligible.

D
E
C
O
D
E
R

R0 hi16

R0 lo16

Width

R1 hi16

R1 lo16

Width

16

16

16

16

D
E
C
O
D
E
R R0 lo16

HiWrite

 R0 hi16

Write

 R1 lo16

HiWrite

 R1 hi16

Write

HiWrite
Write
Width

16

16

16

16

C
D

C
D

C
D

C
D

FIGURE 3: READ PORT FIGURE 4: WRITE PORT

Instruction Type Percent of Total Instructions

Load + Store 35%
Addition 14%
Compare 14%
Branch (any) 20%
Shift 4%
Logical 9%

TABLE 1: INSTRUCTION MIX MODEL

ALALUSI AND VICTOR: VARIABLE WORD WIDTH COMPUTATION FOR LOW POWER

ALU
The blocks in the ALU are mostly combinational logic, and

energy is dissipated when the inputs to the ALU change, switching the
nodes of the ALU. So, the main change to the structure of the ALU is
to allow it to restrict its computations to only the lower 16 bits of the
data word. This will keep signals from propagating to the higher bits
in the ALU and causing unneeded transitions.

The most basic operations of the ALU are the logic blocks.
To perform, for example, an AND operation, each pair of bits of the 2
input data words must simply pass through an AND gate. If this is a
16-bit data word, then the upper 16 bits of each input should not be
changed. This is accomplished by not allowing the outputs of the
pipeline registers preceding driving the ALU inputs to change. Under
these circumstances, the ALU will take 50% less energy to perform a
logical operation on a 16-bit data word than on a 32-bit data word.
Taking the HWTE effect into account, our design thus provides an

energy savings of 33%.
The major energy consumer in the ALU is the adder. A

typical adder structure is pictured in Figure 5. Each nibble of 4 bits
enters a full 4-bit carry-lookahead (CLA) adder structure, which is the
largest practical size. The other part of the adder is an upper-level
carry generation structure. It takes inputs from the 4-bit CLAs and
also provides the 4-bits CLAs with their carry inputs. By again not
allowing the inputs to transition, the upper four 4-bit CLAs will not
make any transitions, giving a linear energy savings. It is much more
complex to generate the higher-bit carries than the lower-bit carries,
and by not generating these, there will be a greater-than-linear savings
in energy per add. For a typical adder design, a 16-bit adds takes 58%
less energy than a 32-bit add, and this provides us with an energy
savings of 39%.

A multiplier structure is depicted in Figure 6. It performs a
32-bit multiply in 32 cycles, or with modified control logic, a 16-bit
multiply in 16 cycles. The complexity of a multiply grows with the
number of bits squared, and this implies that the energy required for
each multiply will grow at the same rate. For an N-bit multiply, the
multiplier must perform N adds, N shifts, and N register writes, each
of N bits. So, the energy required is, in fact proportional to N2, and
for a typical multiplier implementation such as in Figure 6, a 16-bit
multiply takes 77% less energy than a 32-bit multiply.

A block diagram of a barrel shifter is shown in Figure 7.
The barrel shifter is modified to be able to operate as a 32-bit shifter,
or as a strictly 16-bit shifter. In 16-bit mode, the data inputs and
outputs are not driven to the upper 32 bits of the shift structure.
Whereas in 32-bit mode, even if the input data is 16-bit (i.e. its upper
16 bits are zero), the 16 active input bits must be driven across all 32
shift lines. In calculating the energy savings, one must recognize that
an N-bit shifter has N2 transistors in its structure (one pass transistor
from every input to every output). So, to perform a 16–bit shift on a
32-bit shifter, half of the 32x32 structure is used, shown as blocks C
and D in Figure 7. However, to perform a 16-bit shift on a 16-bit
shifter, the entire 16x16 structure is used, i.e. only block C in Figure 7
is used. Therefore, a 16-bit shift, regardless of the input data, takes
50% less energy than the same shift on a structure that is capable of a
32-bit shift.

0
.
.
3

4
.
.
7

8
.
.
11

12
.
.
15

16
.
.
19

20
.
.
23

24
.
.
27

28
.
.
31

Upper Level
CLA
Generation

FIGURE 5: ADDER STRUCTURE

A B

C D

A31

A16

A15

A0

Sh0 Sh15 Sh16 Sh31

FIGURE 6: MULTIPLIER STRUCTURE FIGURE 7: BARREL SHIFTER

CS 252 COMPUTER ARCHITECTURE MAY 2000

Data Cache
The data cache is a large, highly regular memory structure

that can easily be segmented into blocks and sub-blocks. It is this fact
that will allow us to save a significant amount of energy in the cache,
if we are aware that we are only working with a 16-bit data word.

A block diagram of the cache is shown in Figure 8. The
memory itself is assumed to be made up of standard 6-T SRAM cells,
as described in [2]. The word line is now segmented into 8 lines, 4 to
each block, so that each 16-bit word in the cache line has its own
independent word line. In the event of a 32-bit access, there are two
word lines that must be driven to select the correct column in the
cache. However, if there is a 16-bit access, then only one word line
needs to be driven. In order to determine which word lines to drive,
some logic is added in front of the cache. This logic only needs to
examine the width flag bit, and if it is a short data word, then the least
significant bit of the cache index is used to select the high or low word
of the block, in each set. Finally, an additional multiplexer is added at
the output of cache to select the high or low 16-bit data word out of a
32-bit block, based again on the least significant bit of the cache
index. However, this multiplexer is only enabled if the cache access is
to a short data word, and is set to simply pass the whole 32-bit block if
it is a long data word access.

The energy savings comes from segmenting the word line,
and only having to drive half the total word line capacitance per block.
Each of the 8 word lines controls an entire column of the cache, and
therefore runs the entire length of the cache block, giving it a huge

capacitance. These energy savings greatly outweigh the extra energy
that needed for the extra control structures. Therefore, the total energy
savings for the cache is approximately 50%.

Clock Energy
Energy savings along the clock line can be calculated by

considering which pipeline registers are gated and when. This
approach ignores other fanouts of the clock, such as dynamic logic
blocks, but it is assumed that in low power design, the use of dynamic
logic would be kept to a minimum. In our design, we clock:

• 138 registers every cycle,
• 64 registers only on 32-bit operations,
• 16 registers only on instructions with an immediate operand
• 32 registers only on load instructions
• 32 registers only on store instructions

A conventional processor would clock all 282 of these registers on
every cycle. Using the assumed instruction mix for a 16-bit
application, we calculate that our design would average 173 clocked
registers per cycle. Taking into account the overhead of generating
the gated clocks, our design achieves a clock line energy savings of
35%.

Results Summary
The results are summarized in Table 2.

IV. CONCLUSION

The primary drawback to our design is the change to the
standard MIPS ISA to signal which instructions can be dealt with as
16-bit operations. The changes to the datapath elements and the
control logic of various blocks present minimal design time and effort
costs, and nearly negligible increases in silicon area. However, for
these very modest costs, there are substantial power savings under
certain operating conditions. Furthermore, the changes that are
proposed can simply be added to virtually any existing architecture to
achieve a 20%-25% savings in energy, depending on the relative
power consumption of the major components of the processor.

APPENDIX A: RELATED RESEARCH

There is little other research that deals with the question of
utilizing smaller data words to reduce power consumption on multi-
media applications. The most closely related research is on adding

FIGURE 8: DATA CACHE STRUCTURE

Width

Block #

TABLE 2: RESULTS SUMMARY

Core Block Percent of Total Power Power Reduction

ALU 34% 33%
I-Decode 23% 0%
Reg. File 13% 33%
Clock 10% 35%
Shifter 11% 50%
Pipeline Reg. 9% 26%

Savings in Core: 27%

Cache Percent of Total Power Power Reduction

I-Cache 60% 0%
D-Cache 40% 50%

Savings in Cache: 20%

Sub-System Percent of System Power Power Reduction

Cache 66% 20%
Core 33% 27%

Total Power Savings: 22%

ALALUSI AND VICTOR: VARIABLE WORD WIDTH COMPUTATION FOR LOW POWER

SIMD instructions, not unlike the MMX extensions on the Pentium, to
speed up certain audio and visual applications. These applications fall
more in the realm of DSP-like computations, with small, high-speed
kernels that do most of the computations. These types of machines
have special instructions that can turn the N-bit data path into m
datapaths, each N/m bits wide. This is in the interest of higher-speed
media processing.

There are no power savings with these schemes, and in fact,
it may take more energy to perform these types of operations than the
full N-bit operation. This is because every bit of the data word is
driven to a new value on every cycle. The emphasis in these machines
is on performance, not on power consumption. So, instructions are
executed wastefully in the hopes of obtaining higher performance.
Also, since the speedup may be gained from an off-chip co-processor,
there is a substantial power penalty that is incurred for communicating
off-chip.

APPENDIX B: PROJECT HISTORY

Our project, as originally proposed, was “dynamic code
optimization based on run-time environment”. It may amuse the
reader to learn the long and strange chain of events through which the
proposed project morphed into the current one.

The original project involved dynamically modifying
program code through periodic software-based recompilation in order
to optimize for speed. Optimization would be possible because
various parameters which were not known at the original compile time
would be known and constant at this dynamic recompilation phase.
Unfortunately, we could not think of a compelling situation where this
technique would be especially useful. We moved on to looking at
more low level optimizations that would be better suited to hardware
implementation, such as dynamically swapping double precision
instructions for single precision when full precision was not vital.
That wasn't feasible, but it got us thinking about the precision versus
speed tradeoff. Various ideas in this realm included a floating point
unit where computation latency was variable and depended on the
amount of precision desired, an A/D converter which could be read
more quickly but with fewer bits of precision, or being able to
dynamically skip non-essential instructions (leading to a less precise
result) if performance demands were high enough. These techniques
would present the processor with a data word where only some of the
bits were valid, and the rest were garbage. So we started exploring
how the processor itself could use the reduced valid word width to
speed up calculations. This led to the concept of variable word width
computation for speed. Unfortunately, we were having difficulty with
both how and why one would do such a thing. Dynamically
optimizing for speed in embedded applications makes little sense,
because performance gains beyond the real-time constraints (which
must be guaranteed anyway) are usually unnecessary.

But when we entertained the idea of using power as our
optimization criteria, everything fell into place. The “why” was
obvious and the “how” was feasible. We had a project.

REFERENCES

[1] J. Hennessy, D. Patterson, Computer Architecture, a Quantitative
Approach. Morgan Kaufman Publishers, Inc, San Francisco,
1996

[2] J. Rabaey, Digital Integrated Circuits (First Edition) Prentice
Hall, Upper Saddle River, New Jersey, 1996

[3] J. Rabaey, Digital Integrated Circuits (Second Edition) 1999
[4] Piguet, Architectural and Circuit Design for Portable Electronic

Systems. Advanced Engineering Course from the Electronics
Laboratories of the Ecole Polytechnique Federale de Lausanne,
Switzerland

[5] S. Goldstein, et al., “PipeRench: A Coprocessor for Streaming
Multimedia Acceleration,” Proceedings of the 26th International
Symposium on Computer Architecture, Los Alamitos, CA, USA:
IEEE Comput. Soc. Press, 1999. p.28-39

[6] M. Wirthlin, B. Hutchings, “A Dynamic Instruction Set
Computer,” Proceedings IEEE Symposium on FPGAs for Custom
Computing Machines, Los Alamitos, CA, USA: IEEE Comput.
Soc. Press, 1995. p.99-107

[7] J. Montanaro, et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC
Microprocessor,” IEEE JSSC, vol. 31, no. 11, November 1996

